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Abstract
Aim Over the last decades, the shift in age distribution towards older ages and the progressive ageing which has occurred in 
most populations have been paralleled by a global epidemic of obesity and its related metabolic disorders, primarily, type 2 
diabetes (T2D). Dysfunction of the adipose tissue (AT) is widely recognized as a significant hallmark of the ageing process 
that, in turn, results in systemic metabolic alterations. These include insulin resistance, accumulation of ectopic lipids and 
chronic inflammation, which are responsible for an elevated risk of obesity and T2D onset associated to ageing. On the 
other hand, obesity and T2D, the paradigms of AT dysfunction, share many physiological characteristics with the ageing 
process, such as an increased burden of senescent cells and epigenetic alterations. Thus, these chronic metabolic disorders 
may represent a state of accelerated ageing.
Materials and methods A more precise explanation of the fundamental ageing mechanisms that occur in AT and a deeper 
understanding of their role in the interplay between accelerated ageing and AT dysfunction can be a fundamental leap 
towards novel therapies that address the causes, not just the symptoms, of obesity and T2D, utilizing strategies that target 
either senescent cells or DNA methylation.
Results In this review, we summarize the current knowledge of the pathways that lead to AT dysfunction in the chronologi-
cal ageing process as well as the pathophysiology of obesity and T2D, emphasizing the critical role of cellular senescence 
and DNA methylation.
Conclusion Finally, we highlight the need for further research focused on targeting these mechanisms.
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Introduction

Human life expectancy has increased at a very rapid rate. 
Over the past 200 years, the mean age to death for coun-
tries with the most extended lifespans has steadily risen by 
2.5 years per decade [1]. Nevertheless, the quality of life for 
elderly individuals did not proportionately increase. Indeed, 
although ageing may occur even in the absence of diseases 
(e.g., centenarians), ageing is also the major risk factor for 
most disorders with a significant public health impact [1–3]. 

These are known as age-related diseases (ARDs) and include 
chronic metabolic disorders such as obesity, type 2 diabetes 
(T2D), and cardiovascular disease (CVD), as well as cancer, 
neurodegenerative diseases and kidney diseases [1]. Interest-
ingly, many ARDs, including obesity and T2D, show fea-
ture mimicking accelerated ageing at a younger age [1, 4]. 
Obesity per se conveys a higher risk of T2D, and both of 
them are associated with a premature onset of other ARDs, 
including CVDs and cancer [1, 4–9]. Ageing and chronic 
diseases may, therefore, share common pathophysiological 
mechanisms. In accordance with this view, we describe a 
spectrum of phenotypes driven by a common set of molecu-
lar and cellular pathways where the extremes are defined by 
centenarians, who have survived most ARDs and are distin-
guished by decelerated ageing, and by individuals who are 
prematurely affected by one or more ARDs and show signs 
of accelerated ageing [10]. As such, ageing and ARDs may 
be viewed as alternative trajectories of the same process that 
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takes place at different rates, based on interactions between 
genetic, epigenetic and environmental factors, and lifestyle 
throughout the lifespan [10].

The mechanisms shared by ageing and ARDs can be 
grouped into the following processes: (i) decline in pro-
genitor cell function; (ii) cellular senescence; (iii) chronic 
sterile inflammation; and, (iv) dysfunction of the macro-
molecular and cell organelles (e.g., genomic instability, 
shortening of telomeres, epigenetic changes, loss of the 
nuclear lamina interactions, and mitochondrial dysfunc-
tion) (Fig. 1) [2]. 

Most chronic diseases are defined, at least in part, by 
one or more of these pathways that affect the tissues spe-
cifically involved in the development of the pathological 
condition, e.g. adipose tissue (AT) in patients with obesity 
and/or T2D [1–5, 11, 12]. Any single ageing mechanism 
activation tends to influence others. Therapies targeting 
at the above-mentioned mechanisms may prevent, delay 
or mitigate multiple ARDs as a group and increase the 
healthspan [1].

Here, we will review the ageing pathways that con-
tribute to obesity and T2D progression, emphasizing the 
causal link between age-related AT dysfunction and the 
systemic declines that lead to diabetes onset.

In this scenario, we will discuss how chronological as 
well as accelerated ageing occurs in AT, focusing primar-
ily on cellular senescence. Finally, we will address the 
DNA methylation events that have recently been shown to 
impact on the ageing process.

AT aging: an overview

AT is a highly dynamic endocrine and immune organ 
that plays a crucial role in controlling systemic metabolic 
homeostasis and inflammation. It undergoes complex 
changes in cellularity, insulin response, secretion profile, 
and inflammation during ageing with a dramatic impact 
on fat mass and distribution. Without intervention, these 
alterations lead to an elevated age-related threat of chronic 
metabolic diseases, with profound effects on health and 
longevity [4, 5, 13, 14]. Throughout early life, by control-
ling adipocyte progenitor cell (APC) differentiation and fat 
cell turnover, AT can efficiently respond to a wide range 
of changes in energy supply and regional microenviron-
ment. The capacity to cause this compensatory response 
differs by local fat distribution, e.g. subcutaneous adipose 
tissue (SAT) and visceral adipose tissue (VAT) [5]. Molec-
ular, cellular, physiological, and anatomical differences 
between SAT and VAT highlight the specificity of each fat 
depot and its characteristic function [15].

Nevertheless, due to the large replicative and adipo-
genic capacity of APCs and the decreased lipolytic activ-
ity and lower insulin sensitivity of adipocytes in SAT 
compared to those in VAT, subcutaneous fat can expand 
by increasing adipocyte cell size (hypertrophy) and num-
ber (hyperplasia), while visceral fat typically expands by 
increasing adipocyte cell size [16]. As such, SAT is well 
suited for long-term storage of lipids in response to a posi-
tive energy balance. Thus, surplus free fatty acids (FFAs) 
are stored in adipocytes as triglycerides, guarding against 
lipotoxicity in other tissues. Once this storage capacity 
is exceeded and the ability to develop new adipocytes is 
compromised, SAT becomes hypertrophic, inflamed, and 
dysfunctional, and surplus lipids start to accumulate in 
other AT depots (i.e., VAT or peri/epicardial fat) and in 
ectopic locations (i.e., liver and skeletal muscle). These 
events lead to local and systemic inflammation and insulin 
resistance (IR), which in turn contribute to the onset of 
T2D [17]. SAT adipocyte hypertrophy commonly occurs 
in elderly individuals, obese patients, and persons with 
a close family history of T2D, i.e. first-degree relatives 
(FDRs), and has been shown to represent an independ-
ent predictor for IR and a potential risk factor for T2D 
[18–20].

Many studies have described the dynamics of age-
related changes in fat mass and regional distribution 
[21–23]. Redistribution of fat from subcutaneous to intra-
abdominal visceral depots occurs primarily in men and 
women throughout middle age and is independent of 
changes in total adiposity, body weight, or waist circum-
ference [4, 13, 23]. In elderly individuals, fat is stored out-
side of these AT depots and accumulates in muscle, liver, 

Fig. 1  Molecular and cellular hallmarks of ageing. These hallmarks 
recapitulate the most remarkable features of ageing and depict the 
mechanisms underlying the pathogenesis of age-related diseases, 
including obesity and type 2 diabetes. NL, nuclear lamina
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and other ectopic sites [4, 14, 19–23]. As a consequence, 
adipocyte hypertrophy, inflammation, and fibrosis arise 
in SAT during the early stages of ageing before glucose 
tolerance is impaired and local IR progressively develops. 
Indeed, systemic IR will not occur before advanced ageing 
[24]. Altogether, these metabolic disturbances contribute 
to the development of T2D and other ADRs, such as CVD 
and NAFLD [5].

In support of the pathophysiological significance of these 
age-related AT dysfunction, clinical studies in humans, 
including nonobese (i.e., lean or overweight) individu-
als, have clearly demonstrated that treatments affecting fat 
mass, such as calorie restriction (CR), exercise, and bariatric 
surgery, have beneficial effects on energy metabolism and 
metabolic risk factors for T2D, CVD, and cancer. The sur-
gical removal of AT in humans, however, did not show the 
same metabolic effects as those caused by CR and exercise 
[25–28]. This may be linked to the ability of CR and exercise 
interventions to simultaneously reduce fat mass and promote 
AT remodelling by improving adipocyte turnover and for-
mation [26–28]. In line with these observations, data from 
human and animal models suggest that intervention strate-
gies proven to increase mean and maximal lifespan, such as 
single-gene manipulation (e.g., growth hormone/insulin-like 
growth factor 1 (GH/IGF-1) axis) and pharmacological and 
nutritional interventions (e.g., metformin, rapamycin, and 
CR) are useful in ameliorating age-related AT dysfunction 
[4, 25].

These data indicate that the cascade of molecular and 
cellular events underlying age-related AT damage starts in 
SAT and is caused by the reduced function of resident APCs, 
increased inflammation, and accumulation of senescent cells 
[4, 13, 14]. Telomere length (TL) erosion is known to rep-
resent a significant marker of ageing, reduced replicative 
ability, and senescence, both at the cellular and tissue levels 
[29]. Interestingly, age-related TL shortening mainly occurs 
in SAT compared to VAT and is due to shorter telomeres 
in the stromal vascular fraction (SVF) cells which include 
APCs. This evidence supports the concept that ageing of 
APCs is linked to compromised SAT hyperplastic/healthy 
expansion [30, 31].

Several studies indicate that age reduces the replicative 
and adipogenic capacity of SAT APCs [12, 32–35]. Accord-
ingly, APCs isolated from SAT of healthy elderly subjects 
(age > 60) display decreased proliferation and differentiation 
capacities relative to APCs isolated from young individuals 
(age 18–30).

In these elderly subjects, the declining function of APCs 
is associated with high plasma levels of the inflamma-
tory marker soluble tumour necrosis factor receptor 2 and 
increased AT secretion of the pro-inflammatory cytokine 
tumour necrosis factor-α (TNF-α) [34]. These findings 
support the notion that, during ageing, the progressive 

impairment in adipogenesis is related to a pro-inflamma-
tory condition of SAT, which, in turn, contributes to limit-
ing insulin sensitivity in the tissue.

Another process by which elderly people may be pre-
disposed to IR is the “dysdifferentiation” of mesenchymal 
progenitor cells into partly differentiated adipocyte-like 
cells,  i.e. mesenchymal adipocyte-like default (MAD) 
cells. MAD cells arise from APCs, which fail to complete 
differentiation into functional adipocytes. These were 
characterized by decreased sensitivity to insulin, irregu-
lar handling of fatty acids, and enhanced production of 
TNF-α [35, 36].

The causes of APC ageing are likely multifactorial and 
may include inherent genetic features of APCs and epi-
genetic factors, while the AT microenvironment can also 
play a role [13]. Current data underline a causal role for 
AT inflammation in this scenario [13, 14, 35]. High levels 
of pro-inflammatory cytokines and chemokines are found 
in both the fat tissue and blood of older adults. This condi-
tion, known as inflammageing, is a high-risk factor for many 
ARDs, multi-morbidity, and frailty [37]. AT is a progres-
sively an increasing source of TNF-α, Interleukin-8 (IL-8), 
IL-6, IL-1β, and monocyte chemotactic protein-1 (MCP-1) 
in serum from ageing individuals [13, 14, 34, 37]. The cir-
culating levels of these pro-inflammatory markers are also 
associated with the occurrence of T2D, their secretion is 
enhanced in SAT adipocytes of insulin-resistant individuals 
and positively correlates with the size of adipocytes in these 
same subjects [18, 38].

The finding that the age-related IL-6 increase is up to 
tenfold higher in SAT than in VAT indicates that inflam-
mation associated with age is more severe in subcutaneous 
than in visceral fat [13]. The prevalent cell types responsi-
ble for age-related inflammatory changes in SAT are APCs 
and AT macrophages (ATMs) [35, 39–41]. During ageing, 
APCs release further pro-inflammatory chemoattractant fac-
tors (e.g., MCP-1), which promote the activation of ATMs. 
Upon activation, ATMs secrete pro-inflammatory cytokines 
which further enhance the inflammatory phenotype of both 
APCs and adipocytes [18]. The cross-talk between APCs, 
adipocytes, and ATMs creates self-perpetuating processes 
that maintain a pro-inflammatory milieu in SAT and drive 
chronic systemic inflammation, leading to metabolic dys-
function [35]. The underlying mechanisms of age-related 
inflammation are still far from being fully understood. Nev-
ertheless, growing evidence from animal and human studies 
suggests a causal role of cellular senescence. Most senescent 
cells feature a senescence-associated secretory phenotype 
(SASP) which is characterized by a substantial increase in 
the secretion of pro-inflammatory factors. The SASP is a 
dynamic and complex phenotype composed of a wide range 
of cytokines, chemokines, proteases, and growth factors, 
which vary with cell type and cell microenvironment. Thus, 
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senescent cells are a major contributor to the age-related 
pro-inflammatory AT secretion profile [42].

SAT is a crucial site for the accumulation of senescent 
cells during ageing. Indeed, age-related TL shortening 
occurs primarily in SVF cells isolated from SAT [42], also 
supporting the concept that APCs are among the more senes-
cent-susceptible human progenitor cells [13]. Senescent 
APCs operate both in a cell-autonomous manner to enhance 
evolution toward senescence and to restrain adipogenic and 
lipogenic functions, and in a non-cell-autonomous manner to 
alter the tissue microenvironment by paracrine mechanisms. 
When secreted, SASP factors suppress adipocyte differen-
tiation in neighbouring non-senescent APCs, cause inflam-
mation of adjacent healthy cells and propagate senescence, 
inducing local and systemic detrimental effects even with 
low numbers of senescent cells [2, 43–47]. Accordingly, cur-
rent evidence revealed that transplanting a small number 
of senescent murine or human APCs (i.e., 0.5–1 million) 
into middle-aged mice is sufficient to cause disability within 
2 months, accelerate the onset of ARDs, and reduce survival. 
Only 2–10% of cells in AT are senescent in aged mice [48]. 
Similarly, the number of senescent cells is usually low in 
healthy middle-aged subjects (usually < 5%) and increases 
in several tissues, including AT, after 60 years of age (usu-
ally < 20%) [45]. Frailty, chronic diseases, and accelerated 
mortality appear to occur above a threshold number of 
senescent cells [43–48]. Similar findings were drawn from 
preclinical studies in mice (e.g., aged mice, progeroid mice, 
and diet-induced obese mice), and from human clinical trials 
(e.g., diabetic kidney disease individuals). Indeed, removing 
just 30% of senescent cells using either genetic or pharma-
cological strategies (i.e., senolytics and SASP inhibitors) 
was effective in preventing, alleviating, or reversing age-
related dysfunctions, such as AT defects, inflammation, and 
IR [48–57].

Such findings underline the crucial role of senescent 
APCs in driving ageing phenotypes and strongly support 
the selective targeting of these cells as a novel way of alle-
viating chronic disorders of metabolism and increasing the 
duration of human health.

Pathophysiological processes in age‑related 
AT dysfunction

APC function decline

APCs represent a large population of progenitor cells in 
human tissues, accounting for 15–50% of AT cells [13]. 
They undergo a wide range of functional changes during 
ageing [13], including a reduction in replicative capacity 
[34, 58], an impairment of adipogenesis [31, 34, 39, 58, 59], 
a decrease in the handling of fatty acids [60], and an increase 

in secretion of pro-inflammatory cytokines and chemokines, 
metalloproteases, and stress response elements [44, 45]. 
Notably, these age-related changes are maintained and are 
still detectable ex vivo in cultured AT APCs from animal and 
human donors of different ages. In addition, they are often 
reflected in whole fat tissue and/or isolated adipocytes [31, 
32, 44, 45, 58–60].

Extensive studies have shown that APCs obtained from 
older donors have reduced lipid accumulation capacity after 
induction of adipocyte differentiation compared to APCs 
from their younger counterparts [34, 39, 59, 61]. Age-related 
restricted adipogenesis is due, at least in part, to the altered 
expression of the adipogenic transcription factors CCAAT/
enhancer-binding protein α (C/EBPα) and peroxisome pro-
liferator-activated receptor γ (PPARγ) [13, 59]. C/EBPα 
and PPARγ have essential roles in initiating differentiation 
programmes and cooperate in controlling the expression of 
genes needed to acquire and sustain adipocyte phenotypes 
[62, 63]. C/ebpα mutant mice feature a progeroid pheno-
type showing lifespan reduction and alterations in body 
weight, fat depots, and glucose homeostasis [59]. Similarly, 
lowered Pparγ expression in mice causes lifespan decline 
and lipodystrophy [64]. In both APCs and whole AT, the 
expression of C/EBPα and PPARγ decreases with age [34, 
35, 39, 58, 59, 61]. Consistently, C/EBPα overexpression 
restored the adipogenic potential of APCs isolated from 
older adults [59]. Anti-adipogenic regulators, including C/
EBPβ liver inhibitory protein (C/EBPβ-LIP), C⁄EBP homol-
ogous protein (CHOP), and CUG triplet repeat-binding pro-
tein (CUGBP), are also altered during ageing [59, 63]. The 
expression levels of C/EBPβ-LIP, CHOP, and CUGBP are 
increased in APCs, adipocytes, and intact AT during ageing 
[58, 59, 61].

Since several genes downstream of C/EBPα and PPARγ 
modulate insulin sensitivity, fatty acid handling, and mito-
chondrial function, age-related adipogenic impairment con-
tributes to altered fatty acid β-oxidation, lipotoxicity, and 
IR [59–61].

All of these molecular and cellular abnormalities appear 
at different rates in SAT and VAT, and SAT appears to be 
mainly affected [13]. The differences in gene expression pro-
file, epigenetic pattern, and exogenous microenvironment 
between these fat depots are responsible for their specific 
susceptibility to age-related changes [65, 66].

Chronic sterile inflammation

Sterile inflammation develops without external causes (e.g., 
infection), and chronic sterile inflammation is a feature of 
ageing and is more pronounced in AT [37]. During ageing, 
the AT secretory profile shifts to a more pro-inflammatory 
signature in response to physical, chemical, or metabolic 
stimuli (e.g., genomic, hypoxic, nutrient, oxidative, and 
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endoplasmic reticulum (ER) stress) [4, 13, 14, 35, 37]. APCs 
predominantly secrete more pro-inflammatory cytokines 
and chemokines that trigger a cascade of events driving the 
surrounding cells to an inflammatory state. This, in turn, 
results in derangements in adipocyte function, activation of 
ATMs, and recruitment of T-lymphocytes and monocytes 
from blood [35, 36].

Human studies indicate that expression and secretion of 
TNF-α, IL-6, and MCP-1 are higher in APCs from elderly 
subjects than in those from younger individuals and that 
ATM content in healthy subjects is positively correlated 
with age [13, 14, 34, 37, 41]. Analysis of age-related inflam-
matory and immune changes in murine AT has shown that 
ER stress plays a central role in controlling APC and ATM 
inflammatory responses. Indeed, decreasing ER pressure 
through chemical chaperones in aged SVF cells and ATMs 
lowers the concentrations of TNF-α, IL-6, and MCP-1, 
both in vitro and in vivo [67–69].

During ageing, the AT T-cell population is also modi-
fied. The number of regulatory T cells (Tregs) is increased 
by threefold in aged AT. The higher Treg activation corre-
lates with age-related epigenetic drift and hypomethylation 
of T-cell DNA and leads to age-related immune deficiency 
predisposition [70–72]. Interestingly, selective depletion of 
fat-specific Tregs attenuates several symptoms of age-related 
metabolic dysfunction in rodents, including IR. Notably, 
Tregs accumulate in AT as a result of age but not obesity. 
Thus, age- and obesity-associated IR can involve distinct AT 
immune populations [73].

As mentioned above, APC inflammation markers in SAT 
were higher than in VAT [14]. Since SAT is 10 to 20 times 
more abundant than intra-abdominal VAT [35], the inflam-
matory and immune changes correlated with age in this fat 
depot may have significant systemic effect on metabolism.

Cellular senescence

In adult tissues, senescence is transiently induced as a 
response to injury to maintain homeostasis by removing 
damaged cells. Senescent cells, however, may persist and 
accumulate in tissues during ageing due to immune system 
deficiencies (i.e., immunosenescence) [74]. Persistent senes-
cent cells render senescent cell-rich tissues less functional 
and more susceptible to stressors, interfering with the out-
come of several physiological and pathological processes. 
While all types of cells undergo senescence, some are more 
susceptible than others [75, 76]. Data from both human 
progeria syndromes and progeroid mouse models indicate 
that APCs are highly prone to senescence, supporting the 
concept that APC senescence determines age-related AT 
dysfunction [76–78].

Cellular senescence has been identified as a response to 
different stressors (depending on the in vivo context) which 

converge on activation of common effectors [76]. Many of 
these stimuli are signalled by pathways that overlap in acti-
vating the tumour suppressor protein 53 (p53) and upregu-
late the cyclin-dependent kinase (CDK) inhibitors p21 and 
p16. The inhibition of the CDK-cyclin complex results in 
permanent cell cycle arrest, a characteristic feature of senes-
cent cells [79]. When growth arrest occurs as a consequence 
of telomere erosion following multiple cell divisions, senes-
cence is termed replicative senescence. Instead, when the 
arrest of the cell cycle is independent of TL shortening, 
senescence is termed stress-induced premature senescence 
[80]. DNA damage, oncogene activation (e.g., Ras), oxi-
dizing agents and metabolites (e.g.,  H2O2), mitochondrial 
dysfunction, epigenetic changes (e.g., methylation of DNA) 
and paracrine SASP factors may induce growth arrest [81].

SASP acquisition is downstream of senescence induc-
tion and may confer pleiotropic functions to senescent cells. 
The SASP is highly heterogeneous and controlled at mul-
tiple levels [82]. At the transcriptional level, it is mainly 
controlled by nuclear factor-kB (NF-kB), which primarily 
regulates the production of pro-inflammatory cytokines and 
chemokines [82]. Upstream, Janus kinase (JAK), p38, and 
other MAP kinases jointly control SASP expression [74, 81, 
82]. Moreover, epigenetic changes fine-tune SASP genes by 
keeping their chromatin loci and control regions in an open 
and active state [82]. The main pathway involved in SASP 
protein secretion is the mechanistic target of rapamycin 
(mTOR) signalling network [81, 82].

SASP actions are multiple, and their effects are tissue and 
context specific. Indeed, they depend on (i) the nature of 
the SASP secretome; (ii) the inherent genetic and epigenetic 
proprieties of the cells exposed to it; and, (iii) the surround-
ing microenvironment [75]. IL-8, IL-6, and transforming 
growth factor β-1 (TGFβ-1) are among the specific fac-
tors by which the SASP reinforces and spreads senescence 
with both autocrine and paracrine mechanisms [74]. Since 
subcutaneous APCs are more vulnerable to senescence, 
SASP acquisition is also relevant for the age-related limited 
hyperplastic expansion and storage capacity of SAT [2, 15]. 
Indeed, among the SASP components released by senescent 
APCs IL-6, TNF-α, interferon-γ (IFN-γ), and activin A can 
directly impair both adipocyte differentiation and insulin 
sensitivity [44]. Senescent APCs can recruit immune cells 
to AT by secreting the SASP factors IL-6, IL-8, MCP-1, and 
plasminogen activator-1 (PAI-1) [45].

The use of both senolytic drugs and genetic models for 
senescence ablation confirmed the causal role of senes-
cent APCs in age-related AT metabolic dysfunction and 
inflammation. Targeting senescent cells by SASP inhi-
bition in old mice is effective in enhancing adipogenic 
and metabolic functions and decreasing AT and systemic 
inflammation [44–46]. Additional evidence for this con-
cept arises from studies in mice lacking for telomerase 
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(Tert), which feature shorter telomeres with successive 
generations. Fourth-generation (G4) Tert-knockout mice 
express high levels of senescence markers and are char-
acterized by macrophage infiltration in AT, glucose intol-
erance, and IR. Interestingly, surgical removal of AT in 
G4 Tert-knockout mice improves glucose metabolism, 
whereas transplantation of AT from G4  Tert-deficient 
mice into age-matched wild-type mice causes IR. This 
effect is attenuated by transplanting wild-type mice with 
AT deficient for both Tert and p53, thereby highlighting a 
crucial role of p53 in development of IR [76]. These data 
are also consistent with recent evidence in humans that 
both donor age and subcutaneous adipocyte cell size are 
positively correlated with p53 expression in SAT, regard-
less of obesity. Thus, p53 can contribute to the age-related 
IR in humans [83].

Senescent cells exhibit typical structural and molecu-
lar changes as a result of the activation of the signalling 
pathways mentioned above, including acquisition of the 
enlarged and flattened cell body, activity of senescence-
associated β-galactosidase (SA-β-gal), destabilization 
of nuclear integrity, and reorganization of chromatin 
[81]. Notably, the senescence-associated impairment of 
nuclear integrity is due to the downregulation of the Lamin 
B1  (LMNB1) gene. The  downregulation of LMNB1 in 
senescent cells is a key trigger of global reconfiguration 
of chromatin which assumes a more open organization 
[84]. Although senescent cells feature these characteris-
tics, they are not necessarily displayed simultaneously and 
with similar intensity, making the phenotype of senescence 
extraordinarily dynamic and complex. This characteristic, 
along with the possibility of finding specific senescence-
associated traits outside of senescence, illustrates the 
potential unreliability of using a single marker to recog-
nize senescent cells, especially in vivo. At the moment, 
search for a precise and sensitive senescence signature is 
ongoing.

The current best methods to identify senescent cells 
are based upon the use of combinations of SA-β-gal 
activity, upregulation of p16, and/or p21, expression of 
the strongly induced SASP genes, and downregulation of 
LMNB1 [85]. Such marker combinations allow an accu-
rate detection and efficient quantification of senescent 
cells both in vivo and ex vivo. This approach can be used 
to test the effectiveness of intervention strategies aimed 
at targeting senescent cells. Indeed, both heterochronic 
parabiosis studies, in which young (4 months) and old 
(20 months) mice are surgically linked to share circulation, 
and ex vivo treatment of SVF cells from young and old 
mice with young or old serum, have shown that a young 
milieu is effective in protecting old AT from senescence 
by reducing the levels of p16, p21, and pro-inflammatory 
SASP factors [86].

Linking AT senescence to chronic metabolic 
diseases

Obesity

Obesity is a major risk factor for IR and T2D. Obese peo-
ple exhibit IR at a younger age compared to lean individu-
als, predisposing them to develop T2D [4, 87]. This early-
onset IR is attributed to AT dysfunction and low-grade 
chronic inflammation, similar as in ageing [87]. The pre-
mature accumulation of senescent cells in AT represents 
a determining factor in linking obesity, ageing, AT dys-
function, and inflammation [44, 53, 79]. Indeed, selective 
removal of these cells from AT in obese mice alleviates 
the obesity-related derangement in fat tissue function and 
glucose homeostasis [53]. Accordingly, approaches that 
are successful in counteracting obesity and ageing, such 
as exercise and nutritional interventions, exert their health 
effects by targeting cellular senescence in AT [25, 26, 52, 
87]. As epigenetic factors respond adaptively to lifestyle 
they may be implicated independently of age in the acqui-
sition of a senescent phenotype [51, 88–93].

Animal models have been widely used to depict the 
mechanisms by which obesity promotes AT ageing and 
IR [87]. In the obesity setting, due to caloric overload, fat 
tissue is subjected to mechanical, hypoxic, oxidative, and 
ER stress. Once activated, the stress responses initiate a 
cascade of events in AT leading to senescence induction, 
functional decline, macrophage infiltration, and inflam-
mation, resulting in IR [79, 87]. The harmful effects of 
excess nutrients and the protective influence of exercise 
in obesity-related AT ageing have been demonstrated by 
the use of middle-aged mice undergoing physical exer-
cise and/or fast-food diet (FFD) feeding. Administration 
of a FFD simultaneously causes adverse effects on body 
weight and insulin sensitivity and increases the expres-
sion of senescence markers (i.e., SA-β-gal, p53, p21, and 
p16) and SASP factors (i.e., IL-6, MCP-1, and PAI-1) in 
fat tissue. By preventing senescent cell accumulation and 
SASP development, physical exercise neutralizes the FFD-
induced detrimental effects on metabolic parameters [52].

The expression of p53 in AT plays a vital role in the 
development of obesity-related IR [87, 94]. P53 acts both 
as a potent senescence inducer and an adipogenesis repres-
sor [83]. Indeed, it needs to be downregulated before APCs 
can differentiate into insulin-responsive adipocytes [95]. 
Furthermore, the activation of p53 in adipocytes impairs 
insulin-stimulated glucose transport, enhances lipolysis, 
and promotes inflammation [96]. Minamino et al. eluci-
dated the role of p53 in linking obesity, AT senescence, 
and metabolic dysfunction [94]. Excessive caloric intake 
induces AT senescence, inflammation, and IR in agouti 
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mice, a widely used model adopted to study nutritionally 
induced epigenetic effects on the obesity phenotype [89]. 
Interestingly, the adipocyte-specific p53 deficiency in the 
obese agouti mice exposed to a standard chow diet, as 
well as in obese wild-type mice fed a high-sugar/high-
fat diet, is sufficient to decrease the expression of senes-
cence and inflammatory markers in AT and to improve 
insulin sensitivity [94]. Therefore, cellular senescence and 
inflammation, due to high p53 levels in AT, lead to meta-
bolic complications associated with obesity [13]. There 
is evidence that similar processes in obese patients are 
also activated in AT. Obesity is associated to increased 
AT expression of senescence markers in young/middle-
aged subjects, including p53 [13, 79, 83]. Additionally, 
Justice et al. recently provided evidence of the effective-
ness of a 5-month resistance training programme with or 
without CR in lowering these senescence markers in thigh 
AT in overweight/obese women [97].

Another emerging mechanism linking obesity and 
ageing to the development of IR is downregulation of 
the Sirtuin (SIRT) pathway [98]. Sirtuins act primarily 
as nicotinamide adenine dinucleotide (NAD)-dependent 
deacetylases [98], and SIRT1 is the most well-studied 
Sirtuin with effects on metabolism [99]. Mice lacking 
the SIRT1 gene develop obesity and IR and have ectopic 
lipid accumulation, as well as increased AT inflammation 
when fed a HFD [100]. Consistently, adipocyte-specific 
SIRT1 knockout mice show increased adiposity and are 
prone to become insulin resistant. When combined with 
HFD or ageing, the adipocyte-specific SIRT1 depletion 
worsens IR by rising the number of ATMs and their 
polarization towards the pro-inflammatory M1 subtype 
[101–103]. Similarly, the macrophage-specific deletion 
of SIRT1 enhances HFD-induced macrophage infiltration 
and inflammation of AT with concomitant worsening of IR 
[102–104]. Interestingly, the levels of SIRT1 decrease in 
mice upon diet-induced obesity, as well as during ageing 
[99]. Obese individuals also show reduced SIRT1 expres-
sion in SAT and VAT [105–107], as well as in both adipo-
cytes and SVF cells isolated from the aforementioned fat 
depots [106]. There is a negative correlation between the 
AT SIRT1 mRNA levels and homeostasis model assess-
ment of insulin resistance (HOMA-IR) [106]. In addition, 
SIRT1 expression in SAT is inversely correlated with BMI 
and ATM content [106, 107], while its expression in VAT 
is negatively correlated with BMI and waist circumference 
[105, 106]. This is consistent with the observation that 
obese adolescents with a high ratio of visceral to subcuta-
neous fat exhibit impaired SIRT1 expression and increased 
macrophage content in SAT compared to BMI-matched 
subjects with a low-ratio visceral to subcutaneous fat 
[108]. Taking into account the functions of SIRT1 as both 
an inducer of adipogenesis in human visceral APC and a 

repressor of inflammatory pathways, its downregulation 
fosters VAT expansion and heightens the inflammatory 
state of AT in obesity, contributing to IR development 
[101, 102, 105, 109]. Notably, the deregulation of SIRT1 
under caloric overload may also impact on p53 activity, 
exacerbating AT senescence [110–114]. Indeed, many 
studies, both in vitro and in vivo, have shown that SIRT1 
deacetylates p53 and inhibits its transactivation, antago-
nizing the premature senescence induction [111]. How-
ever, p53 transcriptionally suppresses SIRT1 and induces 
the expression of miR-34 which binds to the 3′-UTR of the 
SIRT1 mRNA, blocking its translation [112, 115]. Thus, in 
the context of obesity, perturbations of interplay between 
SIRT1 and p53 appear to represent a key factor for the 
establishment of a vicious circle between AT senescence 
and inflammation that worsens IR.

Senescent APCs from SAT of obese individuals show 
a loss of replicative and differentiation ability [13, 79, 83, 
116, 117]. Impaired SAT adipogenesis is a significant fea-
ture of hypertrophic obesity and is associated with IR and 
a very high risk of developing T2D [18]. The aetiologi-
cal significance of this association was underlined by data 
from FDRs showing signs of both limited adipogenesis 
and adipocyte hypertrophy in SAT and IR even before 
becoming obese and elderly [18]. A large-scale genome-
wide association study (GWAS) revealed that individuals 
with risk genes for T2D and IR phenotypes have limited 
capacity to expand the peripheral SAT compartments ade-
quately [118]. Recently, Gustafson et al. provided a mech-
anistic explanation for the above correlation by showing 
that increased APC senescence is responsible for impaired 
SAT adipogenesis in hypertrophic obesity [83]. This study 
has revealed that senescence markers (i.e., SA-β-gal, p53, 
and p16) and SASP factors that antagonize differentiation 
(i.e., PAI-1 and TGFβ-1) are upregulated in SAT biopsies 
from patients with hypertrophic obesity and T2D and are 
positively correlated with subcutaneous adipocyte cell size 
[83].

Interestingly, the impaired adipogenic capacity of APCs 
isolated from the same specimens of SAT biopsy is linked 
to the inability to suppress p53 after induction of differentia-
tion [83]. The evidence that a similar dysregulated pattern 
of increased p53 is also a feature of poorly differentiated 
APCs from SAT of young lean and healthy FDRs suggest 
that the premature senescence of APCs may contribute to 
the SAT dysfunction and metabolic abnormalities associ-
ated with an epi-/genetic predisposition for T2D [83]. As 
such, epi-/genetic factors associated with a family history 
of T2D may contribute to the FDR-associated APC pheno-
types of both impaired adipogenesis [119] and premature 
senescence [120]. In this scenario, in-depth studies focusing 
on the epigenetic regulation of p53 and its effectors are of 
crucial importance.
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Type 2 diabetes

There is a dynamic relationship between T2D and senes-
cence [121–128]. T2D in itself has been proposed to repre-
sent a state of accelerated ageing in which senescent cells 
are part of a pathogenic loop, both as a contributing cause 
and as a result of the metabolic disturbances observed in the 
prediabetic and diabetic states [121, 122]. Many GWASs 
also showed that single-nucleotide polymorphisms (SNPs) 
in genes encoding senescence markers, including p53, p16, 
and p21, are associated with an increased risk of developing 
T2D and its complications [123–125]. Notably, SNPs at p53 
transcriptional target genes, such as TCF7L2, TP53INP1, 
ZMAT3, and SIRT1, are also associated with T2D and its 
related traits [99, 125]. In addition, cross-sectional studies 
have shown that leukocyte TL is negatively correlated with 
HOMA-IR in non-T2D young/middle-aged adults, regard-
less of obesity [126, 127]. In addition, a large sample of 
Caucasian T2D patients demonstrated a strong association 
between the leucocyte TL and the presence and number of 
diabetic complications [128].

Focusing on AT, TL shortening is inversely correlated 
with adipocyte cell size in SAT not only in obese subjects 
with or without T2D but also in lean diabetic patients, indi-
cating a strong relationship of cellular senescence to the 
unhealthy metabolic environment related to adipocyte hyper-
trophy [129]. This link is also supported by data from adi-
pose-p53-transgenic mice expressing high levels of both p53 
and p21 in AT [94]. In these mice, the upregulation of these 
senescence markers is sufficient to induce an inflammatory 
state that drives IR [94]. Consistently, individuals with T2D 
typically display an elevated senescent cell burden in AT, as 
demonstrated by the high expression levels of SA-β-gal, p53, 
p21, and pro-inflammatory SASP components (e.g., IL-1α, 
IL-1β, IL-6, and TNF-α) [94].

From a mechanistic perspective, cellular senescence and 
T2D form a vicious circle where both the obese and the 
prediabetic microenvironment become permissive for cellu-
lar senescence to develop prematurely. Senescence, in turn, 
exacerbates induction and impairs the clearance of senescent 
cells, resulting in tissue damage and metabolic derangement 
[121]. In this scenario, high glucose, GH/IGF-1 axis altera-
tions, dyslipidaemia, low-grade chronic inflammation, and 
immune dysfunction are the most common triggers inducing 
senescence [121, 130] (Fig. 2).

High glucose levels may cause premature senescence in 
APCs as well as in other primary human cells (e.g., mesan-
gial, endothelial, and renal cells), mainly by fostering mito-
chondrial dysfunction and accumulation of reactive oxygen 
species (ROS) [131–133]. The resulting increase in ROS pro-
duction induces the activation of critical pathways implicated 
in diabetes-related complications, including the increased 
formation of advanced glycation end products (AGEs) [134, 

135]. AGE signalling itself drives premature senescence [136]. 
p53-mediated premature senescence can result from chronic 
IGF-1 exposure, the increased levels of which are due to 
hyperinsulinaemia and the changes in IGF-binding proteins 
(IGFBPs) [137]. Among these, IGFBP3 has been recognized 
among the SASP components responsible for spreading senes-
cence to bystander cells [138]. Ceramides act as a mediator of 
several types of stress responses that are primarily mediated 
by the p53 and p38 pathways. High ceramide levels can result 
in the senescence of adipose, endothelial, and immune cells 
due to alterations in the metabolism of fatty acids [139]. Alto-
gether these events synergistically promote the accumulation 
of senescent cells and expression of the related SASP in AT. 
This event, in turn, drives the local and systemic inflammation 
and derangement of metabolic homeostasis, contributing to 
the onset of T2D.

Several studies on human cells from T2D subjects revealed 
that senescent cells are also spread within aetiological tissues 
involved in diabetes-related complications [121]. In particu-
lar, the kidneys of patients with type 2 diabetic nephropathy 
(DN) exhibit an accelerated senescent phenotype in selected 
cell populations, particularly tubular cells and podocytes, 
accounting for DN progression towards renal insufficiency and 
diabetic kidney disease (DKD) [140]. This hypothesis seems 
also confirmed by the latest interim report from a clinical trial 
in DKD patients evaluating a combination of senolytic medi-
cations, dasatinib plus quercetin (D + Q) [57]. Indeed, DKD 
patients treated with three daily doses of D + Q display a lower 
senescent cell burden in abdominal SAT (i.e., decreases in 
SA-β-gal, p21, and p16) and lower plasma levels of the main 
SASP components (e.g., IL-1α, IL-2, IL-6, and IL-9) within 
11 days [57]. Since senolytics appear to be more effective in 
alleviating senescence-associated diabetes complications than 
the currently available glucose-lowering treatments, the oppor-
tunity to introduce these drugs into clinical practice may pro-
vide a new way to treat chronic diseases that are still untreat-
able [53, 57, 121] (Fig. 2). Importantly, previous investigations 
have shown that D + Q exposure eliminated senescent cells 
from aged mice, mice with IR and other chronic diseases, and 
AT explants from obese and/or diabetic patients [57, 141]. In 
additions, preclinical studies in HFD-induced or genetically 
obese (db/db) mice revealed that D + Q mitigated IR, protein-
uria, and dysfunction of the renal podocytes by eliminating 
senescent cells, primarily senescent APCs, from AT [53].

Epigenetics of ageing: a focus on DNA 
methylation

The processes of hormesis and adaptive homeostasis provide 
a possible explanation of why the same molecular mecha-
nisms should drive healthy ageing and longevity on one side 
and unhealthy ageing and chronic metabolic diseases on the 
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other. Lifelong exposures to low amounts of environmental 
stresses activate adaptive responses, making the organism 
better suited to the environment than before and provid-
ing benefits for ageing and health. However, the induced 
responses may determine detrimental effects when the dose, 
intensity, or duration of these stressors overcome the adap-
tive homeostasis capacity, which will accelerate the develop-
ment of ageing and disease. Epigenetic changes are crucial 
processes behind these trajectories of alternative ageing [10, 
142]. Indeed, age-related dysregulation of epigenetic control 
is a common aetiological factor for ARDs ranging from T2D 
to neurodegenerative diseases [143]. Moreover, many effec-
tive lifespan-extending interventions act through epigenetic 
pathways [142]. The opportunity to “reverse” ageing is an 
intriguing implication of epigenetic ageing regulation, which 
provides a mechanistic basis for evidence that ageing hall-
marks can be reversed through parabiosis experiments [86].

By definition, epigenetic changes serve as heritable 
reversible mechanisms that modulate the functional use and 
stability of genetic information in response to environmental 
stimuli without modifying the underlying DNA sequence. 

These changes include DNA methylation, chromatin remod-
elling, histone modifications, and non-coding RNA tran-
scription [89, 142–144]. Although each of these mechanisms 
is functionally relevant, geroscience research has best char-
acterized the role of DNA methylation dynamics during age-
ing and their involvement in cellular senescence [142, 143]. 
DNA methylation mainly occurs at the 5′ position of the 
cytosine residues of cytidine-guanine dinucleotides (CpGs) 
and may be associated with either transcriptional repression 
or activation, depending on the site where it occurs. Gener-
ally, CpG methylation at promoters and enhancers causes 
gene silencing through chromatin condensation (i.e., het-
erochromatin). Conversely, a decrease in DNA methylation 
correlates with heterochromatin de-condensation and gene 
expression [89].

There is a global hypomethylation of CpG over the 
genome during ageing that is responsible for  (i)  loss of 
heterochromatin and gene de-repression in this region; 
(ii)  nuclear architecture changes; and, (iii) increased 
genomic instability. Interestingly, the hypomethylation-
induced loss of silencing at heterochromatic loci appears 

Fig. 2  A vicious cycle explains the synergistic association between 
cellular senescence and type 2 diabetes. The increased senescent cell 
burden in adipose tissue during ageing and obesity contributes to 
inflammation, adipocyte progenitor cell dysfunction, impaired insulin 
responsiveness, and metabolic abnormalities. These effects promote 
to insulin resistance and type 2 diabetes. Metabolic, inflammatory, 
and immune perturbations in the diabetic state, in turn, fuel senescent 
cell accumulation, which contributes to tissue damage and diabetes-

related complications. Senolytics and SASP inhibitors seem to be 
more effective (dark green blunt head arrow) in breaking this malig-
nant positive feedback loop than current glucose-lowering treatments 
(light green blunt head arrow). SASP senescence-associated pheno-
type, AT adipose tissue, T2D type 2 diabetes, APC adipocyte progeni-
tor cell, ROS reactive oxygen species, AGEs advanced glycation end 
products, GH growth hormone, IGF-1 insulin-like growth factor-1
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during ageing in all mammals, and its acceleration and res-
cue can, respectively, reduce and extend the lifespan [142]. 
In addition to global hypomethylation, the ageing process 
entails focal increases in DNA methylation at specific CpGs, 
resulting in heterochromatinization and gene silencing [142].

The age-associated genome-wide pattern in DNA meth-
ylation can be due to a progressive reduction in levels of 
DNA methyltransferases (DNMTs) and/or their critical 
substrates [e.g., S-adenosilmetionina (SAM)] [123, 126]. 
Indeed, age may alter the expression of DNMT1, DNMT3A, 
and DNMT3B in several human tissues (e.g., mononuclear 
peripheral blood cells and AT) and reduce the availability of 
SAM by affecting mitochondrial function [142, 145–147].

Paired methylome and transcriptome analyses in ageing 
cells and tissues from both mice and humans have revealed 
an inverse correlation between age-related differences in 
gene expression and DNA methylation [143, 147]. Quan-
titative measurements of these differences between young 
and old mammals show that they are in the range of 5–25% 
at susceptible genes [148]. Notably, these genes are enriched 
in pathways dysregulated during ageing such as senescence, 
inflammation, and the insulin-signalling pathway [143].

DNA methylation has been recognized as a critical mech-
anism promoting senescence and ageing at the molecular 
and cellular levels [149–153]. The DNA methylome of 
senescent cells shows extensive hypomethylation and for-
mation of facultative heterochromatin domains compared to 
proliferating normal cells. In particular, bisulfite sequencing 
analysis of the methylome in both proliferating and senes-
cent cells revealed a decline in CpG methylation in senes-
cent cells ranging between 65.0% and 58.4%. Notably, these 
hypomethylation events are enriched in the lamin-associated 
domains which are dynamic regions that occupy up to 40% 
of the genome across different cell types and lead to the 
establishment and preservation of transcriptional microen-
vironments [153].

There is extensive evidence of the importance of DNA 
hypomethylation as a senescence inducer. First, this occurs 
in pre-senescent cells, but not in immortalized cells where 
the overall methylation level is relatively stable, indicating 
that DNA methylation dynamics are related to a limited 
proliferative lifetime [150, 153]. It was, therefore, postu-
lated that DNA hypomethylation may function as a mitotic 
clock, similar to TL shortening [148]. Second, the use of 
DNMT inhibitors (e.g., 5-azacytidine) or specific small-
interfering RNAs to target DNA methylation is sufficient to 
induce senescence in primary human cells [152]. Notably, 
senescence-related hypomethylation occurs predominantly 
in genes with reduced expression in proliferating cells but 
elevated expression in senescent cells [153]. These include 
genes that encode p53 targets p21 and p16, as well as the 
two main SASP pro-inflammatory components IL-6 and IL-
8 [82, 152]. Convergent findings support a model by which 

inflammation can directly and indirectly reduce DNA 
methylation [153–155]. Thus, by triggering chronic sterile 
inflammation, ageing and obesity can lead to a vicious cycle 
between senescence and DNA hypomethylation which helps 
explaining why T2D risk increases with age and BMI [148, 
156].

Since DNA methylation plays a crucial role in determin-
ing senescence and linking several characteristics of age-
ing, it may represent a critical aspect of these processes. 
In line with this notion, many studies have shown that the 
pattern of DNA methylation in human tissues can be used 
as a chronological age estimator, a biomarker for healthy 
and unhealthy ageing, and a risk factor for ARDs [145]. 
AT has been extensively studied in this context supporting 
the notion that age-related changes to the methylome may 
underlie the AT dysfunction observed in the elderly popula-
tion [147]. In particular, different groups have developed 
so-called DNA methylation clocks (DNAm-age clocks) 
based on age-associated DNA methylation changes that are 
relatively common across individuals and in some cases, 
across tissues [157–162]. Each clock utilizes DNA meth-
ylation information at specific CpGs (ranging between 
3 and 353 CpGs) to calculate the time elapsed after birth 
(i.e., chronological age). Pathway analyses of the genes co-
localizing with these CpGs reveal richness in biological 
processes correlated with tissue development, cell growth 
and proliferation, cell death and survival, and cancer [145, 
163]. Notably, each DNAm-age clock has a high degree of 
accuracy, determined by the correlation coefficient between 
the actual chronological age and the expected chronological 
age (i.e., DNAm-age or epigenetic age) [145]. The two most 
analysed human clocks have correlation coefficients more 
than 0.9 of and a prediction performance error of less than 
5 years [145, 157, 158].

Interestingly, several DNAm-age clocks investigated in 
vivo successfully predict in vitro chronological age. Their 
analysis shows that both systems display global hypometh-
ylation throughout the human lifespan suggesting preserva-
tion of an epigenetic ageing signature between human tissues 
and primary human cells [164]. Notably, specific DNAm-
age clocks also distinguish senescence from replicative 
states of cellular lifespan and are sensitive to environmental 
stimuli [145, 164, 165]. Accelerated rates of epigenetic age-
ing, both in vivo and in vitro, are correlated with metabolic 
stressors related to obesity and a shorter lifespan. Dietary 
factors are among the DNAm-age-related exposures.

Furthermore, insulin, glucose, triglycerides, and total 
cholesterol serum concentrations are positively correlated 
with DNAm-age acceleration. Several of these associations 
were found using evidence from 4173 women in the Wom-
en’s Health Initiative study and 402 subjects in the European 
InCHIANTI study [163]. Consistently, ex vivo experiments 
have shown that human fibroblasts cultured under chronic 
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hyperglycaemic conditions show an increase in the base-
line DNAm-age of approximately 3 years [164]. Overall, 
these findings indicate that the longitudinal quantification 
of the epigenetic ageing rate in primary human cells can be 
a valid system for targeting or evaluating lifespan-wide age-
modifying interventions.

The effects of environmental stimuli on epigenetic ageing 
rates offer insight into how and why subjects with the same 
chronological age can experience dissimilar DNAm-age. The 
difference between DNAm-age and true chronological age 
reflects biological age (Δage), which is considered an indi-
cator of human ageing rate and health outcomes [145, 166, 
167]. Individuals can be categorized as (i) biologically old 
if their DNAm-age is higher than their chronological age; 
(ii) biologically young if the reverse is true; or, (iii) biologi-
cally concordant. Centenarians display a young biological 
age, while the risk of mortality is increased in biologically 
old subjects [168, 169]. Several lines of evidence support the 
notion of an accelerated DNAm-age resulting from advanced 
biological age. In addition, obesity, BMI, chronic systemic 
inflammation, T2D, NAFLD, and decreased physical fitness 
accelerate DNAm-age. Instead, interventions that promote 
longevity, such as CR and rapamycin, decelerate DNAm-age 
[145, 165, 170–172] (Fig. 3).

It should be noted that elevated BMI in middle-aged 
subjects but not in young adults (aged between 15 and 24) 
is positively correlated with accelerated epigenetic ageing. 
This evidence suggests that the acceleration of DNAm-age 
requires an extended period of exposure to obesity-related 
microenvironment. Interestingly, a positive correlation 
between BMI and accelerated epigenetic ageing has also 
been described during the next 25-year period in which the 
BMI increased. This suggests that advanced biological age is 

not only the product of the current BMI but also the increase 
in weight over time [173]. Additional experimental work 
will help clarify the causality of these relationships. There-
fore, understanding DNAm-age molecular biology is essen-
tial in deciding how best using DNAm-age as a biomarker in 
biomedical research and in clinical medicine.

Conclusion and future directions

Senescent cells increase during ageing and obesity and play 
a key role in T2D induction and exacerbation. Addition-
ally, diabetes triggers a vicious cycle of development of 
senescent cells, which accelerate tissue damage and lead 
to diabetic complications. In the clinical setting, the causal 
nature of the relationship between cellular senescence and 
metabolic dysfunction has significant implications. Indeed, it 
has recently emerged that removing senescent cells is a suc-
cessful therapeutic solution for reducing age-related meta-
bolic diseases. Senescent cell targeting may be extended to 
obese and diabetic patients if such approach is confirmed to 
be effective in elderly humans and consequently, may have 
a significant impact on the prevention and treatment of T2D 
and its related complications.

Currently, significant attention is being given to thera-
peutic strategies that specifically target senescent cells, 
with several programmes now approaching human clini-
cal studies. These include: (i) the use of senolytics (e.g., 
dasatinib + quercetin) to selectively kill senescent cells; and, 
(ii) the neutralization of the senescent cell secretome by 
inhibiting critical components of SASP (e.g., NF-kB, JAK, 
and mTOR). The first represents the best therapeutic oppor-
tunity as it permanently removes senescent cells, resulting in 

Fig. 3  Schematic chart of 
a DNA methylation clock 
throughout the human lifetime. 
The difference between DNA 
methylation age and chronologi-
cal age (i.e., the time elapsed 
since birth) reflects biological 
age and may be an indica-
tor of ageing rate and health 
outcomes. ARDs, age-related 
diseases; T2D, type 2 diabetes
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a persistent abolition of detrimental SASP effects. Given that 
modifications of the DNA methylome are necessary for both 
senescence initiation and maintenance of SASP, senolytic 
drugs that target specific epigenetic enzymes (e.g., DNMTs) 
have enormous potential to prevent age-related metabolic 
diseases.

Considering the reversible nature of epigenetic modifica-
tions, understanding the interplay between senescence and 
DNA methylation is a challenge for the immediate future. 
In the era of personalized medicine, it is necessary to move 
closer to an individualized view of healthy ageing and its 
relation to ARD prevention. As the elderly population con-
tinues to grow, these concerns are becoming increasingly 
more relevant.
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