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Long-term therapy with levodopa (L-DOPA) in patients with Parkinson’s disease
(PD) often triggers motor complications termed as L-DOPA-induced dyskinesia (LID).
However, few studies have explored the pathogenesis of LID from the perspective of
neuroanatomy. This study aimed to investigate macroscopic structural changes in a
rat model of LID and the underlying histological mechanisms. First, we established
the hemiparkinsonism rat model through stereotaxic injection of 6-hydroxydopamine
(6-OHDA) into the right medial forebrain bundle, followed by administration of saline
(PD) or L-DOPA to induce LID. Magnetic resonance imaging (MRI) and behavioral
evaluations were performed at different time points. Histological analysis was conducted
to assess the correlations between MRI signal changes and cellular contributors. Voxel-
based morphometry (VBM) analysis revealed progressive bilateral volume reduction in
the cortical and subcortical areas in PD rats compared with the sham rats. These
changes were partially reversed by chronic L-DOPA administration; moreover, there was
a significant volume increase mainly in the dorsolateral striatum, substantia nigra, and
piriform cortex of the lesioned side compared with that of PD rats. At the striatal cellular
level, glial fibrillary acidic protein-positive (GFAP+) astrocytes were significantly increased
in the lesioned dorsolateral striatum of PD rats compared with the intact side and the
sham group. Prolonged L-DOPA treatment further increased GFAP levels. Neither 6-
OHDA damage nor L-DOPA treatment influenced the striatal expression of vascular
endothelial growth factor (VEGF). Additionally, there was a considerable increase in
synapse-associated proteins (SYP, PSD95, and SAP97) in the lesioned striatum of LID
rats relative to the PD rats. Golgi-Cox staining analysis of the dendritic spine morphology
revealed an increased density of dendritic spines after chronic L-DOPA treatment.
Taken together, our findings suggest that striatal volume changes in LID rats involve

Frontiers in Aging Neuroscience | www.frontiersin.org 1 October 2021 | Volume 13 | Article 759934

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2021.759934
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnagi.2021.759934
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2021.759934&domain=pdf&date_stamp=2021-10-28
https://www.frontiersin.org/articles/10.3389/fnagi.2021.759934/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-759934 October 26, 2021 Time: 12:4 # 2

Zhang et al. Neuroanatomic-Histological Correlation in LID Rats

astrocyte activation, enrichment of synaptic ultrastructure and signaling proteins in the
ipsilateral striatum. Meanwhile, the data highlight the enormous potential of structural
MRI, especially VBM analysis, in determining the morphological phenotype of rodent
models of LID.

Keywords: Parkinson’s disease, L-DOPA-induced dyskinesia, magnetic resonance imaging, voxel-based
morphometry, striatum, astrocyte, synaptic plasticity, microvasculature

INTRODUCTION

Levodopa (L-DOPA)-induced dyskinesia (LID) is a common
motor complication of chronic L-DOPA treatment in patients
with Parkinson’s disease (PD) (Iravani and Jenner, 2011). It
significantly reduces the therapeutic efficacy and adversely
affects the patient’s quality of life. Research efforts to uncover
the neuroanatomical correlates of LID in the clinical and in
relevant animal models of LID are vital to help elucidate the
pathogenesis of LID and facilitate LID treatment (Brotchie
et al., 2005). Several studies using functional magnetic resonance
imaging (fMRI) (Herz et al., 2016) and positron emission
tomography (PET) (Rascol et al., 1998; Brooks et al., 2000) have
reported that LID involves molecular changes, metabolism, and
abnormal brain network connections in the cortex-striatum-
cortex loop. Electrophysiological and neuropathological studies
have suggested that LID results from long-term adaptive brain
plasticity (Belujon et al., 2010; Ohlin et al., 2011; Zheng et al.,
2020), which could be attributed to neuroanatomical remodeling
at the level of cells (Bortolanza et al., 2015; Mulas et al., 2016;
Fletcher et al., 2020), spine and synapses (Zhang et al., 2013;
Suarez et al., 2016; Fieblinger et al., 2018), or blood vessels
(Lindgren et al., 2009; Ohlin et al., 2011; Booth et al., 2021).
It remains unclear whether these cellular contributors cause
macroscopic structural changes in the brain volume of LID.
This is relevant, since neuroimaging studies both in human
(Zatorre et al., 2012; Fauvel et al., 2014) and rodent (Biedermann
et al., 2012; Dodero et al., 2013) have demonstrated a linear
relationship between functional activity and brain structure.
Structural MRI studies have shown significantly progressive
cortical and subcortical atrophy in patients with PD than in
healthy controls (Filippi et al., 2020; He et al., 2020). Additionally,
compared with non-dyskinetic patients, dyskinetic patients with
PD present with macroscopic structural changes in brain volume,
including increased thickness of the right inferior frontal sulcus
and increased gray matter volume (GMV) and thickness of the
inferior frontal cortex (Cerasa et al., 2011, 2013a,b). However,
there have been no positive results regarding the striatum,
which is crucially involved in the pathogenesis of LID (Belujon
et al., 2010; Iravani et al., 2012). Moreover, the precise cellular
mechanisms underlying the neuroanatomical changes remains
unclear due to the limited resolution in human imaging studies.
Combining well-validated animal models of LID with advanced
non-invasive and accessible structural MRI methods (Duty and
Jenner, 2011; Fletcher et al., 2020) could overcome this limitation
and allow direct integration of different research areas, accelerate
the clinical translation of basic findings, and facilitate explanation
of MRI phenomena in dyskinetic patients (Finlay et al., 2014).

This study aimed to map neuroanatomical changes in a
rodent model of LID based on voxel-based morphometry (VBM)
analysis, which is an automated whole-brain morphometry
technique (Ashburner and Friston, 2000) and has been widely
used in many central nervous system diseases (Madeira et al.,
2020; Riederer et al., 2020; Takano et al., 2020). Compared
with the traditional manually delineated, anatomically defined
regions of interest (ROI) (Kubicki, 2002) and the surface based
morphometric analysis that only detects cortical thickness and
sulcus depth (Tso and Goadsby, 2015), VBM can provide a
wider range of brain information, and much faster and less time-
consuming.

We hypothesized that chronic exposure to L-DOPA could alter
the MRI phenotype. If true, we sought to assess the possible
mechanism underlying these changes.

MATERIALS AND METHODS

Animals
Adult male Sprague–Dawley rats (weight: 180–200 g) were
purchased from Beijing Sibeifu Biotechnology Co., Ltd., China.
All rats were housed in a specific-pathogen-free environment
under controlled conditions (22 ± 1◦C, 55–65% humidity, 12-
h light/dark cycle) and adequate food and water, they were
allowed to acclimate for 1 week before study initiation. The
experiment was approved by the Institutional Animal Care and
Use Committee at Tongji Medical College, Huazhong University
of Science and Technology, China.

Chemicals
6-hydroxydopamine (6-OHDA), ascorbic acid, apomorphine
hydrochloride, L-DOPA methyl ester, and benserazide were
purchased from Sigma-Aldrich. 6-OHDA (2 µg/µL) and
apomorphine (0.1 mg/mL) were dissolved in sterile saline
containing 0.02% ascorbic acid. L-DOPA (12 mg/mL) and
benserazide (6 mg/mL) were directly dissolved in sterile
saline before use.

6-Hydroxydopamine Lesions and
Apomorphine-Induced Rotations
The rats were deeply anesthetized with isoflurane (3% induction
and 1.5–2% maintenance in pure oxygen) and fixed on a
stereotaxic apparatus. A temperature controller system was used
to keep the rats warm during the operation. For 6-OHDA
Lesioned rats (n = 40), a total dose of 8 µg of 6-OHDA
(2 µg/µL, 4 µL, Sigma) was injected into two points (with minor
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modifications) of the right medial forebrain bundle through a 10-
µL microsyringe at 1 µL/min. The stereotactic coordinates were
as follows: anteroposterior (AP), −4.4 mm; mediolateral (ML),
−1.5 mm; and dorsoventral (DV), 7.8 mm from dura and AP,
−4.4 mm; ML, −1.5 mm; DV, 7.9 mm from dura (Chen et al.,
2017). The sham group (n = 12) was injected with equal saline
amounts containing 0.02% ascorbic acid at the same location.
400,000 units/kg/d of penicillin (3 days) was intramuscularly
injected to prevent infection post-surgery. One rat died after
surgery. After 2 weeks of recovery, apomorphine (0.05 mg/kg
s.c.)-induced contralateral rotations were recorded to assess the
efficacy of the dopaminergic lesion. Only rats with >200 turns
contralateral to the lesioned side within 30 min were considered
eligible PD models with nearly complete lesions (Schwarting
and Huston, 1996; Paille et al., 2010) and were chosen for
subsequent study.

Treatments
Two days after the apomorphine test (Figure 1,
Supplementary Figure 1), three eligible PD rats were used
for tyrosine hydroxylase (TH) staining to evaluate dopaminergic
depletion in the striatum and substantia nigra (SN) after 6-
OHDA lesions. The remaining 24 successful hemiparkinsonian
rats were randomly divided into the PD + saline group (n = 11)
and PD + L-DOPA group (n = 13). The rats were injected daily
with either L-DOPA [12 mg/kg with benserazide (6 mg/kg), i.p.]
or saline (12 mg/kg, i.p.). After the chronic dyskinesia induction
phase (21 days), L-DOPA was administered 2–4 times per week to
maintain stable reproducible abnormal involuntary movements
(AIMs) (Iderberg et al., 2015). The sham group (n = 12) received
a similar volume of saline injections. During the priming period,
L-DOPA-induced AIMs were regularly recorded (as shown in
Figure 1) by a blinded examiner as an index of dyskinesia.

Behavioral Assessment
Adjusting Step Test
The stepping test was performed 2 weeks post-surgery and 15 min
before (pre-) and after (post-) saline/L-DOPA treatment on days
13 and 30, as previously described (Chang et al., 1999). The rat’s
hindquarters and contralateral forelimb were slightly lifted from
the table by the experimenter, with only the test forelimb touching
the table. The number of adjusting steps of both forelimbs in the
forward direction over a distance of 90 cm within 5 s was counted
(Pinna et al., 2007; Chen et al., 2017). The trial was conducted
thrice with the average value being recorded.

Coat Hanger Experiment
The coat hanger experiment was conducted as described
previously, with slight modifications (Moran et al., 1995; Voikar
et al., 2002). The rats were naturally placed at the center of the
coat hanger (diameter, 3 mm; horizontal length, 35 cm; 40 cm
away from the ground) on their forepaws. The body position
of each rat was observed for 30 s, with the trial being repeated
thrice. The scores were assigned as follows: 0, falling off within
10 s; 1, two forepaws remained on the hanger; 2, similar to 1, but
with attempts to climb the hanger; 3, both forepaws plus at least
one hind paw on the hanger; 4, all four paws plus tail wrapped

around the hanger; and 5, escape to the edges of the hanger
balance shaft. Moreover, we measured the latency of the rats to
fall off. The mean value of the three experiments was calculated
for statistical analysis.

Cylinder Test
A modified version of the cylinder test was used to measure
asymmetry forelimb use in the spontaneous exploration of the
walls of a cylindrical enclosure, which is a common motor
function test after unilateral 6-OHDA injury (Schallert, 2006).
The test was performed at 2 weeks post-surgery and 15 min
before (pre-) and after (post-) saline/L-DOPA treatment on days
13 and 30. In the cylinder test, the animals were individually
placed in a clear plexiglass cylinder in a dimly lit room (21 cm,
diameter; 16 cm, height) and observed for 5–10 min depending
on the activity of the rats. The time in the cylinder was either
limited to 20 supporting front paw contacts or until the time
reached 10 min. This relatively short interval (15 min) was chosen
to ensure that the forelimb usage preferences could be tested
in all rats, regardless of the dyskinesia severity. The number
of supporting wall contacts during vertical exploration in the
lesioned (contralateral), unlesioned (ipsilateral), or bilateral was
recorded in a given trial. Data were expressed as the percentage
of lesioned forelimb use: [(lesioned + 1/2 bilateral) divided
by (lesioned + unlesioned + bilateral)] × 100, as previously
described (Schallert, 2006). Further, we demonstrated unilateral
and bilateral wall contact.

Abnormal Involuntary Movements Score
For quantification of AIMs, the rats were individually checked
for 1 min at 35-min intervals for a total of 140 min after L-DOPA
or saline treatment on days 1, 2, 4, 7, 9, 11, 14, 16, 18, 20, 22,
24, 26, 28, and 30 using the validated AIMs scale. As previously
described (Winkler et al., 2002; Chen et al., 2017), the AIM
subtypes (axial, limb, and orofacial dyskinesia, also named ALO
dyskinesia) were divided according to the severity into grades 0–4
as follows: 0, absent; 1, occasional, present <50% of the time; 2,
frequent, present in >50% of the time; 3, continuous throughout
but interrupted by external stimuli; and 4, continuous, not
interrupted by external stimuli (Lundblad et al., 2004; Chen et al.,
2017). The maximum total ALO dyskinesia score was 48. Rats
that consistently displayed a severity score of 3–4 in no less than
two AIM subtypes in at least two monitoring testing sessions were
classified as dyskinetic (LID) and selected for further analysis
(Westin et al., 2006).

Magnetic Resonance Imaging
Two weeks and 1 month after the L-DOPA/saline treatment
(Figure 1), T2-weighted MRI experiments were performed on
a 7.0T small-animal magnet MRI scanner (Bruker BioSpin,
Ettlingen, Germany). A 72-mm-diameter volume coil and
quadrature surface coil were used for radiofrequency pulse
transmission and signal detection, respectively. T2-weighted
anatomical images were obtained with 39 contiguous coronal
slices using Rapid Acquisition with Relaxation Enhancement
(RARE) sequence based on the following parameters: repetition
time, 4,000 ms; effective echo time, 36 ms; matrix size, 128× 128;
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FIGURE 1 | Timeline for induction and evaluation of L-DOPA-induced dyskinesia in rats with 6-OHDA lesions. Behavioral assessment was performed at 2 weeks
post surgery and at 2-weeks intervals after L-DOPA/saline treatment. MRI was performed at 2 weeks and 1 month. AIMs scores were assessed according to the
time noted in the figure. All animals were sacrificed after the last MRI test for subsequent analysis.

field of view, 30 mm × 30 mm; slice thickness, 0.5 mm; and
RARE factor 4 and 8 averages. During the MRI experiments,
the rats (n = 10 per group) were anesthetized with isoflurane
(3% induction and 1.5–2% maintenance in pure oxygen) and
placed on the animal bed with a tooth bar and ear bars for
head immobilization. The body temperature was maintained at
37◦C by a warm water circulator system to avoid the influence of
gas anesthesia. The respiration rate was continuously monitored
throughout the experiment.

Voxel-based morphometry analysis was chosen to assess
GMV differences between groups with data processing pipelines
provided by Statistical Parametric Mapping 12 (SPM12)1. Using
diffeomorphic anatomical registration through exponentiated lie
algebra, T2-weighted anatomical images were segmented and
spatially normalized into a reference space defined by a set of
custom-built tissue probability templates with a spatial resolution
of 125 µm × 125 µm × 125 µm. Modulated GM maps
were obtained from each animal. These maps were smoothed
using a 0.7-mm full width at half maximum Gaussian kernel
and compared voxel-wise with two-sample t-tests. The level of
significance was set at p < 0.001, uncorrected, cluster size = 50.

Tissue Preparation
To minimize the number of animals used, after the MRI
experiments, the same batch of rats were decapitated under
anesthesia with isoflurane for subsequent experiments. The
striata of four rats from each group were rapidly removed
on ice and immediately preserved at −80◦C for biochemical
evaluations; further, another three freshly lesioned striata from
each group were extracted for Golgi staining. Moreover, three
rats of each group were transcranially perfused with 0.9% saline
followed by 4% ice-cold paraformaldehyde; then the whole brains
were completely removed and fixed in 4% paraformaldehyde at
4◦C for 48 h. The fixed samples were dehydrated, embedded, and
sectioned for immunohistochemistry (IHC).

1https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

Western Blotting
Striatal tissues were dissected and homogenized for total protein
extraction. Lysates were centrifuged at 12,000 × g at 4◦C for
15 min, followed by measurement of protein concentrations
using the bicinchoninic acid assay kit (Biosharp, China). Equal
protein amounts (40 µg) from each sample were separated on a
10 or 12% SDS-PAGE gel. Subsequently, they were transferred to
a polyvinylidene difluoride membrane (Millipore, United States),
followed by blocking in 5% non-fat milk or 5% bovine serum
albumin (BSA) for 1.5 h at room temperature. After washing,
the membranes were incubated using the following primary
antibodies overnight at 4◦C: anti-TH Rabbit pAb (Tyrosine
hydroxylase, 1:3000, Proteintech, 25859-1-AP); anti-GFAP
Mouse mAb (glial fibrillary acidic protein, 1:2500, Servicebio,
GB12096); anti-VEGF Mouse mAb (vascular endothelial
growth factor, 1:200, Santa Cruz, sc-7269); anti-SYP Rabbit pAb
(synaptophysin, 1:10000, Servicebio, GB11553); anti-PSD95
Rabbit pAb (post synaptic density protein 95, 1:500, Servicebio,
GB11277); anti-SAP97 Rabbit pAb (synapse-associated
protein 97, 1:2000, Abcam, ab3437); anti-GAPDH Rabbit pAb
(glyceraldehyde 3-phosphate dehydrogenase, 1:10000, GeneTex,
GTX100118). The day after incubation, the membranes were
washed thrice, then incubated with the appropriate secondary
horseradish peroxidase (HRP)-conjugated antibodies for 1 h
at room temperature: goat anti-rabbit IgG (1:10000, Abbkine,
A21020) or goat anti-mouse IgG (1:10000, Abbkine, A21010).
After washing, we used enhanced chemiluminescence kits
(Biosharp, BL520A) to dye the membranes; moreover, bands
were detected using a fluorescent chemiluminescence gel imaging
system (Syngene, United Kingdom). ImageJ software was used to
analyze band intensities.

Immunohistochemistry
Immunohistochemistry was performed as described previously
(Tan et al., 2020). Briefly, paraffin-embedded brains were cut
at a 4-µm thickness in the coronal plane and mounted on
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FIGURE 2 | Evaluation of a PD rat model with complete unilateral damage at 2 weeks post surgery. (A,B) Tyrosine hydroxylase (TH) immunostaining in the striatum
and SN of the 6-OHDA lesioned rats. (C,D) Analysis of TH differences (AOD, average optical density) between the unlesioned and lesioned side (scale bars: 1 mm).
The boxes represent the SN region (area 0.2 mm2) where positive neurons are counted. N = 3/group. (E–I) Behavioral assessment of each group. (E) Adjusting
steps test. (F,G) Cylinder test. (H,I) Coat hanger experiment. *p < 0.05, ***p < 0.001, ****p < 0.0001 vs. the specified group.####p < 0.0001 vs. the ipsilateral side
in the sham group. N = 12 (sham); N = 27 (PD). Error bars represent SEM.

slides. After deparaffinization and rehydration, the sections were
baked in the basic antigen retrieval buffer (pH 9.0). After rinsing
thrice using phosphate-buffered saline (pH 7.4), the sections
were blocked with 5% BSA (Sigma, United States) for 30 min
at room temperature, then incubated with the following primary
antibodies overnight at 4◦C: rabbit anti-TH (1:200), mouse anti-
GFAP (1:700), mouse anti-VEGF (1:50), rabbit anti-SYP (1:1000),
and rabbit anti-PSD95 (1:50). Subsequently, the sections were
washed and incubated with HRP-labeled secondary antibodies
for 1 h at room temperature, followed by visualization with
3,3-diaminobenzidine solution, counterstaining using Harris
hematoxylin, dehydration, and coverslipping. An Olympus
camera connected to a microscope was used to obtain images

under the same light intensity, followed by analysis using
ImageJ software.

Golgi-Cox Impregnation and Dendritic
Spine Analysis
To further explore whether striatal morphological changes on
MRI in LID rats are associated with changes in dendritic
spine, we performed morphological studies using the FD
Rapid GolgiStainTM Kit (FD NeuroTechnologies, Columbia, MD,
United States) following the manufacturer’s instructions, with
slight modifications (Du, 2019). Briefly, the animals were deeply
anesthetized, then the brains were integrally removed to avoid

Frontiers in Aging Neuroscience | www.frontiersin.org 5 October 2021 | Volume 13 | Article 759934

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-759934 October 26, 2021 Time: 12:4 # 6

Zhang et al. Neuroanatomic-Histological Correlation in LID Rats

tissue damage without perfusion. After rinsing with distilled
water, the brains were hemisected using a blade, and the lesioned
striata were sliced into approximately 8-mm thick blocks. First,
the blocks were immersed in impregnation solution (A and B),
which was replaced the next day; subsequently, they were kept
in the dark for 4 weeks at room temperature. Next, tissues were
transferred into solution C, after 24 h, the fluid was replaced
and stored in the dark for the next week. A vibratome was
used to cut a series of 100-µm thick slices. Subsequently, the
sections were mounted onto gelatin-coated microscope slides.
After naturally drying, the slices were stained, dehydrated, and
cover-slipped with permount. The dendritic spines were analyzed
on the dorsolateral striatum between bregma 2.0 and 0.5, with
obvious morphological changes on MRI. Secondary dendrites
with a length of≥10 µm without obvious shielding were selected
for photography. There were 5–6 neurons included, and a total
of 30 dendritic fragments were used to analyze dendritic spines
in each animal. Optical images were obtained using a camera
connected to a Nikon Eclipse ci microscope (Nikon, Tokyo,
Japan) at the same light intensity by an independent group-
blinded experimenter. Results were expressed as the number of
dendritic spines per 10 µm in length.

Statistical Analysis
All data were analyzed using GraphPad Prism 8.0 software.
The paired-samples t-test was used to compare behavioral
changes before and after treatment within the same group;
further, between-group comparisons were performed using
an independent-sample Student’s t-test. One-way analysis of
variance (ANOVA) was conducted for comparisons between the
three groups. Among-group differences in the percentage of
forelimb use before and after treatment at day 13 and day 30,
and intra-group behavior differences between day 13 and day 30
were analyzed using two-way ANOVA, followed by Bonferroni’s
post hoc test. P < 0.05 was considered statistically significant.
All data are presented as mean ± SEM or boxplot showing the
median, quartiles, and ranges.

RESULTS

Validation of the Unilateral
6-Hydroxydopamine-Lesioned Rat Model
After acute challenging with apomorphine (0.05 mg/kg, s.c.),
27 out of 40 (67.5%) 6-OHDA-injected rats presented with
>200 contralateral rotations, which was considered as the
completely damaged PD model. Contrastingly, the sham
rats did not present with rotating behavior. Additionally,
TH immunostaining revealed almost complete depletion
(TH-positive striatal dopaminergic terminals, Figures 2A,C;
dopaminergic neurons in the SN, Figures 2B,D; n = 3) in the
lesioned side, which was consistent with the hemiparkinsonian
model. Subsequent behavioral test results (Figures 2E–I)
confirmed severe sensorimotor deficits in the PD group. The
typical performances were significant decrease in the number
of steps on the contralateral limb of the lesion (Figure 2E),
lower preference in using the contralateral anterior limb

(Figures 2F,G), and impaired coordination ability (Figures 2H,I)
compared with those in the sham group.

Chronic Levodopa Administration
Induced Abnormal Involuntary
Movements While Improved Movement
Deficits in the
6-Hydroxydopamine-Lesioned Rats
After the behavioral tests, remaining 24 rats with full lesions
induced by 6-OHDA were randomly allocated to the saline
(n = 11) or L-DOPA (n = 13) treated groups. As shown
in Figures 3A,B, chronic administration of L-DOPA plus
benserazide, 85% (11/13) to 6-OHDA lesioned rats yielded
severe and reproducible dyskinetic ALO AIMs (axial, orofacial,
and limb AIMs) and were considered as the LID model.
The AIMs score increased gradually from day 1 to day 7,
and plateaued after day 7. Two rats were eventually excluded
because they exhibited mild and occasional AIMs. None of the
saline-treated 6-OHDA lesioned rats showed AIMs. To observe
the treatment effect over time, behavioral assessments were
conducted 15 min before (pre-) and after (post-) L-DOPA/saline
treatment at day 13 and day 30, respectively. As shown in
Figures 3C–L, L-DOPA administration significantly improved
motor dysfunction in the LID group; contrastingly, the other
two groups performed similarly before and after treatment at
both two time points. During the test, we failed to observe
significant behavioral differences (including Adjusting step test,
Cylinder test and Coat hanger experiment) between day 13 and
day 30 in each group, both before and after the intervention
(Supplementary Figure 2).

Chronic Levodopa Treatment Produced a
Progressive Pattern of Brain Structural
Changes
We used structural MRI to determine whether chronic exposure
to L-DOPA contributed to macro-structural changes in rat brain.
Given the limitation of MRI acquisition time, only 10 rats in
each group were included in this experiment. Structural MRI
was performed at 2 weeks and 1 month after treatment. VBM
analysis was used to detect and analyze dynamic changes in
brain volume. Compared with the sham groups, there was
a significant GMV decrease in the piriform cortex, SN, and
visual cortex in the ipsilateral (lesioned) hemisphere in the PD
group at 2 weeks. Additionally, there were small clusters of
significant GMV decrease in the bilateral ectorhinal cortices,
thalamus, and hippocampus. No brain region showed increased
GMV (Figure 4A). The scope of the lesions gradually increased
and progressively became more obvious. Specifically, there
was a reduced volume in the bilateral striatum at 1 month
(Figure 4B). Contrastingly, visual analysis of MR images revealed
a progressive GMV increase in the dorsolateral striatum,
piriform cortex, and SN of the lesioned hemisphere, which was
accompanied by significantly decreased GMV in the bilateral
olfactory bulbs at 2 weeks after treatment in the LID group than in
the PD group (Figure 4C). These changes were more prominent
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FIGURE 3 | L-DOPA treatment can improve motor symptoms and induce dyskinesia (LID). (A,B) Behavioral characteristics of the LID rat model. (A) LID was induced
through multiple injections of levodopa and benserazide into PD rats. The figure shows the total of the axial, limb, and orofacial scores (ALO AIMs) obtained at
35-min intervals within 140 min after administration of L-DOPA or saline. The maximum theoretical single-time highest score is 48. The AIMs score gradually
increased from day 1 to day 7 and plateaued after day 7. The saline-treated PD rats lacked abnormal behavior. (B) Changes in the total score of ALO AIMs at
different time points in the LID group. ****P < 0.0001 vs. Day 1. N = 11/group. (C–L) Behavioral assessment [Adjusting step test (C,H), Coat hanger experiment
(D,E,I,J) and Cylinder test (F,G,K,L)] of each group at day 13 (C–G) and day 30 (H–L). L-DOPA administration ameliorated behavioral deficits versus saline-treated
rats. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. pre-L-DOPA/pre-lesioned LID group or the specified group;#p < 0.05, ##p < 0.01, ###p < 0.001,
####p < 0.0001 vs. the pre-saline/pre-lesioned sham group; &p < 0.05, &&p < 0.01, &&&p < 0.001, &&&&p < 0.0001 vs. the post-saline/post-lesioned sham group;
11 p < 0.01, 111 p < 0.001, 1111 p < 0.0001 vs. the post-saline/post-lesioned PD group. Error bars represent SEM. N = 12 (sham); N = 11 (PD); N = 11 (LID).
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at 1 month, while the decrease in the bilateral olfactory bulbs
disappeared (Figure 4D). Compared with the sham group, the
LID group showed a volume decrease in a few scattered brain
regions (such as the olfactory bulbs and ectorhinal cortices),
as well as a significant increase in the volume of the damaged
dorsolateral striatum (Figures 4E,F), which could be attributed
to the neutralization effect. More brain volume information of
relevant brain regions can refer to in the Supplementary Table 1.

Effects of Levodopa Administration on
Astrocytes, Vasculogenesis, and
Synaptic Plasticity
We conducted post-mortem investigations to assess underlying
cellular mechanisms of the VBM changes in MRI after
different interventions. Neuronal and extraneuronal changes,
including neurons, glia, microvasculature, synaptic density, and
extracellular space, may affect MRI signal measurement, which
is sensitive to changes in water proton properties (Perea et al.,
2009; Herz et al., 2014). Since the striatum is crucially involved
in the pathogenesis of LID (Iravani et al., 2012) and showed
the most obvious volume changes, we mainly focused on striatal
pathological analysis. Western blotting and IHC of TH in the
PD and LID rats demonstrated marked striatal dopaminergic
denervation (Figures 5A,B, 6A,B), which further confirmed the
success of the model.

Levodopa Treatment Further Increased
the Levels of Activated Astrocytes
Astrocytes, which are involved in the inflammatory response of
the central nervous system, are considered to be involved in
LID occurrence (Bortolanza et al., 2015; Pisanu et al., 2018).
Accordingly, we estimated striatal glial activation. As shown
in Figures 5A,C, western blotting of the lesioned striatum
revealed that activated astrocytes were involved in PD and
LID development. Consistent with these findings, IHC revealed
a significant increase in GFAP+ astrocytes in the lesioned
dorsolateral striatum than in the intact side in both PD and LID
groups (data not shown). Compared with the sham group, the PD
and LID groups showed significantly increased density of GFAP+
cells in the lesioned side, which was further increased by chronic
L-DOPA administration (Figures 6C,D).

Levodopa Treatment Did Not Alter the
Microvasculature of the Rat Striatum
Injured by 6-Hydroxydopamine
Rodent and human studies have reported angiogenesis in the
denervated dyskinetic striatum (Ohlin et al., 2011; Muñoz et al.,
2014; Jourdain et al., 2017), which could contribute to the
increased volume. Accordingly, we investigated the levels of
VEGF, which is crucially involved in angiogenesis and the
sprouting of new capillaries during development (Carmeliet,
2000). However, we observed no significant differences in the
level of VEGF between the LID group and PD group. Similarly, 6-
OHDA lesions did not affect vasculature (Figures 5A,D), which
was confirmed through pathological analysis (Figures 6E,F).

Levodopa Treatment Induced Aberrant
Synaptic Plasticity in
6-Hydroxydopamine Parkinsonian
Rodents
Human and rodent studies have demonstrated aberrant synaptic
plasticity in the cortical basal ganglia motor circuits in PD (Tang
et al., 2001; Prescott et al., 2009; Kawashima et al., 2013; Thiele
et al., 2014; Tozzi et al., 2021). Therefore, we investigated whether
chronic L-DOPA treatment could change synaptic plasticity
through western blotting and IHC for detecting the levels of
several synapse-related proteins. As shown in Figures 5A,E–
G, 6G–J, L-DOPA treatment increased synaptic proteins (SYP,
PSD95, and SAP97) in the lesioned striatum of LID rats than
in saline-treated PD rats. There were no significant differences
in the SYP and SAP97 levels between the PD and sham
groups. However, PSD95 levels were much lower in PD rats
than in sham rats. Given that aberrant synaptic plasticity in
striatal medium spiny neurons (MSNs) and cortical pyramidal
neurons is often accompanied by morphological changes in LID
models (Zhang et al., 2013; Suarez et al., 2016), we performed
morphological analysis to determine the cause of striatal volume
changes detected by VBM. The microstructure of the dendritic
spines was observed through Golgi staining (Du, 2019). As
expected, 6-OHDA lesions significantly decreased dendritic
spines in the PD group relative to the sham group, which was
dramatically increased by chronic L-DOPA treatment (Figure 7).
Taken together, these findings demonstrated that L-DOPA
administration promoted maladaptive synaptic plasticity.

DISCUSSION

The pathogenesis of LID is not fully understood. Although many
attempts in functional neuroimaging and some results have been
achieved (Cerasa et al., 2015; Herz et al., 2015), dyskinesia
interferes with signal acquisition in experimental animals and
limits the utility of fMRI, which provides us an opportunity to
address this issue from an anatomical perspective. The striatum
is an important hub of the cortical-basal ganglia circuit (Picconi
et al., 2018b). It is believed that both the functional and
neuroanatomical change of the striatum influence the signal
transmission of the whole-circuit, and contribute to the onset of
LID. Moreover, striatal volume changes are most obvious on MRI
after long-term L-DOPA treatment in our study. Therefore, we
mainly focused on the pathological analysis of the striatum here.

The main findings of this study are that VBM analysis
observed a specific pattern of significant GMV decreases
mainly in several cortical and subcortical regions of the
lesioned hemisphere, including the site of the primary lesion
(substantia nigra) following 6-OHDA lesioning (Figure 4A).
This pattern of GMV decreases extended to more extensive
areas of both hemispheres (including bilateral striatum)
over time (Figure 4B). No significant GMV increases were
noted. Meanwhile, remarkable movement deficit was observed
(Figures 2E–I, 3C–L). Chronic L-DOPA treatment partially
reversed these changes, with volume reduction observed only
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FIGURE 4 | VBM analysis results at 2 weeks (A,C,E) and 1 month (B,D,F) after L-DOPA/saline administration. (A) Compared with the sham group, the PD group
showed significantly decreased volumes of the SN in the lesioned side, as well as parts of the bilateral cortices and hippocampus, at 2 weeks. (B) These changes
were more obvious and had a wider range at 1 month. Specifically, reduced volume in the bilateral striatum was newly observed. Notably, the whole-brain analysis
did not reveal increased regional volume. The LID group showed increased volume mainly in the dorsolateral striatum, piriform cortex, and SN of the lesioned side
relative to the PD group at 2 weeks (C); moreover, there was a more prominent increase at 1 month (D), additionally, the volume decrease in the bilateral olfactory
bulbs at 2 weeks disappeared at 1 month. (E,F)These volume changes were partly reversed by L-DOPA treatment. Decreased and increased regional volumes are
displayed in blue and red, respectively. L, unlesioned side; R, lesioned side (N = 10/group, P < 0.001).

in a few scattered brain regions. The volume of the dorsolateral
striatum on the lesioned side was still significantly increased
(Figures 4E,F). In addition, long-term L-DOPA treatment
induced abnormal involuntary movements (Figures 3A,B) and
resulted in significant increases in the volume of the ipsilateral
striatum, piriform cortex, and SN compared with those in
saline-treated PD rats (Figures 4C,D). Regarding striatal cellular
level, there was a prominent denervation of the dopaminergic
(TH-positive) fibers (Figures 5A,B, 6A,B), as well as a decrease in
PSD95 (Figures 5A,F, 6I,J) and dendritic spines (Figure 7) in 6-
OHDA lesioned rats. Moreover, chronic L-DOPA administration
increased GFAP + astrocytes of the lesioned striatum, compared
with saline-treated PD rats (Figures 5A,C, 6C,D). In addition,
there were lesion-associated increases in synapse-associated
proteins (Figures 5E–G, 6G–J). Consistent with this, there was
a remarkable increase in the dendritic spine density in LID
rats. Notably, neither 6-OHDA injury nor L-DOPA treatment
affected striatal VEGF expression (Figures 5A,D, 6E,F). Overall,
our findings confirmed that chronic L-DOPA administration is
associated with striatal structural changes, which could involve
astrogliosis and altered synaptic plasticity. Conceivably, these
findings may shed light into the pathology of LID, allowing
us one step closer to dissect the molecular mechanism of how
chronic L-DOPA triggers LID.

Our preliminary MRI findings revealed that L-DOPA
administration caused macroscale changes in the GMV in

rodents, which is consistent with previous structural MRI
findings in dyskinetic patients with PD (Cerasa et al., 2011,
2013a,b). Notably, although previous studies have not reported
striatal volume changes, there have been reports of region-
specific increases in GMV and cortical thickness, especially in the
prefrontal cortex, after L-DOPA treatment in dyskinetic patients
with PD than in non-dyskinetic patients. In this study, compared
with PD rats, LID rats showed a significant volume increase
in the lesioned dorsolateral striatum. This is consistent with
the findings of a recent structural MRI study in vitro (Fletcher
et al., 2020), which reported an absolute volume expansion in
the lesioned striatum of chronic L-DOPA-treated rats, compared
with saline-treated rats. Moreover, this previous study reported
a positive correlation between volume changes and AIMs
scores, which suggested that microglia may be involved in this
process. However, it remains unclear whether MRI can detect
morphological changes in other brain regions after repeated
L-DOPA treatment and whether there are dynamic changes
over time. The present dynamic MRI study in vivo provides
important evidence for the progressive pattern of whole brain
structural changes in LID rats and demonstrates the potential
relationship between macroscopic variations and microscopic
cellular parameters.

Several studies on different neurotoxin PD models have
demonstrated bilateral GMV reduction on a topographic scale,
including in the striatum and SN (Vernon et al., 2010;
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FIGURE 5 | L-DOPA treatment significantly increased the levels of GFAP and synaptic-associated proteins (SYP, PSD95, SAP97), but not vasculature, in the
lesioned striatum. (A) Representative western blots of TH, GFAP, VEGF, and synaptic associated proteins in the lesioned striatum of the three groups. GAPDH
served as the internal control. (B–G) Quantitative analysis of the aforementioned proteins. Data were presented as% of the sham group. *P < 0.05, **P < 0.01,
****P < 0.0001 vs. the specified or sham group; ##P < 0.01 vs. the PD group. All results were presented as mean ± SEM (N = 4/group).

Westphal et al., 2016; Modo et al., 2017). In our study, MRI
revealed a similar phenotype in the 6-OHDA rat model, with
these changes worsening over time. This suggests that cortical
and subcortical GMV reduction is a distinctive characteristic
of nigrostriatal degeneration. These changes may explain the
motor deficits in 6-OHDA rats. We could not directly explore the
relationship between MRI-derived GM atrophy and parkinsonian
sensorimotor deficits, which was beyond our study scope.
Notably, a previous study reported overactivation of the bilateral
sensorimotor cortex upon stimulation of the left or right forepaw
(Pelled et al., 2002). Another study reported that intracortical
microstimulation bilaterally reduced M1 excitability. However,
this reduction was greater in the damaged hemisphere than
in the intact hemisphere (Viaro et al., 2011). Taken together,
the between-hemisphere interaction is crucially involved in the
pathophysiology of unilateral 6-OHDA rats. Further, our findings
suggest that such volume changes could be at least partly reversed
by L-DOPA treatment.

Literature has reported that hippocampal volume increase in
mice after voluntary exercise could be attributed to astrogliosis
(Biedermann et al., 2016). Considering the astrocytes may be
crucially involved in the volume increases in LID, we examined
the expression of GFAP. As expected, an increased GFAP+

astrocyte was observed in the damaged striatum with 6-OHDA
lesions, which were further increased by L-DOPA treatment. This
is consistent with previous reports of significant astrogliosis in the
lesioned striatum (Bortolanza et al., 2015; Ramírez-García et al.,
2015; Fonteles et al., 2020). Contrastingly, another study observed
no related differences between rats treated with saline and
L-DOPA (Fletcher et al., 2020), arguing against the contribution
of astrogliosis to the volume expansion. This discrepancy could
be attributed to the administration of higher L-DOPA dose
(12 mg/kg, i.p. here) and the use of an alternative delivery route.
Given the multiple roles of astrocytes in the nervous system,
this discrepancy is not surprising. Astrocytes could be involved
in LID development through several processes. First, astrocytes,
neurons, and vascular cells, which form the “neurovascular unit,”
are crucially involved in regulating local blood flow and blood–
brain barrier (BBB) permeability (Yu et al., 2020). Changes in
these parameters may alter the kinetics of L-DOPA entering
the damaged brain area, and therefore, promote the occurrence
of motor complications (Westin et al., 2006). Second, activated
astrocytes produce excessive proinflammatory factors (e.g., IL-
1β, TNF-α, COX-2, and iNOS), which are associated with LID
(Bortolanza et al., 2015, 2021; Dos Santos Pereira et al., 2021).
Third, astrocytes are chemically excitable cells that express
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FIGURE 6 | L-DOPA treatment promoted astrocytic and synaptic pathology in the lesioned striatum. (A) TH immunostaining of the striatum in each group. (C,E,G,I)
Representative immunohistochemical images of GFAP, VEGF, and synaptic associated proteins (SYP, PSD95) of the dorsolateral striatum from the three groups in the
lesioned side. [Scale bars: (A) is 1 mm, (C,E,G,I) is 50 µm]. (B,D,F,H,J) Analysis of differences of the aforementioned proteins. AOD, average optical density. Results
were expressed as % of the unlesioned side. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. the specified group. Error bars represent SEM (N = 3/group).

numerous receptors (including glutamate receptors),induce
synapse formation, and secrete gliotransmitters, which allows
modulation of synaptic plasticity and neural excitability (Blanco-
Suarez et al., 2017). Through these functions, astrocytes influence
the activity of cortical basal ganglia networks and contribute
to LID development (Obeso et al., 2000). Taken together, our
findings suggest that increased GFAP+ astrocyte density may be
a good marker for L-DOPA-induced structural plasticity.

Previous studies have elegantly demonstrated that L-DOPA
exposure modifies the brain microvasculature. For example,
Booth et al. (2021) recently reported that a 10 mg/kg L-DOPA
dosing regimen induced significant angiogenesis in the striatum
and SN, which was accompanied by a local vasomotor reaction.
Similar results have been reported, including increased BBB
permeability, blood vessel length, and cerebral blood flow,
in L-DOPA-treated dyskinetic rats, which further indicate
angiogenesis (Lindgren et al., 2009; Ohlin et al., 2011; Aljuaid
et al., 2019). Nevertheless, our team failed to find association
of angiogenesis between the diseases and volume changes in
both the lesioned and treated groups. Consistent with our
finding, Westin et al. (2006) reported no changes in blood vessel

length in the striatum; however, it was significantly increased
in the entopeduncular nucleus and SN. A recent study on the
L-DOPA effects on angiogenesis yielded similar negative results
by measuring immunoreactivity for RECA1, which is an anti-
endothelial cell antibody and a blood vessel marker (Fletcher
et al., 2020). These inconsistent findings could be attributed to
differences in the selection of angiogenesis indicators (markers
of endothelial proliferation or immature endothelium), L-DOPA
dose, and decapitation time. Therefore, there is a need for
further studies to confirm whether changes in the striatal
microvasculature are related to MRI-derived volume expansion
in LID rat models.

A wealth of evidence has shown that LID is related to
maladaptive striatal synaptic plasticity (Zhang et al., 2013; Suarez
et al., 2016). Since this may be associated with L-DOPA-
mediated volume increase, we first measured the levels of
several synapse-associated proteins. As key presynaptic and
postsynaptic components, respectively, SYP, PSD95, and SAP97
are believed to be involved in synaptic activity (Tarsa and
Goda, 2002; Sheng and Kim, 2011). We found that L-DOPA
treatment increased above synapse-associated proteins, which
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FIGURE 7 | Chronic L-DOPA treatment reversed the reduced dendritic spine density in the lesioned striatum in PD rats. (A–D) Representative microphotographs of
lesioned striatum stained using the FD Rapid GolgiStainTM kit. At low magnification (20×), the integral field-vision of the striatum is primarily composed of regularly
distributed cluster cells, whose staining mainly corresponded to glial cells. Medium spiny neurons (MSN, arrow; 100×) scattered in the middle of numerous tufted
glial cells. A higher magnification (400×) shows a typical MSN with spinous dendrites protruding in all directions. The morphology and density of dendritic spines are
visible (1000×). (E) As shown, the dendritic spine density in the PD group was much lower, compared with the sham group; moreover, the LID group showed a
significantly higher dendritic spine density than in the PD group. ****P < 0.0001 vs. the specified group. The data were presented as boxplot showing median,
quartiles and ranges (N = 3/group).

is consistent with previous reports that repeated L-DOPA
administration increased PSD95 and SAP97 levels (Nash
et al., 2005). PSD95 inhibition has been reported to suppress
augmented NR2B tyrosine phosphorylation and the interactions
of Fyn with NR2B, which facilitate LID management (Ba
et al., 2015). Similarly, Porras et al. (2012) reported that

PSD95 downregulation or disruption of the interaction between
D1R and PSD95 interfered with the establishment of rat and
macaque models of AIMs as well as reduced the severity of
AIMs. PSD95 or SAP97 overexpression can induce synaptic
potentiation, long-term depression, and spinal enlargement (El-
Husseini et al., 2000; Rumbaugh et al., 2003; Stein et al., 2003;
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Nakagawa et al., 2004). Fabrizio et al., found that regulating or
destroying the interaction between NMDA receptor NR2A/NR2B
and membrane-associated guanylate kinase (MAGUK) family
scaffold proteins (including PSD95, SAP97, and SAP102) can
alleviate dyskinetic motor behavior (Gardoni, 2006; Gardoni
et al., 2012; Mellone et al., 2015). PSD95 and SAP97 can
influence each other, which affects postsynaptic density size
and spine volume (Cai et al., 2006). There have been no
reports of increased SYP in LID. The increased levels of SYP,
which is a structural synapse marker, in the lesioned striatum
following chronic L-DOPA administration found in this project
may be related to new synapse formation, axonal sprouting,
and aberrant synaptic plasticity. In summary, we speculated
that the L-DOPA-induced upregulation of synapse-associated
proteins in the lesioned striatum may be crucially involved in
LID development. However, the mechanisms underlying these
alterations remain unknown.

Maladaptive synaptic plasticity in the striatum, frontal lobe,
and/or thalamus-cortex can cause morphological remodeling
(Suarez et al., 2016; Picconi et al., 2018a). Moreover, studies have
reported a significant reduction in the dendritic spine density of
MSNs expressing D2-receptor (D2R) and/or D1-receptor (D1R)
in animals with striatal dopaminergic denervation (Fieblinger
et al., 2014; Nishijima et al., 2014; Suárez et al., 2014; Gomez
et al., 2019). This is in accordance with a previous report
of decreased dendritic spine density in post-mortem striatal
tissue obtained from patients with PD compared with healthy
controls (Stephens et al., 2005). Moreover, this is consistent
with the striatal atrophy in parkinsonian rats observed in our
study and several MRI studies on rat and primate models of
PD (Westphal et al., 2016; Modo et al., 2017). This dendritic
spine loss may be a compensatory change that protects MSNs
from overt excitotoxic death in the dopamine-denervated state.
Notably, chronic L-DOPA treatment restores the spine density
of MSNs expressing D2R (Fieblinger et al., 2014; Suárez et al.,
2014; Gomez et al., 2019) and increases the spine size of
MSNs expressing D1R (Fieblinger et al., 2014; Nishijima et al.,
2014). Moreover, dendritic sprouting of direct pathway MSNs
has been described in the striatum of denervated dyskinetic
rats (Fieblinger et al., 2018). Similarly, serotonergic mechanisms
also play an important role in the appearance of LID (Dupre
et al., 2008; Bezard et al., 2013). Previous study by Rylander
et al. (2010) provided the first evidence that chronic L-DOPA
treatment induced sprouting of striatal 5-HT axon terminals,
with an increased incidence of synaptic contacts, and a larger
dopamine release. Based on this, Tronci et al. (2017) later
found that overexpression of BDNF induced striatal serotonin
fiber sprouting and increased the susceptibility to LID. Using
electron microscopy techniques, Huang et al. (2018) reported
that compared with PD group, the LID group had thicker
postsynaptic densities, narrower synaptic clefts, and an increased
proportion of perforated striatal synapses. Dendritic spines are
the main postsynaptic structures of excitatory synapses and are
crucially involved in neuronal connectivity, information storage,
and processing; accordingly, their morphological changes are
often driven by changes in the activity of synaptic efficacy and are
related to numerous disease states (Fortin et al., 2012). Therefore,

the observed volume changes after different treatments may
reflect morphological changes of dendritic spines in MSNs. To
test this hypothesis directly, we performed Golgi-Cox staining.
We observed a significant increase in dendritic spines in
striatal MSNs following chronic L-DOPA treatment compared
with those in the saline-treated PD group. Since previous
reports that PSD95 and SAP97 overexpression individually or
cooperatively induced a multifold increase in excitatory shaft
synapse density and spine enlargement (El-Husseini et al., 2000;
Rumbaugh et al., 2003; Poglia et al., 2010). Further, Tarsa
and Goda (2002) demonstrated the crucial role of SYP in
regulating activity-dependent synapse formation in vitro. The
increased synapse-associated protein levels in our study were
consistent with the L-DOPA-induced increase in dendritic spines
in the lesioned striatum, which suggests that increased synapse-
associated protein levels may promote the increase of dendritic
spines in the lesioned striatum of LID rats.

Taken together, these results suggest that astrocyte activation
and overexpression of synapse-associated proteins may be
crucially involved in modulating the dendritic spine density,
thus affects synaptic transmission and neuronal circuitry, and
therefore contributes to LID ontogeny. This also raises the
questions of why in PD, dendrites and their dendritic spines
are lost in lesioned striatum and why it could be reversed by
chronic L-DOPA treatment? What role do astrocytes play in this
process? These are obviously interesting goals for future study
that possibly involves researches of the molecular mechanisms
governing spine formation and regression.

Although our MRI data in vivo confirmed a progressive
pattern of brain structural changes induced by chronic L-DOPA
treatment, it remains unclear whether these morphological
changes are a cause or a consequence of LID. Moreover, there is a
need to confirm whether the brain structural changes translate to
other rodent or non-human primate models of LID. Additionally,
an important limitation of our study is that we did not
perform linear regression analysis between histological properties
and MR-detected volume changes to determine whether the
pathologic changes could directly explain the volume expansion.
Future studies should address these issues.

In conclusion, our findings demonstrated the utility and
access of VBM in whole-brain morphometric assessment of 6-
OHDA lesions and L-DOPA-induced changes in rats. We found
that in case of dopaminergic degeneration, astrocyte activation,
enrichment of synaptic ultrastructure and signaling proteins
in the ipsilateral striatum were associated with the structural
changes of striatum in LID rats, although it is still unclear
whether these are directly involved in the development of LID
and lead to the volume expansion. Combining structural MRI
with appropriate animal models of LID could help bridge the
gap between clinical and preclinical studies. For example, this
could allow assessment of disease occurrence or progression
and response to therapy based on brain region-specific changes.
Moreover, it could facilitate elucidation of cellular mechanisms
underlying MRI signal changes in patients with LID. This could
allow a better understanding of the adaptive changes in patients
with PD receiving L-DOPA replacement therapy and guide
therapy and administration.
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