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Abstract: Metformin is currently used to improve pregnancy outcome in women affected by polycystic
ovary syndrome (PCOS) or diabetes. However, metformin may also be useful in pregnancies at
risk of intrauterine growth restriction (IUGR) since it improves placental efficiency and the fetuses’
developmental competence. There is no data on the duration of the effect of this treatment from the
prenatal up to the postnatal stages. Therefore, the present trial aimed at determining the impact of
metformin treatment on the offspring neonatal traits and early postnatal development (i.e., during
lactation) using an in vivo swine model. The results support that maternal metformin treatment
during pregnancy induces protective changes in body shape and composition of the progeny (i.e.,
larger head size and body length at birth and higher total viscera weight at weaning). However,
there were also major effects of the offspring sex (smaller corpulence in females and lower relative
weight of main viscerae in males), which should be considered for further preclinical studies and
when even the current clinical application in women affected by PCOS or diabetes is implemented.
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1. Introduction

Intrauterine growth restriction (IUGR), the failure of a fetus to reach its full genetic growth potential,
affects between 6% and 17% of total human pregnancies; a range depending on environmental and
socioeconomic factors. IUGR results in small-for-gestational-age (SGA or low-birth-weight, LBW)
offspring, with SGA being the second leading cause of infant mortality and morbidity after premature
birth. IUGR directly affects the life-quality and well-being of many individuals and causes a huge
financial burden to the public health care systems [1].

In consequence, IUGR has been the focus of intense research during the last 40 years, but mainly
during the last ten years [2] as the traditional causes for IUGR (maternal malnutrition and hypoxia
in developing areas and extreme environments) are reinforced by a contemporary increase in the
incidence of “placental insufficiency” in both developing and developed countries [3]. The term
“placental insufficiency” defines a deficiency in the placental development and function, causing a
shortage of the transfer of nutrients and oxygen to the fetus. This condition is currently estimated to
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be the cause of around 60% of IUGR cases [4]. Moreover, placental insufficiency is a rising problem,
since it is linked to many contemporary factors (delay in childbearing age, inadequate lifestyle, stress,
sedentarism, pollution, alcohol and tobacco intake, obesity, diabetes or preeclampsia [5]).

The current magnitude and the expected future increment of IUGR incidence make necessary to
increase the research on diagnostic, preventive, and therapeutic approaches. Preventive and therapeutic
strategies are mainly based, to date, on lifestyle and diet changes, since there are no therapeutic actions
with proven validity and the final solution is the induction of a preterm delivery. In fact, around 40%
of premature births, which are the leading cause for infant mortality and morbidity, is related to the
medical indication to induce birth before the 34th week of gestation, due to IUGR [6]. Therefore,
research for therapeutic tools focuses on the improvement of placental development and functionality
by either pharmacological treatments (e.g., aspirin or sildenafil citrate) or nutritional supplementation
(e.g., amino acids, vitamins favoring protein synthesis or antioxidant status, and other antioxidants
such as polyphenols). Such research cannot be carried out in human beings, so the use of animal
models (either rodents or large animals) is unavoidable [7].

Our group has approached, using a well-proven swine IUGR model [8,9], a distinctive
pharmacologic alternative: the use of metformin. Metformin is a drug widely used for the treatment and
prevention of diabetes [10], and it is currently tested to prevent large-for-gestational-age (LGA) offspring
in pregnant mothers with diabetes [11,12], the opposite scenario to IUGR and SGA offspring. However,
metformin favors the transfer and uptake of glucose to peripheral tissues [13] without inducing
maternal hypoglycemia [14]. Our hypothesis was that metformin treatment in IUGR compromised
pregnancies might favor the uptake of glucose by the placenta and fetus and, consequently, improve
fetal development. We found that the maternal treatment with metformin, despite no significant
effects on fetal body mass, favored placental development and fetal viscera growth (mainly brain, liver,
kidneys, spleen, and adrenal glands) [15]. These organs are pivotal for the survival and development
of the newborns, with these findings suggesting a beneficial effect of the metformin treatment on the
fetuses’ developmental competence and, afterwards, neonates.

These results are of high value for human medicine in case of maternal malnutrition, frequent in
developing areas. Metformin is a cheap drug easily available which seems to improve placental
development, in case of placental deficiency. However, there are no data on the duration of these
effects up to postnatal stages of the offspring or on the safety use of the drug during pregnancy [16].
Thus, the present trial aimed at determining the effects of the maternal metformin therapy on neonatal
traits and early postnatal development (i.e.: during lactation) of the offspring in mammals.

2. Results

2.1. Effects of Maternal Metformin Treatment on Late Prenatal Development and Neonatal Features

The mean litter size was similar in both control and metformin-treated groups (7.8± 0.6 piglets/litter
in the Group Control, Group C, and 8.0 ± 0.7 piglets/litter in the treated group, Group METF). The sex
ratio of piglets was close to 1:1 in both groups, with 21 female and 26 male piglets in group C (44.7%
and 55.3%, respectively) and 38 female and 34 male piglets in the group METF (52.7% and 47.3%,
respectively).

There was no disparity in the mean birthweight between piglets between the groups (Table 1),
but there were significant birth-size differences. Piglets in the group METF, independently of sex,
showed a larger head size (in terms of higher values for both occipito-nasal length and biparietal
diameter; p < 0.0005 and p < 0.005, respectively, with a higher ratio occipito-nasal to length/biparietal
diameter; p < 0.05) and a longer body length (p < 0.05). Conversely, differences in corpulence were
determined by an interaction sex*treatment. In this sense, METF males had similar thoracic and
abdominal circumferences to those from control males, while female piglets in the group METF showed
smaller thoracic and abdominal circumferences than C females (p < 0.005 and p < 0.05, respectively).
A within-group comparison showed that body weight and size were similar between females and
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males in the group C (excepting a trend for lower body length in males, p = 0.06). Males in the group
METF showed a trend for a higher body weight (p = 0.06) and higher values for occipito-nasal length
and thoracic circumference (p < 0.05 for both) than their female littermates.

Table 1. Mean (± SEM) values for birthweight and size in newborn piglets from controls (group C) and
sows treated with metformin during pregnancy (group METF).

Parameter
Group C Group METF

Females Males Females Males

Body weight (g) 1.13 ± 0.03 1.15 ± 0.03 1.11 ± 0.03 1.16 ± 0.03
Body length (cm) 23.27 ± 0.34 a 23.03 ± 0.28 e 23.72 ± 0.30 b 23.92 ± 0.29 f

Occipito-nasal length (cm) 11.14 ± 0.22 e 11.31 ± 0.19 e 11.93 ± 0.13 f,1 12.27 ± 0.16 f,2

Biparietal diameter (cm) 4.57 ± 0.08 a 4.58 ± 0.07 a 4.77 ± 0.05 b 4.77 ± 0.07 b

Thoracic circumference (cm) 23.25 ± 0.29 c 22.48 ± 0.29 22.20 ± 0.19 d,1 22.64 ± 0.27 2

Abdominal circumference (cm) 18.76 ± 0.31 a 18.63 ± 0.30 17.83 ± 0.23 b 18.28 ± 0.30

Superscripts denote significant differences between treatments (a , b: p < 0.05; c , d: p < 0.005; e , f: p < 0.0005)
and between sexes within treatments (1 , 2: p < 0.05).

2.2. Effects of Maternal Metformin Treatment on Early Postnatal Development and Body Composition

The growth of the piglets during the suckling period was similar in both groups, without any
difference in average daily weight gain (ADWG) and fractional growth rate (FGR), and therefore in
body weight, during this stage (Figure 1).

Figure 1. Change over time in mean values (±S.E.M.) of body weight and length (panels (A) and (B),
respectively), average daily weight gain (ADWG; panel (C)) and fractional growth rate (FGR; panel (D)),
during the early postnatal development (0 to 30 days old) in piglets from control (group C; black dots
with discontinuous lines) and sows treated with metformin during pregnancy (group METF; black dots
with continuous line). Asterisk denotes significant differences between groups (* p < 0.05).
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The higher values for occipito-nasal length and biparietal diameter found at birth in METF piglets
than in C counterparts remained at 15 days old (p < 0.05 for both; Figure 2). Female piglets in the group
METF continued showing smaller thoracic and abdominal circumferences than C females at the age
of both 15 (p = 0.06 and p < 0.0005, respectively) and 30 days (p < 0.05 and p < 0.0005, respectively).
Smaller thoracic and abdominal circumferences in METF males than in C males were also found at
30 days old (p < 0.0005 and p < 0.005, respectively).

Figure 2. Change over time in mean values (±S.E.M.) of the occipito-nasal length (panel (A)), biparietal
diameter (panel (B)) and thoracic and abdominal circumferences (panels (C) and (D), respectively)
during the early postnatal development (0 to 30 days old) in piglets from control (group C; black dots
with discontinuous lines) and sows treated with metformin during pregnancy (group METF; black dots
with continuous line). Asterisks denote significant differences between groups (* p < 0.05; ** p < 0.01).

On the other hand, at weaning, METF piglets showed a higher muscle development, as determined
by assessing the loin diameter (11.4± 0.02 vs. 9.8± 0.021 mm for group C; p < 0.0005), and subcutaneous
fat accumulation, as determined by evaluating the back-fat depth (5.1 ± 0.01 vs. 4.0 ± 0.01 mm for
group C; p < 0.0005). These differences were independent of sex.

At weaning, there were no significant differences between groups C and METF in the absolute
body weight or in the absolute weight of head, carcass, and viscerae (Table 2), excepting a significant
lower weight of the kidney in METF males. However, there was a trend for a higher absolute weight of
total viscerae in the group METF, which resulted in a higher relative viscerae-to-body weight ratio
than in the group C (p = 0.06 and p < 0.0005, respectively). The comparison of these traits between
males and females within groups showed no differences in METF piglets, but the females of the group
C showed a lower relative weight of the carcass and a higher relative weight of viscerae than their
male group C counterparts (p < 0.01 and p < 0.05, respectively).
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Table 2. Mean (±SEM) values for absolute weight of different organs and structures at weaning (i.e.,
30 days old) in offspring from control (group C) and sows treated with metformin during pregnancy
(group METF).

Parameter (g)
Group C Group METF

Females Males Females Males

Body 4986.76 ± 112.65 4895.59 ± 137.63 4728.75 ± 74.11 4777.13 ± 88.72
Head 689.67 ± 9.23 666.71 ± 12.68 653.42 ± 10.45 645.22 ± 6.99

Carcass 3053.83 ± 51.04 3219.43 ± 98.94 3048.53 ± 110.45 2955.56 ± 104.3
Total viscerae 835.00 ± 17.76 755.29 ± 24.49 895.0 ± 16.88 849.59 ± 16.64

Heart 32.17 ± 0.50 30.57 ± 0.62 35.38 ± 0.77 35.09 ± 1.08
Lungs 71.67 ± 1.65 81.14 ± 3.21 79.66 ± 1.47 77.44 ± 1.36
Liver 131.00 ± 1.63 131.86 ± 3.11 132.10 ± 2.62 131.56 ± 2.52

Intestine 429.17 ± 10.80 352.86 ± 17.31 439.72 ± 9.70 411.48 ± 7.88
Kidneys 28.33 ± 0.38 29.71 ± 0.60 a 28.36 ± 0.47 27.00 ± 0.43 b

Spleen 11.42 ± 0.18 16.39 ± 0.67 15.45 ± 0.50 13.95 ± 0.52
Pancreas 4.99 ± 0.28 6.11 ± 0.13 5.57 ± 0.20 5.32 ± 0.18

Adrenal glands 0.71 ± 0.02 0.95 ± 0.02 0.85 ± 0.02 0.88 ± 0.02

Superscripts denote significant differences between treatments (a , b: p < 0.05).

These differences in the weight of total viscerae influenced the assessment of the individual
relative weights of the different thoracic and abdominal organs (heart, lungs, liver, intestine, kidney,
spleen, pancreas, and adrenal glands). In brief, there were no significant differences in the absolute
weights of the different viscerae between treatments. There were no sex-related differences within the
group METF, but males in group C showed a higher absolute weight of spleen and adrenal glands
than their female counterparts (p < 0.05 and p < 0.01, respectively). On the other hand, the analysis of
differences in the relative weights of different organs between treatment groups showed determinant
sex-related effects. The comparison of the weight of the different organs to total viscera weight showed
no significant differences between C and METF females, despite numerically higher values in treated
METF females. Conversely, when compared to C males, METF males had lower relative weights of
kidneys (p < 0.0005), liver, lungs, pancreas, and spleen (p < 0.005 for all) and adrenal glands (p < 0.05)
and higher relative weight of the intestine (p < 0.005).

3. Discussion

The results obtained in the present study evidence that metformin treatment during pregnancy
induces a change in body shape and composition of the progeny and address a prominent role of the
offspring sex on its response to such therapies.

Maternal metformin treatment during pregnancy did not induce significant differences in
birthweight but in body shape, similarly to our previous study performed during the last days
of pregnancy [15]. In brief, offspring from metformin-treated pregnancies had significantly higher
values for head size (both when assessing occipito-nasal length and biparietal diameter) and body
length. These results are highly interesting since recent studies addressed that head profile (size,
length and width) and body shape (body length and width) at birth are more predictive of the
postnatal development in SGA piglets than the proper birthweight [17,18].

The head profile allows discrimination between piglets that have suffered severe IUGR and
piglets that have been less affected and have been born small for gestational age (e.g., proportionally
small [19]). In this sense, a dolphin-like forehead (a small and short but wide head) in SGA piglets is
clearly indicative of severe IUGR with an adaptive brain sparing effect [18,20]. In our study, the head
was significantly larger and longer in metformin-treated piglets than in control ones, suggesting an
alleviation of IUGR effects. A similar effect was described in human pregnancies affected by polycystic
ovarian syndrome (PCOS) and therefore treated with metformin [21,22]. However, there is still unclear
the association between metformin and increases in head size and how these changes might affect
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future cognitive and mental traits, since head and brain size are positively related to better cognitive
function [22,23]. These authors suggest a direct effect on brain development of metformin, which is
known to be able to reach the fetus [24,25] and to cross the brain-blood barrier [26], but further specific
studies are necessary.

The assessment of the body shape at birth in the present study showed a longer body in
the metformin-treated neonates and demonstrated sex-related differences in the response of the
offspring to the treatment. In this regard, there were no differences between male counterparts,
but metformin-treated females showed a smaller corpulence with smaller thoracic and abdominal
circumferences than their female control counterparts. At birth, the abdominal circumference is
considered a reliable predictor, with a direct relationship, for the developmental potential during the
early postnatal period [17]. Such smaller corpulence of treated females remained during the lactation
period and at weaning, but there was also a significant lower corpulence at weaning in the treated
males. However, at weaning, traits for muscle development and subcutaneous back fat were higher in
both female and male metformin-treated piglets. This is opposite to data on abdominal circumferences
since higher values of these traits at weaning prove a good growth in the lactation period and are
related to better development, and better yields, during the growing phase [27–29].

A possible hypothesis, considering similar body mass with higher corpulence in controls and
better muscle development in metformin-treated piglets, would be a reduction of fattening in these
latter individuals. In fact, in pigs, the thoracic circumference is considered mainly predictive for
the amount of carcass fat while abdominal circumference is considered mainly predictive of visceral
fat [30–32]. The Iberian piglets from food-deprived pregnancies are characterized by a sex-related
catch-up growth: females, but no males, have an enhanced growth during lactation [8]. The objective
is counteracting IUGR, but such a catch-up growth may be detrimental in case of overnutrition,
leading to obesity and associated disorders [33–36]. Accordingly, Iberian female piglets from underfed
pregnancies have increased body weight, corpulence, and adiposity at juvenile periods compared
to females from pregnancies with adequate nutrition [37,38]. A subsequent study from our group
indicated that metformin treatment in these piglets during the juvenile development induces an
improvement in body mass by favoring muscle deposition without fattening [39], so similar effects
might be expected during prenatal and early postnatal development.

However, these hypotheses should be obviously addressed in future studies; moreover, when a
previous study in women with PCOS gave a warning about increased body mass indexes (BMI)
in metformin-exposed children [22]. Conversely, evidence found in other clinical studies on
pregnant women with diabetes or PCOS indicate similar outputs to those from our study. In brief,
children exposed to metformin during pregnancy were larger in size and heavier, but there were
no negative effects on the total or abdominal body fat percent or on the metabolic measures [40–43].
Moreover, one of these trials, similarly to ours, demonstrated more subcutaneous fat without increasing
overall body fat in metformin-treated individuals during lactation [43].

The assessment of body composition at weaning demonstrated that control females showed a
lower relative weight of the carcasses and a higher relative weight of total viscerae than their male
littermates. These results support previous findings in our IUGR model [44,45], addressing that
Iberian female fetuses favor the development of the viscerae rather than that of the carcass, conversely
to male fetuses (i.e.,: females prioritize the growth of vital organs at the expense of the growth of
bones and muscles). Evidence indicates that protective strategies to adapt to nutritional scarcity are
more evident in the female offspring, similarly to previous data reviewed by Aiken and Ozanne [46].
In the present study, these differences were not found in the metformin-treated group. However,
treated piglets (both females and males) demonstrated a higher relative weight of total viscerae than
control animals. Therefore, there was a positive effect of the metformin treatment on the offspring
developmental competence.

However, it is important to note that the individual assessment of each one of the main viscerae
addressed that despite no differences or even a non-significant trend to increase in metformin-treated
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females, the metformin-treated males had lower relative weights of main viscerae (lungs, liver, kidneys,
pancreas, spleen and adrenal glands) than the control males. We cannot elucidate if this was a statistical
effect of the comparison to total viscera weight (higher in metformin-treated males) due to no differences
in the absolute weights of each viscera alone, or if there was a redistribution of the growth of the different
viscerae, having in mind that other viscerae were comparatively higher (e.g., intestine). However,
these results resemble data from previous studies on the effect of a polyphenol supplementation (i.e.,
hydroxytyrosol) during pregnancy, where the liver was smaller in treated male offspring and even
demonstrated a lower energy content than in their male control counterparts [47–49]. Swine models
have proved to be highly translational to human medicine, as previously explained [5,7,9]. Thus,
these results indicate the need for further specific studies on possible deleterious effects of prenatal
therapies regulating fetal homeostasis on male offspring development. Such consideration should be
extended to treatments counteracting the effects of maternal PCOS and diabetes during pregnancy.

4. Material and Methods

4.1. Ethics Statement

The study involved a total of 119 piglets which were born from 15 purebred Iberian sows. All these
animals were housed at the INIA facilities, which meet local, national, and European requirements
for Scientific Procedure Establishments. The experimental procedures were assessed and approved
by the INIA Committee of Ethics in Animal Research and the regional competent authority (report
PROEX 353/15) and performed according to the Spanish Policy for Animal Protection RD53/2013,
which complies with the European Union Directive 2010/63/UE on the care of animals used for research.

4.2. Animal Handling and Experimental Procedure

The experimental procedure was adapted from a previous study evaluating the effect of metformin
on fetal development [15]. In brief, the sows were inseminated with cooled semen from a purebred
Iberian boar after cycle synchronization with altrenogest (Regumate®, MSD, Boxmeer, The Netherlands).
All the sows were fed with a standard grain-based food diet (dry matter, 89.8%; crude protein, 15.1%; fat,
2.8%; and metabolizable energy, 3.0 Mcal/kg) adjusted to fulfill 100% of individual daily maintenance
requirements during the first 35 days of pregnancy and, in order to impose a nutritional challenge
and to induce a higher incidence of IUGR processes as previously described [10,11], reduced to fulfill
50% of such requirements from Day 35 of pregnancy up to the day of delivery. On the same Day 35 of
pregnancy, the sows were distributed according to body weight in an untreated control group (group
C; n = 6) and a group treated with 850 mg of metformin per animal and day (Dianben®; Merck Serono,
Madrid, Spain), by individually top-dressing over the morning feed from Day 35 to the day of sampling
(group METF; n = 9). All sows were again fed with the control diet from the day of delivery up
to weaning.

4.3. Assessment of Neonatal Features and Early Postnatal Development of Piglets

At birth, the total number of piglets was recorded for each sow. Sex, weight, and head and body
measurements (biparietal diameter, occipito-nasal length, trunk length, and abdominal and thoracic
circumferences) were recorded for each piglet. Head measurements were used to calculate the ratio
occipito-nasal length/biparietal diameter. Immediately, all living piglets were tagged with earrings for
their identification and underwent within-group fostering to equalize the number of animals among
dams. Piglets remained with sows in individual pens until weaning at 30 days old.

All the piglets were again weighted and measured at 15 and 30 days old. Weight values were used
to determine the ADWG and the FGR; weight gained per day per starting weight) for the time-intervals.
At 30 days old, all the piglets were euthanized by stunning and exsanguination in compliance with
standard procedures (RD 53/2013) and sampled for determining the effects of maternal metformin
treatment on early postnatal body weight and size, adiposity, and body composition. The head was
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immediately separated from the trunk at the atlanto-occipital joint and weighted, all thoracic and
abdominal viscerae were removed, and the weight of the carcass and the total viscerae together were
recorded. The back-fat depth and the loin diameter were recorded with a measuring tape at the carcass,
and the major organs (heart, lungs, liver, intestine, kidney, spleen, pancreas, and adrenal glands) were
weighed individually. The following weight ratios were considered: weights of head to body weight
and weights of brain, heart, lungs, liver, kidneys, intestine, pancreas, spleen, and adrenal glands
relative to both total body weight and total viscera weight.

4.4. Statistical Analyses

Data were analyzed using SPSS 22.0 (IBM, NY). T-student tests were used to assess the effects of
maternal treatment (control vs. treated) on litter size and distribution of sexes. Effects of treatment
(control vs. treated) and sex (female vs. male) on changes over time in weight and measures
were assessed by ANOVA for repeated measures with the Green–Houser–Geisser correction when
statistically significant while differences in adiposity, loin diameter, and organs weights were assessed
by two-way ANOVA. Duncan’s post-hoc test was performed to check differences among groups in
multiple comparisons. All results were expressed as mean ± SEM, and statistical significance was
accepted from p < 0.05.

5. Conclusions

Overall, the results obtained in the present study show the efficacy of metformin to improve the
developmental competence of fetuses from compromised pregnancies. However, there is also evidence
of a prominent role of the offspring sex on its response to maternal metformin therapies, which may be
even deleterious in the case of male offspring. Such evidence supports the concept of personalized
medicine including offspring sex in the case of pregnancies and, specifically, should be taken in account
for further preclinical studies and even current clinical application in pregnant women affected by
PCOS and diabetes.
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