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INTRODUCTION

Emerging infectious diseases of wildlife have resulted in 
severe mortality events and regional to complete extinc-
tions of host populations (Antolin et al., 2002; LaDeau 
et al., 2007; Langwig et al., 2012; Mccallum et al., 2009; 
Scheele et al., 2019; Van Riper III et al., 1986). In some in-
stances, the presence of pathogen reservoirs, frequency-
dependent transmission, and small pre-epidemic host 
population sizes suggest that host species will be driven 
to extinction (de Castro & Bolker, 2005). Additionally, 
high initial host population declines leave remnant pop-
ulations more vulnerable to stochastic and Allee effects 

that increase the likelihood of host extinction (de Castro 
& Bolker, 2005; Friedman & Yakubu, 2012; Lande, 1998). 
However, following the initial epidemic and population 
declines, some host populations stabilise and persist for 
unknown reasons (Brannelly et al., 2021; Briggs et al., 
2010; Langwig et al., 2012). For example, population per-
sistence has been observed in several important disease 
systems including amphibians impacted by chytridiomy-
cosis (Brannelly et al., 2021; Briggs et al., 2010; Scheele 
et al., 2015, 2017; Voyles et al., 2018), Tasmanian devils 
impacted by facial tumour disease (Epstein et al., 2016; 
Hohenlohe et al., 2019; Lazenby et al., 2018; Patton et al., 
2020), birds impacted by avian malaria (Woodworth 
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Abstract

Emerging infectious diseases have resulted in severe population declines across 

diverse taxa. In some instances, despite attributes associated with high extinction 

risk, disease emergence and host declines are followed by host stabilisation for 

unknown reasons. While host, pathogen, and the environment are recognised as 

important factors that interact to determine host–pathogen coexistence, they are 

often considered independently. Here, we use a translocation experiment to disen-

tangle the role of host traits and environmental conditions in driving the persistence 

of remnant bat populations a decade after they declined 70–99% due to white-nose 

syndrome and subsequently stabilised. While survival was significantly higher 

than during the initial epidemic within all sites, protection from severe disease 

only existed within a narrow environmental space, suggesting host traits conducive 

to surviving disease are highly environmentally dependent. Ultimately, population 

persistence following pathogen invasion is the product of host–pathogen interac-

tions that vary across a patchwork of environments.
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et al., 2005), and bats impacted by white-nose syndrome 
(Langwig et al., 2012; Reichard et al., 2014). While initial 
evidence suggested that these hosts would be extirpated 
by infectious disease, some populations have stabilised 
despite infection prevalence remaining high while others 
continue to decline or have gone extinct (Brannelly et al., 
2021; Briggs et al., 2010; Frick et al., 2015; Hoyt et al., 
2020, 2021; Langwig et al., 2012, 2016; Lazenby et al., 
2018; Samuel et al., 2015; Scheele et al., 2017, 2019).

Potential drivers of host–pathogen coexistence in-
clude the evolution of host resistance, tolerance, and/
or general vigour (Best et al., 2008; Boots et al., 2009; 
Kutzer & Armitage, 2016; Råberg et al., 2007, 2009; 
Restif & Koella, 2004; Roy & Kirchner, 2000; Voyles 
et al., 2018; Wilber et al., 2021), environmental refu-
gia from infection or severe disease (Heard et al., 2015; 
Mosher et al., 2018; Schelkle et al., 2012; Springer, 2009; 
Tobler et al., 2007; Zumbado-Ulate et al., 2014), host de-
mographic compensation (Arthur et al., 2004; Lachish 
et al., 2009; Mcdonald et al., 2016; Scheele et al., 2015; 
Spitzen-Van Der Sluijs et al., 2017), density-dependent 
transmission (Fenton et al., 2002; Hochachka & Dhondt, 
2000; Lloyd-Smith et al., 2005; McCallum et al., 2001), 
and attenuation of pathogen virulence (Anderson & 
May, 1982; Boots et al., 2004; Cressler et al., 2016; Kerr 
et al., 2006; Levin & Pimentel, 1981; Wild et al., 2009). 
However, studies investigating host coexistence with 
virulent pathogens frequently focus on a single aspect 
of the host–pathogen–environment interaction, despite 
evidence that such interactions may influence disease se-
verity and scale up to population-level effects on the host 
(Echaubard et al., 2014; Laine, 2007; Sadd, 2011). For 
example, studies of amphibian chytridiomycosis have il-
lustrated shifts in host responses following pathogen in-
vasion that may be indicative of host resistance (Voyles 
et al., 2018; Wilber et al., 2017), but that host–pathogen 
coexistence is additionally modified by an interaction 
with environmental conditions (Forrest & Schlaepfer, 
2011; Scheele et al., 2015; Spitzen-Van Der Sluijs et al., 
2017; Wilber et al., 2017). Given the potential for inter-
actions between the host and environment to drive host 
population persistence, which may change as pathogen 
invasion progresses, understanding these interactions 
is essential for identifying the conditions necessary for 
host–pathogen coexistence following the invasion of a 
virulent pathogen.

White-nose syndrome (WNS) is an infectious disease 
of bats caused by the fungal pathogen Pseudogymnoascus 
destructans (Lorch et al., 2011; Minnis & Lindner, 2013; 
Warnecke et al., 2012). In North America, the disease 
was first detected in New York state in 2006 (Blehert 
et al., 2009) and has since resulted in large mortality 
events and regional extinctions of once common bat 
species (Frick et al., 2015; Langwig et al., 2012, 2016). 
An environmental pathogen reservoir establishes fol-
lowing the introduction of P. destructans to hibernacula 
(Hoyt et al., 2020; Langwig, Hoyt, et al., 2015) and most 

populations decline greater than 90%, often resulting in 
complete local extirpations (Frick et al., 2010; Langwig 
et al., 2012). Following the establishment of the pathogen 
within hibernacula, bats become infected with P. destruc-
tans upon entering previously contaminated hibernacula 
in the fall (Langwig, Frick, et al., 2015), and both indirect 
and direct transmission result in widespread infection 
early in the seasonal epidemic (Hoyt et al., 2018, 2020; 
Langwig, Frick, et al., 2015; Lorch et al., 2011). However, 
bats that survive hibernation emerge onto the landscape 
in spring and clear infection (Fuller et al., 2020; Langwig, 
Frick, et al., 2015; Meteyer et al., 2011).

The growth of P. destructans is sensitive to environ-
mental temperature (Verant et al., 2012) and humidity 
(Marroquin et al., 2017), resulting in environmental 
trends in population declines such that populations and 
species roosting in warmer and wetter environments have 
more severe declines (Grieneisen et al., 2015; Hopkins 
et al., 2021; Langwig et al., 2012, 2016; Lilley et al., 2018). 
However, several years following pathogen introduction, 
some colonies of little brown bats (Myotis lucifugus) in the 
northeast United States stabilised at 5–30% of their pre-
epidemic population size following cumulative regional 
declines of 96% (Dobony et al., 2011; Frick et al., 2015; 
Hoyt et al., 2021; Langwig et al., 2012, 2017) despite in-
fection prevalence remaining high (Langwig et al., 2017). 
The abiotic pathogen reservoir within hibernacula sus-
tains a high prevalence of infection regardless of colony 
size, suggesting density-dependent transmission is not a 
driver of population persistence (Hoyt et al., 2016, 2020; 
Langwig, Frick, et al., 2015). Compared to colonies un-
dergoing epidemic conditions on the invasion front, bats 
in persisting colonies display slower on-host pathogen 
growth rates, potentially a signature of host resistance 
(Langwig et al., 2017). However, persisting colonies also 
utilise colder hibernacula (Hopkins et al., 2021; Langwig 
et al., 2012), so lower pathogen growth rates may be a 
product of temperature operating independently of host 
characteristics. Several lines of evidence suggest that 
pathogen virulence attenuation is not a principal driver 
of host population persistence in this system. Few mu-
tations have been identified in P. destructans since ini-
tial introduction to North America (Trivedi et al., 2017), 
and experimental inoculation of North American bats 
naïve to WNS shows similar virulence between North 
American and European isolates (Warnecke et al., 2012). 
Furthermore, P. destructans isolates in North America 
reproduce asexually (Drees et al., 2017; Palmer et al., 
2014), and genetic analyses indicate shallow genetic di-
versity across the North American continent, with high 
connectivity and long-distance dispersal of the pathogen 
(Drees et al., 2017; Leopardi et al., 2015; Ren et al., 2012). 
Due to the high connectivity of the pathogen population 
in North America, isolates from stabilising host popu-
lations and those undergoing severe declines are genet-
ically indistinguishable (Drees et al., 2017; Leopardi 
et al., 2015; Ren et al., 2012), variation which should be 
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detectable if pathogen virulence attenuation drives host–
pathogen coexistence.

The relative role of host traits and environmental 
conditions in driving the persistence of little brown 
bat populations impacted by WNS is still unclear. 
Understanding the factors driving host persistence will 
provide empirical support for general theory on host 
coexistence with virulent pathogens and much needed 
information on this important and devastating wildlife 
disease. Ten years following the introduction of P. de-
structans and subsequent colony declines, we conducted 
a fully factorial translocation experiment to understand 
the mechanisms of population persistence. We leveraged 
the variable environmental conditions in hibernacula 
(Figure 1, Figure S1 and S2) and a previously conducted 

translocation experiment early in the epizootic to disen-
tangle the relative roles of host traits and environmen-
tal conditions in driving disease severity and ultimately 
population persistence.

M ATERI A LS A N D M ETHODS

Translocation experiment

We used two hibernacula of persisting little brown bat 
(Myotis lucifugus) colonies in New York and one hiber-
naculum previously extirpated of bats by white-nose 
syndrome (WNS) in Vermont in this study (Figure 1). 
Prior to hibernation, we installed ten, five-sided reptile 

F I G U R E  1   Schematic of the experimental design. Two sites in New York with known persisting colonies of little brown bats and one site 
that was previously extirpated of little brown bats were used in this study. The three sites are referred to as Persisting 1 (Cold + Dry), Persisting 
2 (Cold + Wet), and Extirpated (Warm + Wet). Solid and dashed lines on plots correspond to temperature (Celsius) and vapour pressure deficit 
(kPa; higher values correspond to drier conditions), respectively, within each site over the course of this study. Mean ± SD of temperature and 
vapour pressure deficit within each site is shown on each plot. Sites varied in their environmental conditions, with the persisting sites being 
colder than the extirpated site and Persisting 1 (Cold + Dry) being significantly drier than Persisting 2 (Cold + Wet). Persisting 2 (Cold + Wet) 
was similar in its humidity conditions to Extirpated (Warm + Wet). In early hibernation, 45 bats from each of the persisting sites (n = 90) were 
collected and randomly assigned a translocation site and cage (3 bats per cage). The translocation was fully factorial, with 15 bats from each 
site being caged within the same site, in the opposite persisting site, or the extirpated site. Bats remained caged within these sites until late 
hibernation, when survivors were returned to their site of origin
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cages (dimensions: 12”W, 18”L, 20”H) in known or his-
torical roosting locations within each site (Figure S8). We 
mounted each cage so that the open side was in contact 
with the hibernaculum surface, allowing bats to roost 
on the substrate. We mounted cages high on site ceilings 
and sealed them to prevent bat escape and eliminate the 
possibility of predation. Water was provided in poultry 
waterers in each cage.

In December 2018, in early hibernation, we returned 
to the two sites of persisting M. lucifugus colonies in New 
York. We collected 45 male M. lucifugus from each site 
and each received a unique forearm band. Individuals 
were randomly assigned to both a site and a cage within 
that site with three individual bats from the same ori-
gin site sharing each cage. These assignments were in a 
full factorial design, such that of the 45 bats collected 
from each site, 15 were assigned to be caged within the 
same site, 15 within the opposite persisting site, and 15 
within the previously extirpated site. We placed each bat 
individually in a cloth bag and transported them to their 
assigned site in a cooler so that they would remain in 
torpor and limit energy expenditure. We replicated the 
transportation disturbance across all treatment groups. 
All individuals were caged with at least one infected indi-
vidual and bats remained in their cages for the duration 
of hibernation. In mid-hibernation, each site was visited 
once to record survival status through visual inspection 
(Persisting 1: 50 days; Persisting 2: 64 days; Extirpated: 
71  days following initial translocation); no cages were 
opened or bats handled to minimise disturbance. In 
March 2019, in late hibernation, 110 days following the 
initial translocation, we returned to each of the three 
sites to collect data and terminate the experiment. We 
released all surviving individuals at their site of origin.

Disease severity metrics

Upon returning to each of the three sites, we recorded 
the survival status of each individual. To calculate the 
on-host pathogen growth rate of Pseudogymnoascus de-
structans, we collected swab samples from each individ-
ual bat in both December 2018 and March 2019 using a 
standardised swabbing protocol described in (Langwig, 
Frick, et al., 2015). We used real-time polymerase chain 
reaction (qPCR) to quantify fungal loads (Muller et al., 
2013) (described in Supplemental Information).

In December 2018 and March 2019, we weighed each 
bat using an electronic scale. We subtracted the late hi-
bernation weight of each individual from their early hi-
bernation weight to calculate weight loss over the course 
of hibernation in grams. Additionally, in March 2019, 
we collected data on the severity of tissue invasion by 
transilluminating both wings of each individual using 
a 9-watt 368nm fluorescent light. Infected tissue fluo-
resces orange under ultraviolet light, verified by histol-
ogy (Turner et al., 2014). We used the proportion of the 

plagiopatagium displaying orange fluorescence as the 
response variable in models of this disease severity met-
ric (Supplemental Information).

Statistical analysis

We conducted all analyses using package ‘lme4’ (Bates 
et al., 2015) in R v.3.6.0 (R Core Team 2019). We con-
structed separate models for each disease severity met-
ric. To measure pathogen growth rate for each individual 
bat, we subtracted its early hibernation fungal load value 
from its late hibernation value to quantify the change in 
fungal loads. Bats that had no detectable fungus at the 
time of swabbing were assigned a value of 4.35e-03  pg 
(equivalent to a Ct value of 40) for that swab sample 
(Langwig et al., 2016), or a single P. destructans conidium. 
We then added a constant of 10 and log10-transformed 
the growth rate values. We used a linear regression with 
pathogen growth rate as the response variable and site 
(hibernaculum to which bats were translocated), origin 
site (hibernaculum from which bats originated), and 
their interaction as fixed effects to explore how patho-
gen growth varied across sites. Inclusion of cage ID as 
a random effect prevented model convergence and was 
dropped from the model, and model results were veri-
fied in a Bayesian framework using package ‘BRMS’ 
with weakly-informed priors (normal distribution with a 
mean of 0 and a standard deviation of 5; Bürkner, 2017). 
To understand the relationship between roosting tem-
perature and change in fungal loads, we constructed a 
linear mixed model with the average roosting tempera-
ture (data collected by iButtons within each cage), origin 
site, their interaction and the average vapour pressure 
deficit within a site as fixed effects and cage ID as a ran-
dom effect. We used a generalised linear model with a 
gamma error distribution and log link to analyse differ-
ences in early hibernation pathogen loads between bats 
that originated in the two persisting sites. A generalised 
linear model was used because a linear model violated 
assumptions of normally distributed and homoscedastic 
error.

To test for differences in the severity of tissue inva-
sion across the sites, we used a logistic regression with 
orange pixels indicating infection as successes and non-
orange pixels as failures (generalised linear mixed model 
with binomial distribution and logit link), site and ori-
gin site as fixed effects and cage ID as a random effect. 
Additionally, to test for differences in tissue invasion 
between caged bats and free-flying bats opportunisti-
cally sampled at the end of hibernation in each of the 
persisting sites, we used a logistic regression with the 
same response variable (generalised linear mixed model 
with binomial distribution and logit link) and site, cag-
ing status (caged vs. free-flying), and their interaction 
as fixed effects. To explore the differences in weight loss 
across the three sites, we used a generalised linear mixed 
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model (gamma distribution, log link) with weight loss as 
the response variable, site and origin site as fixed effects 
and cage ID as a random effect. A generalised linear 
mixed model was used because a linear model violated 
assumptions of normally distributed and homoscedastic 
error, and a gamma error distribution was used because 
weight loss is a continuous variable bounded by zero and 
infinity. To test for differences in late hibernation body 
mass between caged and free-flying bats in each persist-
ing site, we used a linear regression with body mass as 
the response variable and an interaction term of site and 
caging status as the explanatory variable. We used a gen-
eralised linear mixed model (binomial distribution, logit 
link, cage ID as a random effect) to explore the relation-
ship between early hibernation body mass and survival. 
Finally, to investigate how survival varied across sites, 
we used a generalised linear mixed model (binomial dis-
tribution, logit link) with survival as the response vari-
able, site and origin site as fixed effects, and cage ID as 
a random effect.

RESU LTS

Summary

Bats were translocated between two hibernacula with 
persisting colonies as well as to one hibernaculum previ-
ously extirpated of bats by WNS (Figure 1). Bats were 
caged within each site, where they remained for the du-
ration of winter, allowing us to quantify disease sever-
ity from the same individuals at both the beginning and 
end of hibernation. In all three sites, survival observed 
during the translocation experiment was higher than 
that observed within the same sites during the initial epi-
demic. This suggests little brown bats in persisting colo-
nies may have unique host traits that promote surviving 
infection with P. destructans. However, disease severity 
and subsequently survival varied across the three hiber-
nacula, suggesting environmental conditions potentially 
interact with circulating host traits to ultimately drive 
persistence.

Pathogen growth rate

At the time of collection in early hibernation, 88.89% 
(n  =  40) of individuals from Persisting 1 (Cold  +  Dry) 
had detectable P. destructans from swab samples, as did 
97.78% (n = 44) from Persisting 2 (Cold + Wet). All cages 
in each site had at least one infected bat at the beginning 
of the experiment. Additionally, at the time of collection, 
bats captured in Persisting 1 (Cold  +  Wet) had higher 
pathogen loads than bats that originated in Persisting 
2 (Cold  +  Dry) (generalised linear model with gamma 
error distribution and log link: β  =  0.282  ±  0.094 SE, 
p = 0.003; Figure S3).

Over the course of the experiment, the highest on-
host pathogen growth rates were recorded in the pre-
viously extirpated site (Warm + Wet), which was 4.5°C 
warmer than either of the two persisting sites, on aver-
age. Pathogen growth rates in Persisting 2 (Cold + Wet) 
were slightly higher than in Persisting 1 (Cold  +  Dry), 
likely attributable to the 1°C warmer and more humid 
conditions in the former. We also detected an interactive 
effect of origin site (the site from which bats were col-
lected at the beginning of the experiment) and translo-
cation site on the pathogen growth rate, such that within 
the previously extirpated site (Warm + Wet), bats origi-
nating in Persisting 2 (Cold + Wet) had lower pathogen 
growth rates than bats that originated in Persisting 1 
(Cold + Dry) (Figure 2; Figure S4; Table S1). Pathogen 
growth rate increased with average roosting tempera-
ture, consistent with the sensitivity of P. destructans 
to ambient thermal conditions (Langwig et al., 2016; 
Verant et al., 2012). However, due to the effect of origin 
site, the estimated relationship between average roost-
ing temperature and pathogen growth rate was positive 
for bats that originated in Persisting 1 (Cold + Dry) but 
did not increase for bats that originated in Persisting 2 
(Cold + Wet) (Figure 2; Table S2). Additionally, we found 
that pathogen growth on bat skin was generally lower in 
drier conditions. Interestingly, we observed a decrease in 
pathogen loads on five bats in Persisting 1 (Cold + Dry), 
four in Persisting 2 (Cold + Wet), and one in Extirpated 
(Warm + Wet).

Infection severity and host body condition

The degree of tissue invasion and weight loss varied 
across the three sites (Figure 3). Corresponding to the 
temperature-dependent pathogen growth rate, the sever-
ity of infection at Extirpated (Warm + Wet) was signifi-
cantly higher than that observed at the similarly wet site, 
Persisting 2 (Cold + Wet) (Figure 3a; Table S3). However, 
contrary to the temperature-dependent pathogen growth 
rate observed, bats at Persisting 1 (Cold + Dry) displayed 
significantly higher infection severity than that observed 
at Persisting 2 (Cold  +  Wet) and did not significantly 
differ from that observed in Extirpated (Warm + Wet). 
Across all sites, there was no clear effect of origin site 
on the degree of tissue invasion. Patterns of tissue inva-
sion were mirrored by the degree of weight loss observed 
across the sites, as bats in Persisting 2 (Cold + Wet) had 
lower weight loss compared to either of the other sites 
(Figure 3b; Table S4). The particularly dry conditions 
within Persisting 1 (Cold + Dry) may have resulted in the 
deviation from the temperature–pathogen growth rela-
tionship, exacerbating infection severity and weight loss 
despite a relatively low level of pathogen growth. Bats 
originating in Persisting 2 (Cold + Wet) lost slightly more 
weight than bats originating in Persisting 1 (Cold + Dry), 
but there was no support that weight loss was the product 
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of an interaction between origin site and translocation 
site (interaction p-value > 0.05).

Survival

The highest survival was observed in Persisting 2 
(Cold + Wet) (29 survivors of 30, 96.67% surviving), mir-
roring the pattern of infection severity and host body 
condition (Figure 4a; Table S5). The lowest observed sur-
vival occurred in Persisting 1 (Cold + Dry) (12 survivors 

of 30, 40% surviving) while Extirpated (Warm + Wet) dis-
played an intermediate level of survival (24 survivors of 
30, 80% surviving). We found no effect of early hiberna-
tion body mass on survival (Table S6). The higher degree 
of mortality at Extirpated (Warm + Wet) may have been 
related to the high pathogen growth rate within the site, 
while the high mortality at Persisting 1 (Cold + Dry) may 
be attributable to the particularly dry conditions, which 
appeared to exacerbate infection severity. Additionally, 
low humidity conditions increase evaporative water 
loss during infection with P. destructans (Mcguire et al., 

F I G U R E  2   Relationship between average roosting temperature and pathogen growth rate on bats. The shape of data points denotes the 
persisting site from which individuals originated: Persisting 1 (Cold + Dry) = circle, Persisting 2 (Cold + Wet) = triangle. The colour of data 
points represents the translocation sites: Persisting 1 (Cold + Dry) = purple, Persisting 2 (Cold + Wet) = blue, Extirpated (Warm + Wet) = red. 
The solid and dotted lines are model estimates for the effect of roosting temperature for bats that originated in Persisting 1 (Cold + Dry) and 
Persisting 2 (Cold + Wet) sites, respectively. The outline of points represents average humidity conditions (vapour pressure deficit) within each 
site: 0.0 kPa (wet conditions) = black, 0.052 kPa (dry conditions) = red. As Extirpated (Warm + Wet) and Persisting 2 (Cold + Wet) were both at 
100% relative humidity for the duration of the experiment, the humidity values are the same for these sites. A log10 change in Pd loads value of 1 
is associated with no change in pathogen load from early to late hibernation, and data points above or below this value indicate an increase or 
decrease in pathogen load, respectively

F I G U R E  3   The (a) proportion of wing tissue displaying signs of infection with Pseudogymnoascus destructans and (b) amount of weight lost 
over hibernation in bats from each site. Black points and error bars represent model estimates ± standard error. Tissue invasion at Extirpated 
(Warm + Wet) was higher than that at the similarly humid Persisting 2 (Cold + Wet), suggesting that the higher fungal growth rate at the 
extirpated site resulted in greater tissue invasion and ultimately higher weight loss. The low humidity conditions at Persisting 1 (Cold + Dry) 
may have driven the observed increase in tissue invasion despite a lower pathogen growth rate. Low humidity conditions can exacerbate 
evaporative water loss from infected tissue, which may have increased arousal frequency and weight loss
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2017), so the high degree of mortality within the cold and 
dry site may be attributable to the high infection sever-
ity driving higher rates of water loss (Cryan et al., 2010, 
2013; Ehlman et al., 2013; Mcguire et al., 2017; Verant 
et al., 2014; Warnecke et al., 2013; Willis et al., 2011). 
However, in all sites, the level of survival observed was 
higher than that observed during the initial epidemic 
within the same sites, suggesting traits adaptive to sur-
viving WNS may be promoting persistence in these pop-
ulations (Figure 4a).

An additional line of evidence for adaptive traits pro-
moting persistence in this system comes from comparison 

to a study conducted in 2009 in which bats naïve to WNS 
were translocated to the same extirpated site used in 
this study. In the historical experiment, all experimen-
tal bats died within 114 days (compared to 110 days, the 
length of this experiment; Figure 4b) (Hicks et al., 2021). 
Effectively, this represents two replicates of extirpa-
tion within this site, in which all naïve bats succumbed 
to disease during the initial epidemic and subsequent 
re-introduction in 2009. However, in this translocation 
experiment, 24 of the 30 (80%) little brown bats we trans-
located from persisting colonies to the same extirpated 
site survived hibernation, suggesting traits adaptive 

F I G U R E  4   (a) The proportion of bats surviving the initial epidemic (red bars) and 2018 experiment (blue bars) in each site. Error bars 
represent standard errors. Observed survival corresponded to the degree of tissue invasion and weight loss at each site. Despite the lowest 
pathogen growth rate, bats in Persisting 1 (Cold + Dry) had a high degree of infection severity, ultimately resulting in the lowest observed 
survival. In all three sites, we observed higher survival in this experiment than during the initial epidemic within the same sites, suggesting 
that WNS may have selected for host traits suitable to surviving the disease. (b) Proportion of bats surviving translocation to the Extirpated 
(Warm + Wet) site in the 2018 experiment (solid line) and 2009 experiment (dashed line). Bats translocated to the extirpated site in 2009 were 
naïve to WNS, and consequently exhibited 100% mortality. Higher survival was observed in bats translocated to the site in 2018, suggesting that 
host traits beneficial to surviving WNS may be circulating in these populations

F I G U R E  5   Density plots of infection severity as indicated by degree of orange fluorescence under ultraviolet light in bats from the 
historical and contemporary translocation experiments in Extirpated (Warm + Wet). A UV score of 0 = no orange fluorescence indicative of 
infection, 1 = 1–10% of wing area displays orange fluorescence, 2 = 10–50% of wing area displays fluorescence, and 3 = 50–100% of wing area 
displays fluorescence. Dashed lines correspond to average values. Bats translocated to the extirpated site in 2009 were naïve to WNS and 
displayed a higher degree of infection severity compared to the non-naïve bats translocated to the same site in 2018
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to surviving infection may be circulating in these pop-
ulations. Additionally, compared to the bats in the 
extirpated site during the historical translocation exper-
iment, bats in our study had low disease severity scores 
as indicated by UV fluorescence (Figure 5; methods of 
comparison described in Supplemental Information). 
Among the two experiments, the faster speed of mortal-
ity in the historical experiment resulted in most of the 
histology scoring occurring in dead or moribund bats 
while in the contemporary experiment, wing invasion 
was predominately measured in live bats (N = 64 alive, 17 
dead; additional information on experimental design in 
Supplemental Information).

Comparisons with free-flying bats

At the end of the experiment in late hibernation, we 
sampled free-flying bats found roosting near the cages 
within each persisting site. At Persisting 1 (Cold + Dry), 
we found that free-flying bats had significantly lower 
tissue invasion compared to the bats within cages 
(Figure 6; Table S7). Conversely, free-flying bats at 
Persisting 2 (Cold + Wet) displayed a similar degree of 
infection severity to caged bats within the same site. 
Free-flying bats had higher late hibernation body mass 
than caged bats in both persisting sites (Figure S5; 
Table S8), and this difference was more pronounced in 
Persisting 1 (Cold + Dry).

DISCUSSION

Our data suggest that environmental conditions interact 
with host traits to jointly drive persistence of host popula-
tions. Importantly, the survival we observed during this 
experiment was significantly higher than survival during 
the initial epidemic within the same sites in all cases, as 
well as during a similar experiment in 2009 within the 
extirpated site. We found evidence for increased on-host 
growth of P. destructans with increasing roosting temper-
ature in bats that originated in Persisting 1 (Cold + Dry), 
but no relationship in bats that originated in Persisting 
2 (Cold + Wet). Infection severity, host body condition, 
and survival also appeared to be influenced by site hu-
midity, with higher disease severity and lower survival 
associated with over-winter exposure to the driest condi-
tions in Persisting 1 (Cold + Dry). However, within the 
dry conditions, bats sampled from outside of cages in late 
hibernation displayed significantly lower infection se-
verity compared to their caged counterparts, whereas no 
such difference was detected in Persisting 2 (Cold + Wet). 
This suggests that bats within Persisting 1 (Cold + Dry) 
may be utilising a variety of microclimates and not re-
maining in these dry environments for the entire winter 
period, as the caged bats experienced. Furthermore, we 
observed declines in pathogen loads on 10 individuals, 
nine of which were in persisting sites. These data col-
lectively suggest that persisting little brown bat colonies 
in the northeast United States may have evolved traits 

F I G U R E  6   Proportion of infected wing tissue as indicated by orange fluorescence on caged and free-flying bats in each of the two 
persisting sites (Meteyer et al., 2009; Turner et al., 2014). Point colours represent caging status: caged = red, free-flying = blue. Black points and 
error bars represent model estimates ± standard error. Free-flying bats were opportunistically captured at the end of hibernation at experiment 
termination. In Persisting 1 (Cold + Dry), where disease severity in caged bats was high, caged bats had significantly higher levels of tissue 
invasion compared to free-flying bats within the same site. However, this difference was not detected at Persisting 2 (Cold + Wet). This suggests 
that little brown bats in the cold and dry persisting site do not roost in dry microclimates for the entirety of hibernation, but rather move 
roosting locations periodically, as has been observed prior to the WNS epidemic. Moving amongst a variety of microclimates in this site may 
allow this persisting colony to mitigate disease severity
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beneficial to surviving WNS (Auteri & Knowles, 2020; 
Gignoux-Wolfsohn et al., 2021), but that these host traits 
interact with environmental conditions such that protec-
tion against severe disease and mortality depends to a 
strong degree on temperature and humidity.

We detected a positive relationship between average 
roosting temperature during hibernation and on-host 
pathogen growth rate. This is corroborated by data 
from the initial WNS epidemic, where the most severely 
impacted colonies were those hibernating in relatively 
warm hibernacula (Langwig et al., 2012). Infection se-
verity and over-winter weight loss showed a similar trend 
when humidity was high, with lower values occurring 
at Persisting 2 (Cold  +  Wet) compared to Extirpated 
(Warm  +  Wet). However, despite the coldest ambi-
ent conditions, infection severity and host weight loss 
were high under the dry conditions within Persisting 
1 (Cold + Dry) and were comparable to the extirpated 
site. Under unfavourable ambient conditions, fungal 
pathogens may forgo reproduction and instead commit 
resources to within-host growth and the formation of 
spores that can survive stressful conditions. For example, 
Metarhizium anisopliae is a fungal pathogen of tick eggs 
that invades the egg tissue and undergoes growth (Ment 
et al., 2010; Valerio Garcia et al., 2005). Under humid, fa-
vourable conditions, the fungus will emerge from the egg 
to undergo asexual reproduction. However, under dry, 
unfavourable conditions, the fungus will instead remain 
within the egg host, continue to undergo growth and pro-
duce environmentally resistant spores (Ment et al., 2010). 
We suggest that, similarly, exposure to dry conditions of 
Persisting 1 (Cold + Dry) over winter were unfavourable 
to the survival of P. destructans in superficial infections, 
and that the pathogen augmented tissue invasion to sat-
isfy moisture requirements, resulting in a high degree 
of infection severity. Additionally, evaporative water 
loss from hibernating bats is highest in dry conditions 
(Ben-Hamo et al., 2013; Thomas & Cloutier, 1992) and 
is exacerbated by infection with P. destructans (Mcguire 
et al., 2017), resulting in dehydration and increased 
arousal frequency to re-hydrate (Cryan et al., 2010, 2013; 
Ehlman et al., 2013; Mcguire et al., 2017; Verant et al., 
2014; Warnecke et al., 2013; Willis et al., 2011). Increased 
frequency of arousal from torpor drives the premature 
depletion of fat reserves during hibernation, resulting in 
weight loss and starvation (Reeder et al., 2012; Warnecke 
et al., 2012). Therefore, the increased tissue invasion and 
evaporative water loss in Persisting 1 (Cold + Dry) may 
have operated synergistically to result in severe disease 
and ultimately the lowest observed survival.

Colonies of little brown bats in dry hibernacula may 
be persisting because of the availability of different mi-
croclimates. Microclimatic conditions are not uniform 
throughout an entire hibernation site, but vary with fac-
tors such as depth, air flow, and the height of the ceil-
ing (Perry, 2013). Some evidence suggests that bats may 
move to different roosting locations periodically during 

winter (Ryan et al., 2019), possibly in response to shifting 
costs associated with hibernation (Boyles et al., 2020), 
which could expose them to a variety of microclimates 
(Boyles et al., 2017). For example, some data suggest that 
bats may transition from roosting in relatively warm 
sections of hibernacula in early hibernation to the rela-
tively cold sections by late winter (Ryan et al., 2019). In 
our study, bats were unable to select varying microcli-
mates over the course of hibernation. However, we ob-
served hundreds of little brown bats roosting in the area 
surrounding the cages during late winter in Persisting 1 
(Cold + Dry), whereas less than a dozen individuals ap-
peared to use that specific location in early hibernation, 
suggesting that bats do not roost in the same location 
for the entirety of hibernation in this site. Given that 
disease severity is highly dependent on environmental 
conditions within hibernacula, this movement behaviour 
may have been pre-adaptive to surviving WNS if bats 
utilise microclimates that mitigate disease severity for at 
least part of hibernation. For example, movement within 
hibernacula may reduce the growth of P. destructans in 
late hibernation if bats move to the relatively cold con-
ditions that slow pathogen growth, potentially affording 
them enough time to emerge from hibernation in spring 
and clear infection. Within Persisting 1 (Cold  +  Dry), 
free-flying bats sampled at the end of hibernation had 
significantly lower infection severity than caged bats, 
which is the expected pattern if movement within hiber-
nacula is indeed beneficial to mitigating disease severity. 
Furthermore, free-flying bats in both persisting sites had 
higher late hibernation body masses, and this was more 
pronounced in Persisting 1 (Cold  +  Dry). Behavioural 
responses that moderate the severity of disease have 
also been proposed for snake populations impacted by 
snake fungal disease (McKenzie et al., 2021), caused by 
the fungal pathogen Ophidiomyces ophiodiicola (Lorch 
et al., 2015). Snakes infected with O. ophiodiicola ex-
hibit changes to their behaviour that include increased 
surface activity and more time spent in exposed envi-
ronments compared to their disease-free conspecifics 
(Lorch et al., 2015; McKenzie et al., 2021), potentially a 
sign of a behavioural fever response to infection (Burns 
et al., 1996). However, we make the important distinc-
tion here that because movement within hibernacula 
was observed in bats prior to the WNS epidemic, this 
behaviour may have been pre-adaptive to surviving the 
disease rather than a direct response to the disease itself. 
Future research should investigate how the availability 
and utilisation of varying environmental conditions can 
influence the dynamics of WNS, and how this may scale 
up to a population-level response.

During the initial epidemic, the cold conditions 
within hibernacula utilised by persisting colonies may 
have prevented total colony collapse, allowing standing 
genetic variation for favourable host traits to propagate 
(Bell, 2013; Grieneisen et al., 2015; Langwig et al., 2012, 
2016; Lilley et al., 2018). Previous research has also found 
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genetic evidence from persisting little brown bat colo-
nies indicative of a selective sweep following the invasion 
of P. destructans (Auteri & Knowles, 2020; Gignoux-
Wolfsohn et al., 2021). However, our data suggest that 
populations that appear to have evolved adaptive host 
traits are only afforded protection within a narrow en-
vironmental space. These processes have the potential 
to result in local adaptation, in which the evolutionary 
response of populations to WNS and the resulting dom-
inant phenotype is specific to the local environmental 
conditions of hibernacula (Lilley et al., 2020). We de-
tected an effect of origin site on pathogen growth rate 
within Extirpated (Warm + Wet), potentially a signature 
of local adaptation to differing conditions in source hi-
bernacula. However, for local adaptation to occur, the 
strength of selection must be high enough to combat the 
homogenising effects of gene flow (Felsenstein, 1976; 
García-Ramos & Kirkpatrick, 1997; Hendry et al., 2001; 
Wright, 1969), and current genetic evidence suggests a 
panmictic genetic landscape for bat populations (Burns 
et al., 2014; Johnson et al., 2015; Talbot et al., 2016, 2017; 
Wilder et al., 2015), but see (Davy et al., 2015; Miller-
Butterworth et al., 2014).

Several host traits have been proposed as potential 
mechanisms of population persistence of little brown 
bats, including the evolution of host resistance or tol-
erance (Hoyt et al., 2016; Langwig et al., 2016, 2017; 
Zukal et al., 2016), changes in fat deposition (Cheng 
et al., 2019), changes in hibernation physiology (Auteri & 
Knowles, 2020; Gignoux-Wolfsohn et al., 2021), and re-
duced arousal frequency from hibernation (Lilley et al., 
2016). While the objective of this study was not to iden-
tify the specific host trait potentially driving persistence, 
it is the first to connect host traits to individual-level 
survival rather than population-level trends, filling an 
essential gap in our understanding of WNS. However, 
potential mechanisms other than beneficial host traits 
are not necessarily absent and should be further ex-
plored. For example, while current genetic and pheno-
typic evidence suggests pathogen virulence attenuation 
is not a primary driver of host population persistence 
in this system (Drees et al., 2017; Forsythe et al., 2018; 
Leopardi et al., 2015; Palmer et al., 2014; Ren et al., 2012; 
Trivedi et al., 2017; Warnecke et al., 2012), it is possi-
ble that the signal of this mechanism has not yet been 
detected with the data on pathogen diversity currently 
available for North American isolates. Additionally, 
given that the data presented suggest an important role 
of environmental conditions in driving disease severity 
and potentially host persistence, shifting environmen-
tal conditions within hibernacula since the emergence 
of WNS in North America could contribute to chang-
ing host population trajectories (Mammola et al., 2019; 
Perry, 2013). However, there is no clear trend in changing 
underground conditions since pathogen invasion in our 
dataset (Figure S6), suggesting shifting thermal condi-
tions are not likely to explain persistence in this system. 

However, because hibernacula temperatures are sensi-
tive to aboveground conditions (Perry, 2013), global cli-
mate change has the potential to alter the host–pathogen 
interaction in this system (Altizer et al., 2013; Mammola 
et al., 2019; Price et al., 2019). Finally, while current ev-
idence does not suggest density-dependent transmission 
occurs in this system (Hoyt et al., 2016, 2020; Langwig, 
Frick, et al., 2015), other density-dependent effects might 
be present if population density impacts infection sever-
ity rather than prevalence. For example, if conspecific 
behaviour can exacerbate disease severity, then popu-
lations of lower density may be freed from detrimental 
conspecific effects. However, relatively small colonies 
of little brown bats exhibit population declines of the 
same magnitude of much larger colonies, a consistency 
which should not be observed if density-dependent ef-
fects drive population persistence (Langwig et al., 2012). 
Additionally, recent evidence suggests that hibernating 
bats continue to exhibit extensive social interactions fol-
lowing the arrival of WNS, suggesting a change in social 
behaviour is not a principle contributor to population 
persistence (Hoyt et al., 2018). Finally, we found no sup-
port for a correlation between pathogen load and colony 
size, further suggesting density-dependent effects on dis-
ease severity are not a primary a driver of persistence 
(Figure S7). Identifying the specific host traits contrib-
uting to the persistence of little brown bat colonies is es-
sential to the successful management of the species and 
should be a primary focus of future research.

As P. destructans continues to spread throughout 
North America, bat population declines and regional 
extirpations will continue to occur. However, this study 
strongly suggests that prior to the invasion of P. destruc-
tans, host traits conducive to surviving WNS circulated 
in little brown bat populations, which now offer some col-
onies imperfect protection from the disease. These host 
traits do not operate independently to promote popula-
tion persistence with WNS, but rather interact strongly 
with environmental conditions, specifically temperature 
and humidity, to ultimately drive host–pathogen coex-
istence. Therefore, we should not expect to see all little 
brown bat populations across North America stabilise 
or rebound from declines, but rather the persistence of 
colonies with the correct combination of host traits and 
environmental conditions.

Host population response to the invasion of a vir-
ulent pathogen will not be predictable by a single as-
pect of the host, environment, or pathogen. Rather, 
host–pathogen interactions and coexistence will be 
strongly mediated by environmental conditions, the 
result of which may be as variable as the environ-
ment itself (Parratt et al., 2016; Wilber et al., 2016). 
Underlying variation in host and pathogen popula-
tions will set the stage for subsequent coevolutionary 
processes and the likelihood of coexistence (Barrett & 
Schluter, 2008; Bell, 2013), but this interaction and the 
resulting host population response may be influenced 
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by environmental conditions that vary over space and 
time (Parratt et al., 2016; Wolinska & King, 2009), as 
illustrated by this study. Therefore, to achieve pre-
dictability in how emerging infectious diseases will 
impact host populations, it is essential to disentan-
gle host–environment–pathogen interactions across 
a geographic and temporal mosaic of host–pathogen 
coevolution.
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