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Abstract

Neuronal oscillations are thought to play an important role in working memory (WM) and speech processing. Listening to speech
in real-life situations is often cognitively demanding but it is unknown whether WM load influences how auditory cortical activity
synchronizes to speech features. Here, we developed an auditory n-back paradigm to investigate cortical entrainment to speech
envelope fluctuations under different degrees of WM load. We measured the electroencephalogram, pupil dilations and beha-
vioural performance from 22 subjects listening to continuous speech with an embedded n-back task. The speech stimuli consisted
of long spoken number sequences created to match natural speech in terms of sentence intonation, syllabic rate and phonetic
content. To burden different WM functions during speech processing, listeners performed an n-back task on the speech
sequences in different levels of background noise. Increasing WM load at higher n-back levels was associated with a decrease in
posterior alpha power as well as increased pupil dilations. Frontal theta power increased at the start of the trial and increased
additionally with higher n-back level. The observed alpha–theta power changes are consistent with visual n-back paradigms sug-
gesting general oscillatory correlates of WM processing load. Speech entrainment was measured as a linear mapping between
the envelope of the speech signal and low-frequency cortical activity (< 13 Hz). We found that increases in both types of WM
load (background noise and n-back level) decreased cortical speech envelope entrainment. Although entrainment persisted under
high load, our results suggest a top-down influence of WM processing on cortical speech entrainment.

Introduction

Cortical oscillations have been hypothesized to play a functional
role in speech processing (Ghitza, 2011; Giraud & Poeppel, 2012).
Oscillatory activity, particularly in the delta (1–3 Hz) and theta (4–
7 Hz) frequency bands, has been found to entrain to the slow tem-
poral modulations inherent in natural speech signals (Ahissar et al.,
2001; Luo & Poeppel, 2007; Di Liberto et al., 2015). Selective
attention is known to modulate this response by enhancing the
entrainment between low-frequency cortical activity and the speech
stream that the listener is attending to relative to the ignored stream
(Ding & Simon, 2012; Zion Golumbic et al., 2013; O’Sullivan
et al., 2014). However, listening to speech in everyday life also
involves working memory (WM) to maintain and relate speech con-
tent over time or to inhibit irrelevant information. Across modalities,

WM tasks have been associated with different oscillatory networks
in cortex (Roux & Uhlhaas, 2014), but potential relations to speech
processing are unclear. Oscillatory power in higher-order cortical
areas are thought to influence speech-entrained activity in auditory
cortex (Park et al., 2015; Keitel et al., 2017), but it is unclear
whether such functional couplings might reflect an interaction
between WM processes and auditory processing of the speech stim-
ulus.
The nature of a potential relationship between WM tasks and

speech entrainment is not clear. Several scenarios are possible. First,
although speech entrainment is known to be shaped by selective
attention (Ding & Simon, 2012; Mesgarani & Chang, 2012; O’Sulli-
van et al., 2014), theta and alpha signatures of WM demands could
reflect general WM processes that do not interact with auditory pro-
cessing. In this case, attending to a speech stimulus is sufficient to
establish an entrained response and additional task demands leave
the entrainment response unaffected. Alternatively, higher degrees of
WM load may distribute neural resources away from sensory pro-
cessing of the speech stimulus and towards processing related to the
cognitive task. Cortical responses evoked by visual stimuli during
WM tasks have consistently been found to be attenuated with
increasing cognitive demands (Gevins et al., 1996; Watter et al.,
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2001; Pratt et al., 2011; Scharinger et al., 2015, 2017). If this gen-
eralizes to speech entrainment, then higher WM load might be asso-
ciated with a decrease in entrainment. Finally, it is also conceivable
that increased task engagement associated with higher WM load
may recruit additional neural resources for the processing of the
task-relevant stimulus. In this case, WM load would instead increase
the cortical entrainment to the speech signal.
Numerous human electroencephalogram (EEG)/magnetoen-

cephalogram (MEG) studies have related WM demands to changes
in oscillatory power, particularly in the theta and alpha frequency
ranges (Klimesch, 1999). Despite the consistent involvement of theta
and alpha oscillations, the functional characterization of these oscil-
lations in terms of specific WM functions is still debated. The n-
back task is often used to probe WM function (Owen et al., 2005).
In an n-back task, subjects are asked to detect whether the presented
stimulus in a sequential stream of items matches the one presented n
positions back. In visual n-back tasks, increasing WM processing
load (higher n) is associated with a frontocentral increase in theta
power and a decrease in alpha band power at posterior recording
sites (Gevins et al., 1997; Gevins & Smith, 2000; Pesonen et al.,
2007; Haegens et al., 2014; Scharinger et al., 2015, 2017). In tasks
involving memorization of a number of items (e.g. the Sternberg
task), on the other hand, both alpha band power and theta band
power have been found to increase with the number of elements
held in memory (Krause et al., 1996; Raghavachari et al., 2001;
Jensen & Tesche, 2002; Jensen et al., 2002; Leiberg et al., 2006;
Obleser et al., 2012).
Different WM processes are thus associated with different and

sometimes opposing alpha–theta changes. In a minimal definition,
WM involves a temporary memory storage (sensory buffers) and
attention-related control functions for maintenance and manipulation
of WM content (‘central executive’) (Baddeley, 2003). Executive
functions have been further divided into memory updating functions
that actively maintain and replace information, and WM inhibition
that suppresses information that is not relevant to the current task
(Miyake et al., 2000). The n-back task has been suggested to specif-
ically target WM updating load (Miyake et al., 2000; Scharinger
et al., 2015). In visual tasks, inhibitory demands on WM are often
manipulated with incongruent items, for example in a flanker task.
Although updating load has been related to decreases in alpha
power, inhibitory WM load has been associated with increasing
alpha power (Snyder & Foxe, 2010; H€andel et al., 2011), consistent
with the notion of alpha oscillations as a suppression mechanism
(Jensen & Mazaheri, 2010; Foxe & Snyder, 2011). In auditory tasks,
acoustic degradations or noise is a common source of interference
and has been shown to increase behavioural WM load (Pichora-
Fuller et al., 1995). For spoken or memorized words, acoustic
degradations have been associated with increasing alpha power at
posterior channels (Obleser et al., 2012; W€ostmann et al., 2017),
consistent with an increase in inhibitory WM load. In natural speech
processing, however, executive functions related to the maintenance
of relevant information and the inhibition of irrelevant information
are typically engaged at the same time. Yet, it is unclear how these
WM processes may interact in speech perception. Multiple studies
have reported that WM load influences the ability to ignore distract-
ing information, but the nature of this relation appears to be highly
dependent on the stimulus type and the type of cognitive task
involved (Lavie et al., 2004; San Miguel et al., 2008; S€orqvist
et al., 2012; Vandierendonck, 2014; Scharinger et al., 2015).
Recent studies indicate that speech-entrained activity in the audi-

tory cortex is functionally dependent on oscillatory power in multi-
ple frontoparietal networks (Park et al., 2015; Keitel et al., 2017).

Keitel et al. (2017) recently reported that entrained auditory cortical
activity, quantified as the mutual information between the phase of
low-frequency activity in auditory cortex and the phase of slow
speech envelope modulations, interacted with oscillatory power in
distinct cortical networks. In particular, delta entrainment in the
auditory cortex was dependent on central alpha and frontal beta
power and modulated parietal theta power. This could indicate a
top-down influence on speech-entrained activity in auditory cortex
by oscillations within a larger cortical network involved in cognitive
control or attention. Such a top-down influence could reflect lan-
guage-specific functions such as semantic memory (Keitel et al.,
2017), but could also be related to more general WM functions. To
test more directly whether WM processing influences cortical speech
entrainment, however, it needs to be demonstrated that imposing a
WM processing load in behavioural tasks influences concurrent
speech entrainment.
Here, we developed an experimental paradigm to investigate

influences of WM load on cortical speech envelope entrainment. We
designed a ‘number speech’ material consisting of sequences of spo-
ken numbers that match important properties of natural continuous
speech. During speech listening, participants performed either a 1-
back or 2-back task with the speech sequences embedded in either a
high or a low level of background noise. This allowed us to exam-
ine the individual and combined effects of WM updating (n-back
level) and inhibition (noise level) load during continuous speech
processing. We recorded the EEG as well as changes in pupil sizes
which are often used as a physiological marker of WM demands
(Van Gerven et al., 2004; Zekveld et al., 2010; Scharinger et al.,
2015; Wendt et al., 2016). To examine potential differences in
speech entrainment during the different load conditions, we used
regression techniques to analyse the relationship between ongoing
low-frequency cortical activity and envelope fluctuations in the cor-
responding speech signal (Lalor et al., 2009; Ding & Simon, 2012).
Using continuous speech, our paradigm also allowed us to study the
dynamics of prolonged WM load and load-related measures over
longer time segments.

Materials and methods

Participants

Twenty-two healthy volunteers (six females, aged 19–28, mean age:
24, SD: 3 years) participated with informed consent. Eye-tracking
data were recorded in 15 of the participants. All participants
reported normal hearing. The experiment was approved by the
Science Ethics Committee for the Capital Region of Denmark (pro-
tocol no. H-16036391) and conducted in accordance with the Decla-
ration of Helsinki.

Speech stimuli

We created a speech material that could be used to control the WM
load imposed on the listener and monitor their task performance dur-
ing listening. The speech material consisted of spoken number
sequences created to match natural continuous speech in terms of
syllabic rate, intonation and sentence rhythm. First, two- or three-
digit numbers were read by a male Danish speaker and recorded in
an anechoic chamber. For each number, several tokens spoken in
rising or falling intonation patterns were recorded. The recorded
number tokens were afterwards concatenated into sequences of
‘number sentences’ consisting of three or four numbers (see Fig. 1).
The time interval between numbers was set at random durations
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ranging between 150 and 230 ms, and the time interval between
number sentences was set randomly between 300 and 700 ms to
match the word and sentence rhythm of natural speech. The number
sentences were then used to synthesize long sequences of spoken
numbers for the experimental trials. We created 20 trial lists each of
30 spoken numbers (resulting in durations between 45 and 55 sec-
onds). Each trial list contained n = 1, 2, 3 back repetition targets,
that is numbers which were identical to the number presented n
numbers previously. We ensured that the n-back targets were
equally distributed between the first and second half of the list.
To generate speech-shaped stationary background noise with the

same spectral characteristics as the original speech stimuli, we com-
puted the average of a large number of speech waveforms until the
signal had no distinct slow envelope modulations. In the experiment,
we wanted to impose the noise at a signal-to-noise ratio (SNR) that
resulted in maximal interference without disrupting speech intelligi-
bility. For this reason, we measured speech reception thresholds for
the number tokens in a separate psychoacoustic test with four nor-
mal-hearing listeners not participating in the main experiment. The
lowest SNR point on the psychometric function that resulted in
100% correct identification was estimated to 0 dB SNR. In the main
experiment, this noise level was defined as the ‘high-noise condi-
tion’. A noise level 10 dB lower (i.e. 10 dB SNR) was defined as
the ‘low-noise condition’. Different speech-shaped noise tokens were
used in every trial, that is the noise was not frozen.
For the analysis of speech entrainment, the temporal amplitude

envelopes of the continuous speech signals were extracted using an
auditory model of envelope processing in the peripheral auditory
system. The audio waveforms were first passed through a gamma-
tone filterbank mimicking the spectral filtering characteristics of the
basilar membrane (Patterson et al., 1987). At the output of each fil-
ter, the envelope was extracted via the Hilbert transform and raised

to the power 0.3 to account for the compressive response of the
inner ear (Plack et al., 2008). The spectrally decomposed envelopes
were then resampled to match the EEG sampling rate and averaged
across frequency channels.

Experimental design

To control WM load during speech listening, participants listened to
the continuous speech stimuli while performing an n-back task in
different levels of background noise. The conditions formed a
2 9 2 factorial design consisting of two n-back task levels (1-back,
2-back) and two noise levels (low noise: 10 dB SNR, high noise:
0 dB SNR). In the 1-back condition, participants were asked to
detect whenever a number was repeated, and in the 2-back task,
they detected whether the presently spoken number was the same as
one spoken two times back (Fig. 1). Note that repeated numbers
were not acoustically identical but different speech tokens of the
same number within the continuous speech stream. The same speech
lists were used in the different n-back conditions such that subjects
heard the same speech stimuli in the two different behavioural con-
texts. As the occurrences of 1-2-3 back repetitions were equally dis-
tributed, the same occurrences acted as either targets or lures
(repetitions to be ignored) depending on the n-back task.
Figure 1 presents a schematic illustration of the trial timeline.

Each trial began with a 7.2 s silent resting baseline where subjects
fixated on a cross positioned in the middle of a black background
screen; 2 s after the onset of the resting baseline, a green screen
was shown for 200 ms to measure the pupil light reflex (not shown
in Fig. 1), followed by another 5 s of a black screen baseline. Fol-
lowing the black screen baseline, a grey screen was presented for
500 ms before the onset of the sound stimulation. During sound
stimulation, the participants maintained eye fixation on a cross on

Fig. 1. Schematic illustration of the trial structure and task. Electroencephalogram and pupillometry were recorded, while subjects listened to continuous speech
stimuli consisting of spoken number sequences. Red lines on the waveform represent the pitch contour of the continuous speech signal. In different trials, listen-
ers identified either 1-back or 2-back number targets in different levels of background noise. Please see the Methods section for details.
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the grey background screen. The sound stimulation started with
1.5 s of the background noise at 0 dB or 10 dB SNR before the
onset of the speech stimulus. During the following ~ 45–55 s pre-
sentation of the speech stimulus, the participants were asked to press
a button when an n-back target was detected. The participants were
not instructed to use of any particular finger for responding. They
were not informed about the noise level prior to the sound presenta-
tion. Responses were considered correct when they occurred
between the onset of the target number and the onset of the follow-
ing number plus an additional 200 ms. Responses that did not fall
in this time interval were considered false alarms. After the speech
task, the pre-trial baseline and screen flash were repeated. Subjects
performed eight initial training trials during which they received
feedback whenever n-back targets occurred in the speech stimulus.
During the main experiment, feedback was only provided between
trials by showing the average per cent correctly identified n-back
targets. Each participant performed 10 trials for each of the four
experimental conditions. Lists contained either four (15 of 20 lists)
or three (5 of 20 lists) n-back targets.

Data acquisition

The experiment was performed in an electrically shielded double-
walled sound booth (IAC Acoustics, North Aurora, IL, USA). The
subjects were seated 60 cm in front of a presentation screen with
dim background lighting that was kept constant for all participants.
The auditory stimuli were presented via ER-2 insert earphones (Ety-
motic Research, Elk Grove Village, IL, USA). The speech stimuli
were presented at a fixed level of 65 dB SPL. The level of the
speech stimuli was kept constant, and the level of background noise
relative to the speech signal varied across noise conditions.
Electroencephalogram was recorded continuously at 64 scalp elec-

trodes according to the international 10/20 system using a BioSemi
ActiveTwo system (BioSemi, Amsterdam, Netherlands). The sam-
pling rate was 512 Hz. Additional electrodes were placed on the left
and right mastoids. Eye movements were detected using six bipolar
electrooculographic channels positioned vertically and horizontally
around the eyes.
For 15 subjects, pupil sizes were recorded using an Eyelink 1000

desktop system (SR Research Ltd., Ottawa, ON, Canada) with a
sampling frequency of 250 Hz. Measurements were conducted on
one eye, which varied between subjects. The eye-tracking system
was calibrated at the beginning of the experiment using a custom
calibration routine.

Data pre-processing and analysis

Behavioural data

A measure of d-prime (d’) was used to estimate subjects’ sensitivity
in the n-back task. This was defined as the difference between the
inverse cumulative distribution function (CDF) of correct n-back tar-
get detections (hits) and the inverse CDF responses made in the
absence of a target (false alarms). To examine performance in the
time course of the trial, we also computed the percentage correctly
identified n-back targets at their temporal positions in the trial.

EEG data pre-processing

The EEG data were analysed using MATLAB and the FieldTrip
toolbox (Oostenveld et al., 2011). The data were epoched from 5 s
before the onset of the speech stimulus to 45 s after the speech

onset. The data were high-pass filtered at 0.5 Hz, re-referenced to
the average of the two mastoid electrodes and resampled to 128 Hz.
For one subject, the data were re-referenced to the average of all 64
scalp electrodes due to noisy mastoid electrodes. Bad (i.e. noisy)
channels were identified visually and removed from the data. On
average, 2.4 � 1.9 channels were rejected. The bad channels were
interpolated using a nearest neighbour method average.
The logistic infomax independent component analysis (ICA) algo-

rithm (Bell & Sejnowski, 1995; Delorme & Makeig, 2004; Winkler
et al., 2015) was used to decompose the re-referenced EEG data
from each subject high-pass filtered at 1 Hz. The components were
visually inspected, and artefactual components were rejected. On
average, 6.9 � 2.6% of the components were rejected (2–7 compo-
nents). Most of the rejected components were considered electroocu-
lar (EOG) artefacts and were highly correlated with the EOG
electrodes. The remaining components were identified as either mus-
cle or cardiac-related artefacts that appeared consistently across tri-
als. The ICA-derived mixing matrices were thereafter used to
spatially filter out artefactual activity from the original EEG data
high-pass filtered at 0.5 Hz (Winkler et al., 2015). Trials were
inspected visually for artefacts after ICA cleaning, and remaining
bad trials were removed. Additionally, trials in which the subjects
detected < 25% of the target were rejected from further analysis. On
average, 7.6 � 4.2 trials were rejected per subject. Three subjects
with more than 50% of the data rejected in any given condition
were removed from further analysis. For the remaining 19 subjects,
there were no statistical differences in the number of trials removed
between conditions (n-back and noise interaction: F1,18 = 0.9404,
P = 0.345, n-back: F1,18 = 0.0705, P = 0.7937, noise: F1,18 = 1.8331,
P = 0.192). On average, 8.1 � 1.4 trials remained in each condition
for the remaining subjects.
We examined relative changes in theta band power and alpha

band power between the experimental conditions. Theta activity was
defined in the frequency range from 4 to 7 Hz and alpha from 8 to
13 Hz. Filtering was performed using high-order finite impulse
response filters. To compute band power, we calculated the sum of
the squared absolute values of the filtered EEG signal for each of
the frequency ranges in time windows of 5 s with 90% overlap. To
account for individual differences, the power measures were normal-
ized globally by dividing the power measures in each trial by the
global average in band power across all trials. To further explore
oscillatory power changes over a larger frequency range, we exam-
ined time–frequency representations (TFRs) of power changes by
computing the spectral power as above but in 2-Hz wide frequency
analysis windows from 1 to 30 Hz, in steps of 0.5 Hz. The TFRs
were normalized per frequency bin to the grand average power
across all trials.
To study whether cortical EEG speech entrainment is modulated

by working memory-related processes, we derived temporal
response functions (TRFs) (Lalor et al., 2009; Ding & Simon, 2012)
that map linearly from the envelope of the continuous speech signal
S(t) to the EEG responses R(t,n):

R̂ðt; nÞ ¼
XL

l¼1

hðsl; nÞSðt � slÞ

where n = 1. . .N denotes the number of electrodes and
s ¼ fs1; s2; . . .sLg are the time lags between the stimulus and
response. The TRFs, h(s) were fitted separately on the data from
each subject in each of the four experimental conditions. The TRFs
were estimated using regularized regression with a quadratic penalty
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term (Lalor & Foxe, 2010). The regularization parameter was set to
a fixed high value that gave the highest group-mean leave-one-out
prediction accuracy across all subjects (k = 212). The temporal
response functions covered time lags ranging between 0 to 400 ms
post-stimulus in steps of 7.8 ms (sampling frequency of 128 Hz). The
EEG data and speech envelopes were standardized to have zero mean
and unit variance. The TRF models were computed using MATLAB
code publicly available at www.ine-web.org/software/decoding.
For the TRF analyses, the EEG data were filtered between 1

and 13 Hz using high-order finite impulse response filters. To
quantify changes by either n-back or noise on the TRF, the peak
amplitude, as well as the latency of the peak, was examined. This
was performed by extracting the maximum value of the TRF from
100 ms to 300 ms for each subject. The latency was defined as
the time at which the peak value of the TRF occurred. A leave-
one-trial-out cross-validation procedure was used to estimate model
prediction accuracies in each experimental condition. The predic-
tion accuracies were quantified as Pearson’s correlation coefficient
between the predicted EEG responses and the actual recorded
EEG data on the held-out trials. This correlation served as an
indicator of the degree of speech entrainment, that is how tightly
the cortical activity was synchronized to the speech envelope. We
also examined band-specific entrainment by filtering the EEG data
in delta (1–3 Hz), theta (4–7 Hz) and alpha (8–13 Hz) ranges. In
the statistical analysis of condition-specific differences, we focused
on 12 frontotemporal electrodes (FC5, FC3, FC1, FC2, FC4, FC6,
F5, F3, F1, F2, F4, F6) previously found to be speech relevant
(Di Liberto et al., 2015). To estimate chance-level prediction, we
used a permutation procedure where we predicted EEG responses
based on the envelopes of nonmatching speech sequences. The
97.5% percentile of the chance distribution was defined as the
noise floor.

Pupil data

Eye blinks were classified as samples in the time series where the
absolute value of the pupil diameter exceeded three standard devia-
tions of the mean pupil diameter. Blink-corrupted segments were
linearly interpolated from 350 ms before to 700 ms after the blink
(Wendt et al., 2016). Trials containing more than 20% of corrupted
data were rejected from further analysis. Furthermore, three subjects
with more than 50% of rejected trials were excluded from the analy-
sis. The subjects excluded due to noisy EEG data were not the same
as the subjects excluded due to noisy pupillometry data. For the
remaining subjects, 2 � 3 trials were rejected. The blink-removed
data were smoothed using a 25-point (100 ms) moving average fil-
ter. To account for individual differences between subjects, the data
were normalized to the pupil diameter averaged over the 200 ms
time window directly preceding the noise onset.

Statistical analysis

We used repeated measures analyses of variance (ANOVA) to
assess statistical group-level differences between the 2 9 2 condi-
tions (n-back, noise) on all load-related measures: behavioural per-
formance, average pupil size and maximum pupil dilations, EEG
band power, TRF peak amplitudes, TRF peak latencies and predic-
tion accuracies. All statistical calculations were performed using
MATLAB. Shapiro–Wilk tests (a = 0.05) were used to test for the
normality assumptions of the parametric tests. For the analysis of
the band-specific oscillatory EEG power, we assessed group-level
differences in the time-averaged theta band power over a frontal

electrode (AFz) and alpha band power over a posterior electrode
(Oz). This restriction was motivated by previous results showing
effects of WM load in the theta band at frontal midline electrodes,
as well as effects in the alpha band at posterior electrodes (Gevins
et al., 1997; Gevins & Smith, 2000; Scharinger et al., 2015). To
further explore differences in the trial-averaged power across all
electrodes sites, we performed cluster-based permutation tests (as
implemented in the Fieldtrip toolbox, Oostenveld et al., 2011). This
procedure identifies spatially adjacent clusters of electrodes that
show a significant power decrease or increase between the experi-
mental conditions. Using t-tests, we first computed the group-level
effects of n-back and noise level on the trial-averaged theta or alpha
band power at all electrodes. In clusters with an electrode neigh-
bourhood extent of 40 mm (on average 7.6 electrodes), the t-statistic
for electrodes exceeding a threshold of P < 0.01 (cluster alpha) was
summed. To control for multiple comparisons, the maximum of the
summed t-statistic in the observed data was compared with a ran-
dom partition formed by permuting the experiment condition labels
(as implemented in ft_freqstatistics, Maris & Oostenveld, 2007).
Clusters whose t-statistic exceeded 99% (P < 0.01) of the random
partition were considered significant.

Results

Behavioural performance

Response accuracy in the n-back task (measured in d’) was signifi-
cantly lower in the 2-back condition compared to the 1-back task
(F1,21 = 203.77, P < 0.001) but was not affected by the level of the
background noise (F1,21 = 0.7487, P = 0.397) (Fig. 2B). This result
was expected as the higher noise level was predetermined to yield
the speech fully intelligible. The n-back targets (and lures) were uni-
formly distributed over the trial duration. This allowed us to inspect
potential differences in response accuracy in different parts of the
trials. As shown in Fig. 2A, the identification of 1-back targets
remained high throughout the trial, whereas the identification of 2-
back targets declined as the trial progressed.

Influence of WM load on pupil dilations

All WM task conditions evoked a pupil dilation response with a
peak 5–10 s after trial onset, followed by a gradual decrease in the
remaining duration of the trial (Fig. 2C). The pupil dilations
increased with the n-back task level but did not increase additionally
with the level of the background noise (Fig. 2D). Both the mean
and peak pupil dilation were significantly higher for the 2-back task
compared to the 1-back task (mean dilation, 0–45 s: F1,11 = 17.00,
P = 0.0017; peak dilation: F1,11 = 20.16, P < 0.001). No significant
effects of noise level were found on the pupil measures (mean dila-
tion: F1,11 = 0.31, P = 0.58; peak dilation: F1,11 = 0.76, P = 0.40).

Influence of WM load on alpha and theta power

We first investigated changes in posterior alpha power and frontal
theta power previously associated with WM load. As illustrated in
Fig. 3, increasing WM load in the more difficult 2-back task com-
pared to the 1-back task was associated with a decrease in posterior
alpha power. An ANOVA on trial-averaged alpha power at electrode
Oz revealed a main effect of n-back level (F1,18 = 30.15,
P < 0.001). Cluster-based permutation analysis revealed a wide-
spread cluster of posterior and central electrodes showing a signifi-
cant decrease in alpha power with n-back level (Fig. 3). Frontal
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theta power increased at the start of the trial and increased addition-
ally during the 2-back task compared to the 1-back task (main effect
at electrode Afz: F1,18 = 10.88, P = 0.004). Examining the trial-
averaged theta power across all electrode sites revealed no signifi-
cant clusters. No significant effects of the background noise level
were observed on either alpha (F1,18 = 1.90, P = 0.18) or theta
(F1,18 = 0.29, P = 0.60) power changes.

Influence of WM load on speech envelope entrainment

We derived temporal response functions (TRFs, Fig. 4A and B) to
analyse how low-frequency cortical activity entrained to fluctuations
in the speech envelope. The TRF can be viewed as a speech-evoked
response generalized to continuous stimuli (Lalor et al., 2009). In
all conditions, we observed a late (~ 170 ms) positive peak in the
TRF amplitudes (Fig. 4A–C). Both the amplitude and latency of the
late peak were found to be affected by the background noise level
(Fig. 4C). For the higher noise level, the peak latency increased
(F1,18 = 20.43, P < 0.001) and the peak amplitude decreased
(F1,18 = 12.95, P = 0.002). No significant changes in peak ampli-
tude (F1,18 = 0.80, P = 0.381) or latency (F1,18 = 0.84, P = 0.371)
were found for the change in n-back level.
To quantify how precisely the cortical activity entrained to the

speech envelope in the different WM conditions, we computed the
correlation coefficient (Pearson’s r) between the responses predicted
by the TRF models and the measured EEG (Fig. 4D and E). The
TRF models were first used to predict the low-frequency (1–13 Hz)
EEG response at 12 frontotemporal electrodes from the speech
envelopes. As shown in Fig. 4D, the average prediction correlation
across experimental conditions was high over frontotemporal elec-
trodes, in accordance with previous TRF studies (Crosse & Lalor,
2014; Di Liberto et al., 2015). Analysis of prediction correlations
between WM conditions revealed a significant interaction between
n-back level and noise level (F1,18 = 6.02, P = 0.025) (Fig. 4E).
The prediction values were found to decrease with increasing n-back
level (main effect: F1,18 = 10.68, P < 0.005) and increasing noise
level (main effect: F1,18 = 10.54, P = 0.005), but the effect of the
background noise was found to be larger in the 1-back condition
than in the 2-back condition.

As previous work has pointed to different functional roles for
delta- and theta-band entrainment in speech coding (Ding & Simon,
2014), we also investigated the effects of behavioural WM load on
speech entrainment separately in different frequency bands
(Fig. 4E). This was performed by computing the prediction accura-
cies of TRF models estimated from EEG responses bandpass filtered
in the delta, theta and alpha frequency bands. The prediction correla-
tions were only above the noise floor in the delta and theta band,
but not in the alpha band. As in the analysis of the broadband signal
(1–13 Hz), the speech-entrained response in the delta and theta
bands was significantly reduced with increases in both types of WM
load (Fig. 4E). Increasing the background noise level reduced pre-
diction correlations in the delta band (main effect: F1,18 = 16.75,
P < 0.001) and in the theta band (main effect: F1,18 = 4.95,
P = 0.039). Increased WM load in the n-back task also decreased
entrainment in both the theta band (main effect: F1,18 = 7.10,
P = 0.016) and the delta band (main effect: F1,18 = 5.91,
P = 0.026).
In our analysis, we focused on entrainment between the envelope

of the speech signal and cortical activity. Reduced entrainment with
increased background noise levels could potentially reflect cortical
entrainment to the presented noisy speech stimulus rather than the
underlying speech signal. To investigate whether the cortical activity
tracks the actual noisy stimulus envelope rather than the underlying
speech envelope, we performed the same TRF analysis but for the
envelopes of the noisy speech mixture. Prediction accuracies based
on the noisy speech envelopes were significantly lower than for the
envelope of the clean signals (paired t-test, t = 4.93, P < 0.001),
suggesting that the cortical activity mainly entrains to the clean
speech signal rather than to the noisy sound mixture.

Discussion

We devised an auditory n-back task embedded in continuous speech
to investigate interactions between WM load and speech processing.
Consistent with previous visual n-back paradigms (Gevins et al.,
1997; Gevins & Smith, 2000; Pesonen et al., 2007; Haegens et al.,
2014; Scharinger et al., 2015, 2017), increasing load with higher n-
back levels was associated with increased frontal theta band power

Fig. 2. Behavioural performance (above) and pupil responses (below). (A) Percentage of correctly detected 1-back and 2-back targets during the speech trial.
Larger circles represent the group average % correct at the average position of the targets. Shaded areas represent � 1 SEM. (B) Behavioural sensitivity (d-
prime) for n-back target detection measured over the trial duration. (C) The average trace of the pupil dilations relative to a pre-stimulus baseline. (D) Mean
and peak pupil dilation over the trial duration. Error bars represent � 1 SEM ***P < 0.001.
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and decreased posterior alpha power. At the same time, cortical
entrainment to the speech envelope decreased with increasing WM
load. Both increased background noise levels and higher n-back
levels decreased speech-entrained responses in the delta and theta
bands.

Dynamics of alpha and theta power and pupil dilations during
WM load

The continuous speech paradigm allowed us to observe the dynam-
ics of load-related measures over prolonged periods of WM load.
Load-specific changes in behavioural performance, EEG band power
and pupil size each exhibited different dynamics over the trial dura-
tion. The observation of task-evoked pupil dilations in the initial 5–
10 s of the trial (Fig. 2C) is consistent with numerous previous
pupil studies of WM load or cognitive effort in paradigms with
shorter trials (Beatty, 1982; Zekveld et al., 2010; Koelewijn et al.,
2012; Scharinger et al., 2015; Wendt et al., 2016). However, we
also observed that this was followed by a similar decrease in pupil
sizes for the remaining duration of the trial. During this decrease,
the pupil dilations remained sensitive to n-back load (Fig. 2C).
Behavioural performance, on the other hand, decreased during the
trial but only during the difficult 2-back task (Fig. 2A). This could
indicate fatigue. However, a similar pattern specific to the high-load
condition was not reflected in either the EEG band power or the
pupil responses. In the EEG theta or alpha power (Fig. 3A), we did

not find similar patterns of change throughout the trial but the indi-
vidual power traces had considerable local variation.
An initial increase in theta power was observed in the beginning

of the trials (Fig. 3A). This could reflect the increase of items held
in WM when participants were presented with the first numbers of
the sequence, consistent with visual WM tasks (Raghavachari et al.,
2001). In the remaining parts of the trial, theta power remained high
and increased additionally during 2-back task compared to the 1-
back task. Scharinger et al. (2017) recently reported a similar
increase in frontal theta emerging in the course of a visual n-back
task but did not observe a similar theta pattern during memorization
in WM span tasks. This could suggest that theta is more specifically
related to the organization and continuous update of WM items, and
less to memory storage of those items. Specifically, our results are
consistent with a functional role of theta oscillations for organizing
multiple items in a sequential order in short-term memory (Raghava-
chari et al., 2001; Lisman & Jensen, 2013).
Decreased alpha power for higher n-back levels throughout the

trial is also consistent with previous n-back studies (Gevins &
Smith, 2000; Pesonen et al., 2007; Scharinger et al., 2015, 2017).
Reduced alpha power, however, has also been observed in a number
of other complex WM tasks and may reflect the complex nature of
the n-back task. The n-back task requires subjects to simultaneously
update WM information and match stored items with the current
input (Watter et al., 2001). A task-related decrease in alpha power
has been proposed to reflect the fact that a number of WM

Fig. 3. Changes in oscillatory power during the n-back speech task. (A) Time–frequency representations (TFRs) of the power changes between the 2-back and
1-back tasks at frontal electrode AFz (above) and posterior electrode Oz (below). White stippled lines mark the location of the theta (above) and alpha (below)
bands. Traces below the TFRs show the normalized theta band power and alpha band power in the two n-back tasks. Shaded areas in the traces represent � 1
SEM across subjects for each 5 s time window. (B) Trial-mean (5–45 s) power in frontal theta (left) and posterior alpha (right). (C) Topographies showing the
trial-mean differences in theta (above) and alpha (below) power between the 2-back and 1-back tasks (left) and between high and low noise levels (right). Cir-
cles indicate the position of electrodes AFz and Oz. White asterisks indicate electrodes showing significant power differences between the n-back conditions
revealed by the cluster analysis (P < 0.01). Error bars represent � 1 SEM **P < 0.01, ***P < 0.001.
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processes are simultaneously required for task performance
(Klimesch, 1999; Scharinger et al., 2017). Simultaneous involve-
ment of different WM functions in different task strategies may also
explain the fact that we observed a considerable variability in alpha
patterns between subjects in our data (see Fig. 3B). While some
subjects may be able to search WM content before a new number is
presented, others may try to match stored items each time a new
speech item is heard (Watter et al., 2001). Different processing
strategies that put different demands on the matching subtasks could
potentially generate variability in the observed alpha patterns.

Do WM processes influence speech entrainment?

Speech envelope entrainment was found to decrease with an
increase in the two types of WM load examined. In visual n-back
tasks, the amplitude of P300 evoked potentials has consistently been
found to be attenuated by increasing WM load at higher n-back
levels (Gevins et al., 1996; McEvoy et al., 1998; Watter et al.,
2001; Wintink et al., 2001; Scharinger et al., 2015). This reduction
has been interpreted in terms of a re-distribution of resources
between WM processes at higher load levels. Yet, decreased speech
entrainment with increasing WM load, as observed in the current
study, points to an interaction between WM processing and auditory
processing of the speech stimulus. Thus, decreased entrainment with
higher load levels may reflect a re-allocation of WM resources at
the expense of parsing of the speech stimulus.

A possible explanation for the WM-specific reduction in speech
entrainment could be an interaction between WM processing and
attention (Gazzaley & Nobre, 2012). Numerous studies have demon-
strated that selective attention to a particular talker reduces entrain-
ment to ignored speech streams (Ding & Simon, 2012; Power et al.,
2012; Zion Golumbic et al., 2013; O’Sullivan et al., 2014; Fuglsang
et al., 2017). Auditory entrainment to speech has also been reported
even in the absence of overt auditory input, for example during
imagined speech (Deng et al., 2010; Martin et al., 2014). This raises
the possibility that attention-driven speech entrainment can operate
entirely on internal speech representations. In a continuous updating
task such as our current speech n-back paradigm, WM processing
may direct attentional focus towards the internal rehearsal of verbal
items in the phonological loop. In this case, new items in the contin-
uous speech stream compete for selective attention with verbal infor-
mation currently in the phonological loop. Increasing attention
towards the phonological loop for higher n-back levels would then
explain a decrease in cortical activity entrained to the ongoing
speech stimulus. Such a mechanism would need to be examined
more closely, for example by comparing entrainment to matching
vs. mismatching search targets. We note that the observed reduction
in speech entrainment during WM load is relatively small compared
to the reduction in entrainment typically reported for ignored speech
streams in selective attention tasks.
While higher n-back levels reduced delta–theta entrainment, this

was not accompanied by a significant reduction in TRF amplitudes.

Fig. 4. Electroencephalogram (EEG) responses to speech envelopes in the different working memory (WM) load conditions. Above (A–C): Temporal response
functions (TRFs) derived from linear regression between EEG data and the speech stimulus. Below (D, E): Speech entrainment measured as the correlation
between the cortical response predicted by the speech envelope and the EEG. (A) TRFs at selected electrode locations to illustrate the responses at different
scalp positions. (B) TRFs averaged over frontocentral electrodes in the different experimental WM conditions. (C) The amplitude (above) and latency (below)
of the late positive peak in the average TRF around 170 ms. (D) Topographical distribution of the EEG prediction accuracies (Pearson’s r) averaged across con-
ditions. The dots indicate the positions of the analysed frontocentral electrodes. (E) Average prediction accuracies in different frequency bands. The shaded areas
represent chance-level prediction. Error bars represent � 1 SEM *P < 0.05, **P < 0.01, ***P < 0.001.

© 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
European Journal of Neuroscience, 51, 1279–1289

1286 J. Hjortkjær et al.



Increasing background noise levels, on the other hand, significantly
attenuated and shifted the latency of the TRF peak. Consistent with
this, increasing levels of continuous background noise have previ-
ously been found to increase event-related potential latencies of both
N100 and P300 components in a syllable discrimination task
(Whiting et al., 1998). Latency shifts and attenuated amplitudes of
TRFs with increasing background noise levels have also been
reported previously, but only for earlier TRF components (~ 50 ms)
observed in MEG component space (Ding & Simon, 2013). Our
current TRF method did not reveal any clear early components, and
the later peak may reflect a compound effect of early and later
auditory processing.
Higher WM load levels decreased speech entrainment (Fig. 4)

and, at the same time, induced load-specific alpha–theta power
changes (Fig. 3). The phase of auditory cortical activity entrained
to speech has previously been suggested to be functionally coupled
with alpha, theta and beta power in frontoparietal regions (Park
et al., 2015; Keitel et al., 2017), but the functional significance of
these couplings has not been clarified. In line with the present
results, Keitel et al. (2017) found that reduced entrainment in the
delta band was associated with increases in parietal theta power.
The authors proposed that this could reflect WM involvement to
compensate for weaker entrainment. Our results suggest instead that
WM load, here induced by the behavioural task, reduces the
speech-entrained response. The WM-specific power changes found
in the current study (Fig. 3) also point to executive functions that
are not specific to speech. However, the functional coupling
involved in WM-specific modulation of speech entrainment may be
different from those observed in paradigms without specific WM
tasks.
In our study, speech entrainment was defined in terms of a linear

mapping between the speech envelope and the EEG signal. A
decreased prediction accuracy for increasing WM load indicates that
WM load influences how accurately cortical activity tracks acoustic
amplitude variations in the speech signal. Such a picture is consis-
tent with the notion of a general oscillatory network that modulates
activity in sensory cortices in a top-down manner (Schroeder &
Lakatos, 2009). While conceivable, this conclusion may be prema-
ture based on the current results in isolation. Delta–theta envelope
entrainment has also been reported for nonspeech signals or unintel-
ligible speech sounds (Lalor et al., 2009; O’Sullivan et al., 2014;
Millman et al., 2015). In speech signals, however, the amplitude
envelope correlates with the quasi-rhythmic variations in higher-
level speech features, such as the onsets of phonemes or syllables.
Cortical entrainment in speech processing has also been suggested
to be related to parsing of such high-level speech units (Ghitza,
2011; Giraud & Poeppel, 2012; Di Liberto et al., 2015; Zoefel &
VanRullen, 2016), and WM load could modulate speech processing
at any or several different levels of speech processing.
Although we suggest that the effects of background noise on

delta–theta entrainment reflect WM load, changes in entrainment
could potentially have been related to the acoustic degradation of
the sound envelope. To investigate whether a reduction in entrain-
ment might reflect the fact that cortical activity entrains to the noisy
signal, we compared entrainment to the clean speech signal (without
noise) with entrainment to the noisy sound stimulus actually pre-
sented to the listeners. In agreement with previous results (Ding &
Simon, 2013; Fuglsang et al., 2017), this suggested that cortical
activity predominantly entrained to the underlying speech signal
rather than to the noisy sound mixture. While this suggests an effect
of WM load induced by the noise interference, our design does not
allow us to completely dissociate the effects of acoustic degradation

of the sound signal from inhibitory load caused by these degrada-
tions. Alternative paradigms that burden WM inhibitory load with-
out affecting the acoustic stimulus, for example by presenting
incongruent speech features, might further dissociate these effects.

Limitations

In our study, we used long continuous speech stimuli (~ 45–55 s) to
investigate auditory entrainment during WM load. However, simul-
taneously examining WM-dependent effects on speech entrainment
and on oscillatory power involves a trade-off in terms of experimen-
tal design. TRF methods are generally found to be more robust to
EEG artefacts but they require long trials for estimating the stimu-
lus-response mapping at lower frequencies. Although the TRF meth-
ods allow neural responses to continuous speech to be examined,
longer trials are not optimally suited to track spectral power changes
in the EEG. Power estimates are more susceptible to EEG artefacts
and activity unrelated to the stimulus or task. In the current study,
we observed a substantial individual variability in the considered
power measures. It is possible that alternative paradigms using
shorter trials and more trial averages would be more sensitive to the
oscillatory power changes associated with these WM tasks and
could reveal additional effects. Also, the current analyses relied on
EEG power estimates in fixed frequency bands, although the spec-
tral characteristics of alpha and theta power may vary considerably
between subjects (Haegens et al., 2014). The group analyses of
theta–alpha power may thus be susceptible to between-band leak-
ages.
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