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Abstract
Memory	 loss	 is	 the	 most	 common	 clinical	 sign	 in	 Alzheimer's	 disease	 (AD);	 thus,	
searching for peripheral biomarkers to predict cognitive decline is promising for early 
diagnosis	of	AD.	As	platelets	share	similarities	 to	neuron	biology,	 it	may	serve	as	a	
peripheral	 matrix	 for	 biomarkers	 of	 neurological	 disorders.	 Here,	 we	 conducted	 a	
comprehensive	and	in-	depth	platelet	proteomic	analysis	using	TMT-	LC-	MS/MS	in	the	
populations	with	mild	cognitive	impairment	(MCI,	MMSE	=	18–	23),	severe	cognitive	
impairments	(AD,	MMSE	=	2–	17),	and	the	age-	/sex-	matched	normal	cognition	controls	
(MMSE	=	29–	30).	A	total	of	360	differential	proteins	were	detected	in	MCI	and	AD	
patients compared with the controls. These differential proteins were involved in mul-
tiple	KEGG	pathways,	including	AD,	AMP-	activated	protein	kinase	(AMPK)	pathway,	
telomerase	RNA	localization,	platelet	activation,	and	complement	activation.	By	cor-
relation	analysis	with	MMSE	score,	three	positively	correlated	pathways	and	two	neg-
atively correlated pathways were identified to be closely related to cognitive decline 
in	MCI	and	AD	patients.	Partial	least	squares	discriminant	analysis	(PLS-	DA)	showed	
that	changes	of	nine	proteins,	including	PHB,	UQCRH,	CD63,	GP1BA,	FINC,	RAP1A,	
ITPR1/2,	and	ADAM10	could	effectively	distinguish	the	cognitively	impaired	patients	
from	the	controls.	Further	machine	learning	analysis	revealed	that	a	combination	of	
four	decreased	platelet	proteins,	that	is,	PHB,	UQCRH,	GP1BA,	and	FINC,	was	most	
promising	for	predicting	cognitive	decline	in	MCI	and	AD	patients.	Taken	together,	our	
data provide a set of platelet biomarkers for predicting cognitive decline which may be 
applied	for	the	early	screening	of	AD.
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1  |  INTRODUC TION

Alzheimer's	disease	 (AD)	 is	the	most	common	cause	of	neurode-
generative	disorders,	and	its	prevalence	is	exacerbated	by	an	aging	
population	(Collaborators,	2019).	It	is	estimated	that	about	47	mil-
lion	people	are	currently	affected	by	dementia,	and	the	number	is	
expected	to	reach	131	million	by	2050,	with	appropriate	interven-
tions	and	treatment	leading	to	a	reduction	in	prevalence	(Hodson,	
2018).	The	main	clinical	manifestations	of	AD	patients	are	memory	
impairment	and	cognitive	deficits,	which	make	them	unable	to	ef-
fectively	carry	out	daily	life	(Querfurth	&	LaFerla,	2010).	However,	
the	underlying	pathology,	including	amyloid	plaque	deposition	and	
neurofibrillary	 tangles,	may	have	occurred	before	 symptoms	ap-
pear	(Hodson,	2018;	Jack	et	al.,	2010).	Therefore,	timely	diagnosis,	
intervention,	and	treatment	are	particularly	important.	However,	
the	diagnosis	of	AD	has	not	been	standardized,	and	the	main	di-
agnostic	methods	include	MRI	and	PET	brain	imaging,	biochemical	
analysis	of	Aβ42/40,	and	total	tau	(t-	tau)	and	phosphorylated	tau	
(p-	tau181)	levels	in	the	cerebrospinal	fluid	(CSF)	(Bocchetta	et	al.,	
2015;	Rice	&	Bisdas,	2017;	Ritchie	et	al.,	2017).	Although	these	di-
agnostic	methods	have	made	significant	progress,	they	are	hardly	
acceptable to the potential patients because these methods are ei-
ther	expensive	or	invasive.	In	addition,	researchers	have	paid	more	
attention	to	the	periphery,	such	as	microRNA455-	3p	in	blood	has	
the potential to serve as a peripheral marker for early diagnosis of 
AD	(Kumar	&	Reddy,	2018,	2019;	Kumar,	Vijayan,	&	Reddy,	2017).	
Therefore,	finding	blood	biomarkers	is	of	great	significance	for	the	
early	diagnosis	of	AD.

Platelet,	a	non-	nuclear	fragment	from	megakaryocytes	(Cardigan	
et	 al.,	2005;	Kamath	et	 al.,	2001),	 shares	multiple	 similarities	with	
neuron	biology,	and	it	is	easily	affected	by	diseases	(Akingbade	et	al.,	
2018).	Once	activated,	platelets	will	release	a	variety	of	biochemically	
active	factors	including	cytokines,	chemokines,	and	neurotransmit-
ters	(Qureshi	et	al.,	2009).	In	addition	to	participating	in	hemostasis,	
they also play an important role in the regulation of immunity and 
inflammation	 (Gawaz	et	al.,	2005).	 It	has	been	clearly	documented	
that	the	specific	brain	pathology	of	AD	is	also	reflected	in	platelets,	
including	 an	 increased	membrane	 fluidity,	 abnormal	 cytoskeleton,	
cytochrome	oxidase	deficiency,	abnormal	cytoplasmic	calcium	flux,	
abnormal	glutamate	transporter	activity,	a	decreased	phospholipase	
A2	activity,	an	increased	cytoplasmic	protein	kinase	C	level,	and	an	
increased	oxidative	stress	level	(Kawamoto	et	al.,	2005;	Vignini	et	al.,	
2007).	The	brain	and	platelets	contain	high	concentrations	of	APP,	
and	during	AD,	the	non-	amyloidogenic	pathway	enzyme	disintegrin	
and	metalloproteinase	domain-	containing	protein	10	(ADAM10)	are	
down-	regulated	and	the	amyloidogenic	pathway	enzyme	BACE1	is	
up-	regulated	(Colciaghi	et	al.,	2002).	The	activity	of	GSK-	3β,	which	
promotes	tau	hyperphosphorylation	and	tangle	formation	in	the	AD	
brains,	 is	significantly	 increased	 in	the	platelet	of	AD	and	MCI	pa-
tients	(Veitinger	et	al.,	2014).	Mao-	B,	a	mitochondrial	protein	closely	
related	to	mitochondrial	damage	and	neuronal	apoptosis,	 is	signifi-
cantly	increased	in	the	platelet	of	AD	patients	(Forlenza	et	al.,	2011).	
In	addition,	the	platelet	activation	state	is	positively	correlated	with	

the	rate	of	cognitive	decline	measured	by	the	mini-	mental	state	ex-
amination	(MMSE)	(Stellos	et	al.,	2010).	In	short,	platelets	can	reflect	
the	AD-	related	pathological	events	and	thus	may	serve	as	a	perfect	
peripheral	matrix	for	searching	biomarkers	to	objectively	predict	AD	
in early stage.

Proteome has special value in studying disease- related mech-
anisms	 and	 diagnostic	 markers,	 which	 reveals	 disease	 phenotype	
(Lygirou	 et	 al.,	 2018).	 Compared	 with	 traditional	 proteomic	 tech-
niques,	 TMT-	LC-	MS/MS	 can	 capture	 and	 quantify	 proteins	 in	 a	
comprehensive	and	efficient	manner	with	a	smaller	sample	require-
ment	without	offset.	Recently,	proteomic	technology	based	on	mass	
spectrometry	has	shown	its	strong	power	in	the	neurological	field,	
such	as	overall	analysis	of	protein	expression	level,	 inter-	molecular	
correlation,	and	biomarker	screening	(Bader	et	al.,	2020;	Xiong	et	al.,	
2019).

By	 using	 TMT-	LC-	MS/MS,	we	 did	 a	 comprehensive	 proteomic	
analysis	in	the	platelets	of	MCI	and	AD	patients	and	as	well	as	the	
age/sex-	matched	control	population.	We	found	that	multiple	path-
ways,	 including	 AD,	 AMPK	 signaling,	 platelet	 activation,	 telomer-
ase	RNA	localization,	and	complement	activation,	were	remarkably	
changed	in	MCI	and	AD	patients.	Further	PLS-	DA	analysis	plus	ma-
chine learning revealed that a combination of decreased proteins 
PHB,	UQCRH,	GP1BA,	and	FINC	in	platelets	could	be	promising	in	
objectively	predict	the	cognitive	decline	in	MCI	and	AD	patients.

2  |  RESULTS

2.1  |  Common differential proteins and pathways 
in MCI and AD platelets by whole- proteome analysis

According	to	the	MMSE	score,	platelet	samples	of	10	cases	of	mild	
cognitive	 impairment	 (MCI;	 MMSE	 score	 18–	23),	 9	 cases	 of	 se-
vere	cognitive	impairment	(AD;	MMSE	score	2–	17),	and	9	age/sex-	
matched	healthy	controls	(Ctrl;	MMSE	score	29–	30)	were	collected	
for	proteomic	analysis	(Figure	1a).	The	major	goals	of	platelet	prot-
eomics data collection and their bioinformatic analysis were set as 
follows:	(a)	to	analyze	the	changes	of	platelet	protein	profile	during	
the	progression	of	cognitive	decline	(from	normal	cognition	to	MCI	
to	AD);	(b)	to	clarify	the	biological	mechanisms	of	platelet	during	the	
progression	of	 cognitive	decline;	 (c)	 to	 find	MMSE-	correlated	pro-
teins;	and	finally	(d)	to	identify	peripheral	diagnostic	biomarkers	for	
cognitive impairment.

A	total	of	2994	platelet	proteins	were	captured	by	TMT-	LC-	MS/
MS	proteomics,	of	which	360	significantly	different	proteins	were	
identified	 in	MCI	 and	 AD	 patients	 compared	 with	 the	 Ctrl	 group	
(p	 <	 0.05)	 (Figure	 1b),	 relative	 abundance	 values	 were	 shown	 in	
Excel	 S1.	 Specifically,	 207	 differentially	 expressed	 (DE)	 proteins	
were	 down-	regulated	 and	 9	 were	 up-	regulated	 in	 MCI	 vs	 Ctrl	
(Figure	1c),	while	121	DE	proteins	were	down-	regulated	and	44	were	
up-	regulated	 in	 AD	 vs	 Ctrl	 (Figure	 1d).	Moreover,	 51	DE	 proteins	
were	overlapped	in	both	MCI	vs	Ctrl	and	AD	vs	Ctrl	(Figure	1e),	and	
all	were	reduced	in	MCI	and	AD	(Figure	1f;	Excel	S2).
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To	explore	the	dynamic	changes	of	platelet	proteome	during	the	
progression	of	cognitive	decline,	we	performed	cluster	and	protein–	
protein	interaction	(PPI)	network	analyses	in	MCI,	AD,	and	the	cog-
nitively	normal	control	populations.	Proteins	in	cluster	1	(n	=	160),	
including	 CD63,	 PHB,	 UQCRH,	 ANXA5,	 and	 EGF,	 showed	 a	 de-
creasing	 tendency	 from	Ctrl	 to	MCI	 to	AD	 (Figure	 2a	 left).	 These	
proteins	were	 enriched	 in	 7	 KEGG	 pathways,	 including	 fatty	 acid	
metabolism,	cGMP-	PKG	signaling	pathway,	AD,	pathways	in	cancer,	
mineral	absorption,	AMPK	signaling	pathway,	and	platelet	activation	
(Figure	2b).	Pathways	in	cluster	2	(n	=	135)	displayed	significant	de-
crease	 in	MCI	and	 increase	 in	AD	compared	with	 the	normal	con-
trols	 (Figure	2a	middle),	which	were	involved	in	Epstein–	Barr	virus	
infections,	vasopressin-	regulated	water	reabsorption,	and	antifolate	
resistance	 (Figure	2b).	Proteins	 in	cluster	3	 (n	=	65)	showed	an	 in-
creasing	tendency	from	Ctrl	to	MCI	to	AD	(Figure	2a	right),	includ-
ing	PPP3CB,	STMN1,	PTPN7,	MAP4	K2,	and	STK3,	all	of	them	were	
strongly	pointed	to	the	MAPK	signaling	pathway	(Figure	2b).	By	PPI	
network	 analysis	 using	MCODE	 (molecular	 complex	 detection)	 on	
the	differentially	expressed	proteins,	we	further	defined	eight	pro-
tein interaction modules which supported the identified pathways 
in	the	above-	mentioned	clusters	(Figure	2c).	By	biological	processes	

analyses	of	 the	differential	proteins,	more	comprehensive	and	de-
tailed	 biological	 mechanisms	 were	 shown,	 including	 regulation	 of	
insulin	 secretion,	 platelet	 activation	 (cluster	 1);	 protein	 transport,	
cell–	cell	adhesion,	ER	to	Golgi	vesicle-	mediated	transport	(cluster	2);	
and	complement	activation,	protein	folding	(cluster	3)	(Figure	2d).

These whole- proteome data reveal the total differential proteins 
and the involved pathways during the progression of cognitive de-
cline	in	MCI	and	AD.

2.2  |  Differential platelet proteins or pathways 
correlated to MMSE score analyzed by Pearson

Mini-	mental	state	examination	(MMSE)	score	has	been	wildly	used	
as	 a	 subjective	measure	of	 cognitive	performance.	 To	 explore	 the	
periphery molecular markers that can objectively predict cognitive 
impairment,	we	performed	 correlation	 analysis	 of	MMSE	 score	 to	
the	 entire	 omics	 data	 received	 from	 normal	 Ctrl,	MCI,	 and	AD.	A	
total of 173 proteins were identified to be strongly correlated to 
MMSE	 score	 (p	 <	 0.05),	 including	 44	 negatively	 correlated	 (NC)	
proteins	 and	129	positively	 correlated	 (PC)	 proteins	 (Figure	 3a-	b),	

F I G U R E  1 Schematics	for	study	design	and	the	general	proteome	information.	(a)	Schematic	diagram	of	platelet	TMT-	LC-	MS/MS	
proteomic	operation	process.	(b)	360	differential	proteins	were	identified	in	the	platelet	of	MCI	and	AD	patients	compared	with	the	Ctrl	
group,	(p	<	0.05,	increased	proteins:	red;	decreased	proteins:	blue).	(c,	d)	The	increased	(red)	or	decreased	(blue)	level	of	proteins	in	MCI	vs.	
Ctrl	or	AD	vs.	Ctrl	(p	<	0.05).	(e,	f)	51	overlapped	protein	changes	in	both	comparison	groups	and	their	relative	expression	abundance	(MCI	
vs.	Ctrl	and	AD	vs.	Ctrl)
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relative	abundance	values	were	shown	in	Excel	S3.	Interestingly,	the	
NC proteins were selectively enriched in the complement activation 
pathway	(Figure	3c),	while	the	PC	proteins	were	enriched	in	multiple	
pathways,	 including	pathways	in	cancer,	AD,	AMPK	signaling,	tight	
junction,	and	platelet	activation	(Figure	3c).

By further integrating the whole- proteome differential proteins 
and	MMSE-	correlated	proteins,	we	 identified	five	KEGG	pathways	
closely	related	to	the	AD-	related	pathological	mechanisms,	 includ-
ing	three	PC	pathways	and	two	NC	pathways	(Figure	4a-	e).	19	pro-
teins,	involved	in	the	pathways	of	AD,	platelet	activation,	telomerase	
RNA	localization,	and	AMPK	signaling,	were	not	only	differentially	
expressed	 proteins	 but	 also	 correlated	 to	 MMSE	 (Figure	 4a-	d;	 f-	
i).	 Specifically,	 the	 Aβ-	related	 protein	 ADAM10,	 mitochondrial	
dysfunction	 related	 proteins	 ADP/ATP	 translocase	 2	 (SLC25A5),	
UQCRH,	PHB,	mitochondrial-	processing	peptidase	(MPPB),	Ca2+ im-
balance	related	proteins	ITPR1/2,	and	endoplasmic	reticulum	(ER)-	
related	 protein	 reticulon-	4	 (RTN4),	 in	 AD	 pathways	 (Figure	 4a,f);	
the	expression	 levels	of	CD63,	FINC,	 ITA2B,	EGF,	GP1BA,	GNAI3,	
RAP1A	 (Figure	 4b,g),	 mostly	 platelet	 activation-	related	molecules	
[25];	 and	 the	 level	 of	 CPT1A	 (carnitine	 O-	palmitoyltransferase	 1)	
and	DCMC	(Malonyl-	CoA	decarboxylase),	and	as	well	as	AMPK	sig-
nals	 pathway	 (Figure	 4c,h)	 involved	 in	 fat	metabolism	 and	 energy	
controls	 (Derdak	et	 al.,	 2013;	Xie	et	 al.,	 2019);	were	decreased	or	
decreasing	in	MCI	and	AD	patients	compared	with	Ctrls	(Figure	4a-	c)	

and	a	positive	correlation	MMSE	score	was	shown	(Figure	4f-	h).	On	
the	other	hand,	 strong	and	unique	enrichment	of	 complement	ac-
tivation	pathway	(Figure	3c)	with	a	consistent	negative	correlation	
to	MMSE	 score	was	detected	 in	MCI	 and	AD	patients	 (Figure	4e)	
but the protein levels involved in this pathway was not significantly 
altered	(Figure	4j).	Interestingly,	the	platelet	activation,	an	upstream	
regulatory	 pathway	 of	 complement	 activation,	was	 also	 positively	
correlated	to	the	MMSE	score	 (Figure	4b),	suggesting	a	peripheral	
and central connection of the complement pathway that was also 
observed	in	the	AD	brains	(Bai	et	al.,	2020).

By	further	ranking	the	correlation	coefficients	of	the	above	26	
platelet	candidate	proteins	to	the	MMSE	score,	a	complex	associa-
tion	was	identified	(Figure	5a;	Excel	S4),	and	the	increase	or	decrease	
of	these	candidates	was	nicely	uniformed	in	each	group	(Figure	5b).	
All	 26	 candidate	 proteins	 showed	 a	 moderate	 MMSE	 correlation	
(|	r |	=0.371–	0.552;	Figure	5a;	Excel	S4).	Among	them,	the	reduction	
of	CD63	 in	platelet	 showed	 the	 strongest	 correlation	with	MMSE	
score	 (r =	0.552,	p =	0.002;	Figure	5a;	Excel	S4).	 Interestingly,	we	
also found a close correlation between some of the proteins in the 
dataset,	 such	 as	 mitochondrial	 dysfunction	 related	 proteins	 PHB,	
SLC25A5,	MPPB	(|	r |	=0.60–	0.69);	complement	activation	pathway	
proteins	 C1S,	 SERPINA1,	 SERPINF2	 (|	 r |	 =0.63–	0.75)	 (Figure	 5a;	
Excel	 S4).	 In	 addition,	 Aβ-	related	 protein	 ADAM10	 was	 found	 to	
be strongly correlated with complement activation- related protein 

F I G U R E  2 Differential	proteins	and	biological	pathways	identified	in	MCI	and	AD	patients	compared	with	normal	cognition	controls.	(a)	
The	protein	changes	were	divided	into	three	clusters	according	to	trends	from	Ctrl	to	MCI	to	AD	(each	line	represents	a	protein).	(b)	Pathway	
enrichment	analysis	of	three	cluster	proteins	with	Metascape	online	analysis	(the	significantly	enriched	pathway	has	been	defined	as	overlap	
proteins	≥3,	p <	0.01).	(c)	Detected	PPI	modules	in	clusters.	(d)	Differential	protein	enrichment	analysis	of	biological	function.	Differential	
protein	enrichment	analysis	of	biological	function.	The	red	modules,	green	modules,	and	green	module	represent	top	3	biological	process	
with	–	log	10	(p-	value)	in	cluster	1,	2,	and	3,	respectively
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SERPINA1	and	platelet	activation-	related	protein	integrin	alpha-	IIb	
(ITA2B)	 (|	r |	=0.70–	0.85)	 (Figure	5a;	Excel	S4),	suggesting	that	the	
three may play a coordinated or antagonistic role in the pathogen-
esis	 of	AD.	 These	data	 together	 demonstrated	 that	 these	 platelet	
dysregulated	proteins	 imply	a	complex	 regulatory	network	 related	
to cognitive impairment.

2.3  |  Selecting the best combination of platelet 
biomarkers to predict cognitive decline by 
machine learning

Further	 machine	 learning	 was	 applied	 to	 select	 the	 best	 combi-
nation of the biomarkers. Considering the effectiveness of the 
biomarkers,	 seven	 proteins	 involved	 in	 the	 complement	 pathway	
were	 excluded,	 and	 19	 candidate	 proteins	were	 selected	 from	26	
(Figure	5)	for	subsequent	sample	discrimination.	Partial	least	squares	
discrimination	analysis	 (PLS-	DA)	to	the	selected	19	candidate	pro-
teins	could	nicely	distinguish	MCI	and	AD	from	the	Ctrls,	though	it	
could	not	distinguish	MCI	from	AD	(Figure	6A).	Nine	of	them,	includ-
ing	PHB,	RAP1A,	ITPR1,	UQCRH,	CD63,	ADAM10,	GP1BA,	ITPR2,	
and	FINC,	were	 identified	 as	 the	 core	 contributors	 to	distinguish-
ing	normal	cognition	from	the	cognitively	impaired	individuals,	and	
PHB showed the highest differentiation with the predictive variable 
importance	in	projection	larger	than	1	(VIPpred	>1)	among	the	nine	
core	candidates	(Figure	6B).

To receive the best combination of the platelet biomarkers for 
predicting	cognitive	decline,	we	further	analyzed	9	core	candidate	
proteins	 using	 leave-	one-	out	 (LOO)	 method.	 This	 method	 leaves	
out one sample at a time as validation set and uses the rest sam-
ples	as	the	training	set,	so	that	all	samples	were	trained	n	times	and	

validated	n	times.	By	LOO	analysis,	various	specificity	and	accuracy	
were	 observed	 using	 different	 combinations	 of	 the	 9	 biomarkers,	
and	 the	 combination	of	 PHB,	UQCRH,	GP1BA,	 and	FINC	 showed	
the	highest	specificity	with	a	maximum	receiver	operating	charac-
teristic	 (ROC)	 (AUCROC=0.965)	 and	 the	 highest	 accuracy	 (89.3%)	
(Figure	6c-	e).	Using	 this	 panel	 of	 the	biomarkers,	 a	 generating	 re-
call	of	0.895,	precision	of	0.944,	F1	score	of	0.919,	and	the	largest	
precision-	recall	 curve	 (AUCPR	 =	 0.985)	 were	 received	 (Figure	 6d	
and	f).	Using	this	rigorous	algorithm,	PHB	was	identified	as	the	most	
valuable	single	platelet	biomarker	to	predict	cognitive	decline,	with	
AUCROC	of	0.842,	accuracy	of	78.6%,	recall	of	0.895,	precision	of	
0.810,	F1	score	of	0.850,	and	AUCPR	of	0.929	(Figure	6c-	f).

By	using	Western	blotting	 to	verify	 the	above-	mentioned	nine	
target	 proteins	 (PHB,	 RAP1A,	 ITPR1,	 UQCRH,	 CD63,	 ADAM10,	
GP1BA,	 ITPR2,	and	FINC),	we	observed	a	decreasing	 trend	of	 the	
levels	of	PHB,	CD63,	GP1BA,	and	FINC	in	MCI	or/and	AD,	which	was	
consistent	with	 the	proteomic	 results,	 but	 no	 significant	 decrease	
for	the	other	five	molecules	 (Figure	S1).	The	discrepancy	might	be	
caused by the method or/and the limited sample size.

Together,	the	machine	leaning	further	selects	out	the	combina-
tion	 of	 PHB,	UQCRH,	GP1BA,	 and	 FINC	 as	 the	 best	 platelet	 bio-
markers	for	evaluating	the	cognitive	decline	in	MCI	and	AD	patients.

3  |  DISCUSSION

AD	 is	 most	 common	 neurodegenerative	 disorder	 affecting	 an	 in-
creasing	number	of	the	populations	with	old	age.	As	there	is	no	ef-
ficient	cure	for	this	devastating	disease,	finding	objective	periphery	
biomarkers	is	extremely	important	for	early	diagnosis	and	drug	de-
velopment	of	AD.

F I G U R E  3 Proteins	correlated	to	MMSE	score	in	platelet	proteomics.	(a)	Negative	correlated	(NC,	blue)	and	positively	correlated	(PC,	red)	
proteins	to	MMSE	scores	analyzed	by	Pearson	(p	<	0.05)	and	ranked	according	to	their	coefficients.	(b)	Heatmap	of	the	relative	abundance	of	
all	MMSE-	correlated	proteins	in	each	sample	(increased	proteins:	red;	decreased	proteins:	blue).	(c)	Enriched	KEGG	pathway	of	all	MMSE-	
correlated	proteins	(the	significance	of	the	enriched	pathway	was	defined	as	overlap	proteins	≥3,	p	<	0.01)
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F I G U R E  4 Integration	and	quantitative	analysis	of	MMSE-	related	pathways	and	DE	proteins.	(a-	c)	KEGG	pathway	enriched	by	proteins	
positively	correlated	with	MMSE	score,	including	Alzheimer's	disease	(a),	platelet	activation	(b),	and	AMPK	signaling	pathway	(c).	(d,	e)	KEGG	
pathway	enriched	by	proteins	negatively	correlated	with	MMSE	score,	including	Telomerase	RNA	localization	(d)	and	complement	activation	
(e).	Pearson	correlation	coefficients	(r)	and	corresponding	p <	0.05	were	displayed	at	the	top	of	each	plots.	X-	axis	shows	MMSE	score,	y-	axis	
indicates	relative	expression	abundance	of	each	protein.	(f-	j)	Dot	plots	represent	the	relative	expression	level	of	each	protein	in	different	
samples.	Data	were	presented	as	mean	±	SEM.	*p	<	0.05,	**p < 0.01 and ***p < 0.001 vs. the Ctrl subjects
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Recently,	 proteomics	 has	 been	 widely	 applied	 for	 biomarker	
studies.	With	breakthroughs	of	the	technology,	we	can	comprehen-
sively	and	in-	depth	explore	the	expression	changes	of	the	peripheral	
platelet protein profile for the screening of the periphery biomarkers. 
Previous	studies	using	platelet	samples	from	AD	patients	were	mostly	
limited	 to	 two-	dimensional	 gel	 electrophoresis	 methods,	 and	 only	
a	 few	 to	dozens	of	differential	proteins	were	 identified	 (Gonzalez-	
Sanchez	et	al.,	2018;	Reumiller	et	al.,	2018),	and	the	highest	number	
of	proteins	was	identified	by	using	LC-	MS/MS	(Donovan	et	al.,	2013).	
Based	on	 the	high-	resolution	LC-	MS/MS	combined	with	 the	 latest	
TMT	tag	technology,	our	present	study	had	identified	4165	proteins,	
of	which	2994	were	effectively	captured	in	each	experimental	group,	
providing the most in- depth platelet proteome changes so far for the 
cognitive	decline	 in	MCI	and	AD	subjects.	The	high	proteome	cov-
erage	 provides	 a	 strong	 guarantee	 for	 the	 subsequent	 analysis	 of	
platelet- related biological mechanisms in cognitive impairment pro-
cess	and	the	construction	of	machine	learning	models.	With	such	rich	
proteomic	information,	three	positively	correlated	modules	and	two	
negatively	correlated	modules	with	MMSE	scores	were	revealed.	The	
complex	regulatory	network	in	platelets,	including	AD,	platelet	acti-
vation,	AMPK	 signaling,	 telomerase	RNA	 localization,	 complement	
activation,	may	be	closely	related	to	the	pathological	mechanisms	of	
AD.	The	 resulting	 candidate	proteins	 could	efficiently	discriminate	
MCI	and	AD	from	the	cognitively	normal	control	population,	though	
it	currently	could	not	distinguish	MCI	from	AD.

Integrating	the	existing	brain/CSF	proteomics	 (Bai	et	al.,	2020;	
Wang	et	al.,	2020),	we	found	some	interesting	changes	in	the	central	

and	peripheral	systems.	Consistent	with	human	brain	and	CSF	pro-
teomics,	 the	 levels	 of	mitochondrial	 proteins	were	 decreased	 and	
complement-	associated	proteins	were	increased	in	patients	with	AD	
(Bai	et	al.,	2020;	Wang	et	al.,	2020).	 In	addition,	 lipid	metabolism-	
related proteins were increased in the brain and decreased in plate-
lets	 of	 AD	 (Bai	 et	 al.,	 2020).	 Importantly,	 we	 found	 that	 platelet	
activation,	telomerase	RNA	localization	pathway	dysregulation	was	
specific	 in	 platelets.	 Platelet	 and	 complement	 activation,	 calcium	
imbalance pathways were reported in another platelet proteomics 
(Donovan	et	al.,	2013).

In	 addition	 to	 Aβ deposition and abnormal tau- related neuro-
fibrillary	tangle	formation,	AD	also	includes	a	variety	of	pathological	
changes	 involving	 calcium	 imbalance,	 autophagy	 defects,	mitochon-
drial	 abnormalities,	 and	 synaptic	 damage	 (Grontvedt	 et	 al.,	 2018).	
In	 the	 current	 study,	we	 detected	multiple	 enriched	 proteins	 in	 the	
AD	 pathways,	 including	 mitochondrial	 dysregulated	 proteins	 (PHB,	
SLC25A5,	UQCRH,	MPPB),	Ca2+	flow	imbalance	(ITPR1,	ITPR2),	non-	
amyloid	protein	production	related	proteins	ADAM10,	endoplasmic	re-
ticulum	protein	RTN4.	PHB	(inhibin)	plays	a	key	role	in	the	regulation	of	
mitochondrial protein homeostasis through the proteolytic machinery 
m-	AAA	protease	in	the	inner	mitochondrial	membrane	(Steglich	et	al.,	
1999).	PHB	also	serves	as	a	mitochondrial	respiratory	chain	chaperone	
protein and the decrease of PHB induces mitochondrial dysfunction 
and	 ROS	 overproduction	 (Kathiria	 et	 al.,	 2012).	MPPB	 is	 related	 to	
mitochondrial	biogenesis	 (Nagayama	et	al.,	2008),	and	UQCRH,	as	a	
subunit	of	mitochondrial	respiratory	chain	complex	III	(Liu	et	al.,	2016),	
cooperates	with	SLC25A5	(ADP/ATP	transport	enzyme	2)	to	regulate	

F I G U R E  5 Correlation	ranking	of	candidate	protein	levels	to	MMSE	score.	(a)	Negatively	correlated	(blue)	and	positively	correlated	(red)	
candidate	biomarkers	(p	<	0.05)	were	ranked	according	to	their	Pearson	correlation	coefficients.	The	ratio	of	the	color	shade	and	the	circle	
represent	the	degree	of	correlation.	(b,	c)	The	relative	abundance	of	the	negatively	correlated	(b)	and	positively	correlated	(c)	proteins	(brick	
red	represents	increased	proteins	and	dark	blue	represents	the	decreased	proteins)
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ATP	synthesis	and	transport	(Clemencon	et	al.,	2013).	Classical	neuro-
pathological	hallmarks	of	disease	(Aβ	and	tau)	may	trigger	mitochondrial	
disturbance,	 while	 mitochondrial	 dysfunction	 may	 incite	 pathology	
and	cognitive	deficits	(Kerr	et	al.,	2017;	Perez	Ortiz	&	Swerdlow,	2019).	
Inositol	 1,	 4,	 5-	trisphosphate	 (IP3R)	 is	 the	 most	 widely	 expressed	

calcium	ion	release	channel,	which	regulates	the	entry	of	calcium	ions	
from	the	endoplasmic	reticulum	into	the	cytoplasm	(Thillaiappan	et	al.,	
2019).	Imbalance	of	calcium	ion	homeostasis	can	affect	the	release	of	
synaptic	 signal	 transmitters,	 mitochondrial	 dysfunction,	 increase	 of	
ROS	production,	 and	ultimately	 lead	 to	 cell	 death,	which	 can	affect	

F I G U R E  6 The	best	combination	of	platelet	biomarkers	for	cognitive	decline	identified	by	machine	learning.	(a)	Discrimination	power	
of	the	selected	19	candidate	platelet	proteins	from	Ctrl	to	MCI	to	AD	analyzed	by	PLS-	DA	analysis.	(b)	9	candidate	proteins	(VIP>1)	were	
selected	by	predictive	variable	importance	in	projection	(VIPpred)	analysis	(Red	bar	graph:	VIP	>1;	Green	bar	graph:	VIP	<1).	(c)	The	best	
performing	panel	based	on	the	area	under	the	receiver	operating	characteristic	(ROC)	curve	using	leave-	one-	out	(LOO)	algorithm	was	
selected	in	the	training	set.	Y-	axis-	left;	the	area	under	the	ROC	curve,	Y-	axis-	right:	accuracy,	x-	axis;	proteins	selected	by	the	LOO	algorithm.	
The	red	box	shows	the	selected	protein	with	high	area	under	the	curve	(AUC)	and	accuracy	for	the	blinded	test	set.	(d)	The	red	numbers	
represent	the	corresponding	protein.	Under	each	best	combination,	the	corresponding	protein	and	various	parameters	for	evaluating	the	
efficiency	of	the	biomarkers.	(e	and	f)	Based	on	the	LOO	algorithm,	the	under	the	receiver	operating	characteristic	curve	(AUCROC)	and	
precision-	recall	curve	(AUCPR)	for	each	best	combination	biomarkers.	AUCROC	was	based	on	true	positive	rate	and	false	positive	rate:	True	
positive	rate	=	[true	positive	/	(true	positive	+false	negative)];	False	positive	rate	=	[false	positive	/	(true	negative	+false	negative)].	PRAUC	
was	obtained	based	on	precision	and	recall:	Precision	=	[true	positive	/	(true	positive	+false	positive)];	Recall	=	[true	positive	/	(true	positive	
+false	negative)].	In	addition,	F1	score	=	2	*	(precision	*	recall)	/	(precision	+recall)
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amyotrophic	lateral	sclerosis	(ALS),	Huntington's	disease	(HD),	AD,	and	
other	neurodegenerative	diseases	(Takada	et	al.,	2017).

Reticulon	 family	 members	 can	 reduce	 Aβ generation through 
negative regulation of β-	secretase	 (BACE1)	 (He	 et	 al.,	 2004;	
Murayama	et	al.,	2006).	Several	studies	have	shown	that	the	level	of	
platelet	BACE1	increases	from	the	early	stage	to	the	late	stage	of	AD	
(Colciaghi	et	al.,	2004;	Marksteiner	&	Humpel,	2013).	Interestingly,	
the	activity	of	BACE1	in	platelets	only	increases	in	AD,	but	does	not	
change	in	MCI	(Bermejo-	Bescos	et	al.,	2013).	Moreover,	our	omics	
data	showed	that	ADAM10	(α-	secretase)	was	significantly	decreased	
in	MCI,	which	was	consistent	with	a	previous	study	(Colciaghi	et	al.,	
2002).	In	a	cohort	study	of	the	elderly	in	Brazil,	it	was	found	that	the	
level	of	ADAM10	was	continually	decreased	with	the	degree	of	cog-
nitive	impairment,	which	has	the	potential	as	a	diagnostic	biomarker	
for	AD	(Manzine	et	al.,	2013).	Therefore,	considering	the	patholog-
ical	 connection	with	Aβ deposition and the significant correlation 
with	the	clinical	symptoms	of	dementia,	ADAM10	and	BACE1	could	
serve	as	peripheral	platelet	biomarkers	for	early	diagnosis	of	AD.

It	 is	well	 known	 that	patients	with	AD	have	 significant	energy	
imbalance	 (Yin	 et	 al.,	 2016),	 and	AMPK	 signaling	 pathways	 play	 a	
central	 role	 in	energy	balance	 (Carling,	2017).	We	found	here	that	
DCMC	and	CPT1A,	 involved	 in	 lipid	metabolism-	related	processes	
regulated	by	AMPK	(Derdak	et	al.,	2013;	Xie	et	al.,	2019),	were	sig-
nificantly	decreased	in	MCI	and	AD	platelets.	In	a	fatty	liver	study,	
pifithrin- α	 p-	nitro	 (PFT)	 can	 promote	 the	 expression	 of	 DCMC	
by	 regulating	 the	 SIRT1/LKB1/AMPK	 pathway,	 and	 the	 activity	
of	 CPT1A	 could	 be	 stimulated	 by	 reducing	 malonyl-	CoA	 (mCoA)	
(Derdak	et	al.,	2013).	Studies	showed	that	abnormal	lipid	metabolism	
was	closely	related	to	AD	pathology	 (Liu	et	al.,	2013;	Wong	et	al.,	
2017).	Cholesterol	is	an	important	part	of	axonal	growth,	formation,	
and	remodeling	(Liu	et	al.,	2013).	Therefore,	the	decreased	expres-
sion	of	DCMC	and	CPT1A	in	peripheral	platelets	may	be	related	to	
the	abnormal	lipid	metabolism	in	MCI	and	AD	patients.	The	produc-
tion	of	bioactive	products	of	lipid	peroxidation	leads	to	continuous	
platelet	activation,	which	may	contribute	to	amyloid	deposition	and	
complications	of	atherosclerotic	thrombosis	(Ciabattoni	et	al.,	2007).

Consistent	with	the	previous	reports,	patients	with	AD	have	sig-
nificant	 dysregulation	 in	 the	platelet	 activation	pathway	 (Akingbade	
et	al.,	2018;	Veitinger	et	al.,	2014).	Epidemiological	data	show	that	the	
increased	 levels	 of	 platelet	 activation	 biomarkers,	 activation	 of	 gly-
coprotein	 IIb-	IIIa	 complex	and	P-	selectin,	 are	 significantly	 related	 to	
cognitive	decline	 in	AD	patients	 (Stellos	et	al.,	2010).	CD63,	a	mem-
ber	of	the	four-	transmembrane	family,	is	easily	located	in	the	plasma	
membrane	from	lysosome	during	platelet	activation	(Maduskuie	et	al.,	
1998),	and	cooperates	with	P-	selectin	to	promote	thrombosis	in	ath-
erosclerosis	 (Cha	 et	 al.,	 2003;	 Yamazaki	 et	 al.,	 2001).	 Interestingly,	
we	also	found	that	the	expression	of	several	proteins	(GP1BA,	FINC,	
RAP1A,	and	VWF)	involved	in	platelet	function	related	to	hemostasis	
and	thrombogenesis	were	decreased	in	MCI	and	AD	patients.	For	ex-
ample,	VWF/GP1BA	interactions	induce	platelet	activation/adhesion	
and regulate integrin signaling pathways for hemostasis and throm-
bosis	(Li	et	al.,	2010).	FINC	(Fibronectin)	affects	platelet	activation	by	
regulating	the	formation	of	PF4/heparin	complex	(Krauel	et	al.,	2019).	

RAP1A	and	RAP1B,	important	components	of	RAP	GTPase,	identify	
injured sites and as important switches for platelet adhesion and acti-
vation	to	ensure	vascular	integrity	(Stefanini	&	Bergmeier,	2019).	The	
collective reduction of the platelet activation- related proteins may af-
fect	hemostasis	and	maintain	normal	vascular	function,	which	is	con-
sistent	with	the	vascular	risk	factors	of	AD	patients,	such	as	diabetes,	
hypertension,	atherosclerosis	(Casserly	&	Topol,	2004;	Helzner	et	al.,	
2009;	Huo	et	al.,	2003).

Our proteome data showed that the proteins negatively cor-
related	with	MMSE	scores	had	strong	enrichment	in	the	complement	
activation	pathway,	suggesting	a	strong	complement	 inflammatory	
response	in	the	peripheral	system;	however,	only	slight	increase	of	
the	 complement	 activation	 pathway	 proteins	 (SERPINA1,	 C4BPA,	
C8A,	C8G,	SERPINF2,	C1S,	and	C4BPB)	were	detected	in	MCI	and	
AD	patients.	Recently,	the	complement	pathway	has	attracted	great	
attention,	which	is	involved	in	the	regulation	of	microglial	synaptic	
pruning	in	the	early	stage	of	AD	(Hong	et	al.,	2016),	and	C1q-	blocking	
antibody	 reverses	 synaptic	 damage	 in	 Tau-	301S	 mice	 (Dejanovic	
et	 al.,	 2018).	Brain	proteomics	 also	 revealed	 that	 the	 complement	
pathway	 (C1R,	C1S,	C3,	C4A,	 and	C4B)	was	activated	during	pro-
gression	of	MCI	into	AD	(Bai	et	al.,	2020).	Our	data	may	be	a	good	
addition to illustrate the synchronous activation of the complement 
pathway in the peripheral and central systems.

Based on the nine candidate proteins identified from whole- 
proteome	 and	MMSE	 correlation,	 we	 conducted	 further	 machine	
learning.	After	twenty-	eight	rounds	of	training	and	testing,	the	strict	
LOO	algorithm	revealed	that	combination	of	platelet	PHB,	UQCRH,	
GP1BA,	FINC	could	most	accurately	identify	the	cognitive	decline	in	
MCI	and	AD	patients.	Interestingly,	the	four	molecules	identified	by	
the machine learning algorithm represent two important pathologi-
cal	processes,	that	is,	the	mitochondrial	dysfunction	(PHB,	UQCRH)	
and	platelet	activation	(GP1BA,	FINC).

In	 summary,	 such	 in-	depth	 and	 comprehensive	 analysis	 of	 pe-
ripheral	 platelet	 protein	 expression	 profiles	 of	 MCI	 and	 AD	 pa-
tients	has	given	us	new	understanding	of	the	role	of	platelets	in	AD.	
Bioinformatics analysis revealed that the linkage effect between pe-
ripheral	and	AD	reflected	by	platelet	omics	involved	platelet	activation,	
complement	pathway	activation,	mitochondrial	 dysfunction,	 calcium	
ion	imbalance,	and	APP	metabolic	abnormality.	Machine	learning	iden-
tified distinctive cognitive impairment- platelet combination biomark-
ers	(PHB,	UQCRH,	GP1BA,	and	FINC).	Altogether,	the	exploration	of	
platelet proteomics is novel and a great supplement to understanding 
the	 peripheral	 changes	 of	 AD,	 and	 platelet	 combination	 biomarkers	
have	great	application	potential	in	precision	medicine	for	AD.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Participants’ information

According	to	mini-	mental	state	examination	(MMSE)	score	(Folstein	
et	 al.,	 1975)	 and	 National	 Institute	 on	 Aging	 and	 the	 Alzheimer's	
Association	 Guidelines	 (Albert	 et	 al.,	 2011),	 we	 recruited	 28	 Han	
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People and divided them into three groups: with mild cognitive 
impairment	 (10	 MCI,	 MMSE	 =	 18–	23),	 with	 severe	 cognitive	 im-
pairment	 (9	AD,	MMSE	=	2–	17)	 and	 the	age-	/sex-	matched	normal	
cognition	controls	(9	Ctrl,	MMSE	=	29–	30)	(Table	1).	Any	cases	with	
head	trauma,	brain	tumor,	epilepsy,	transient	ischemic	attack,	coma,	
drug	abuse,	alcohol	addiction,	depression,	schizophrenia,	and	other	
psychiatric	 disorders	 were	 excluded	 in	 all	 the	 samples.	 The	 influ-
ence	of	confounding	factors	such	as	apolipoprotein	E	(APOE),	Aβ1- 
42/1-	40,	diabetes,	hypertension,	hyperlipidemia,	and	coronary	heart	
disease	(CHD)	were	considered	comprehensively	(Table	1).

The	 study	 was	 approved	 by	 the	 Tongji	 Medical	 School	 Ethics	
Committee,	complies	with	the	Helsinki	Declaration	II,	and	includes	
written informed consent from all participants.

4.2  |  Sample preparation

The fresh blood stored in the anticoagulant tube was centrifuged at 
200 g for 20 min to remove the rich red blood cells and white blood 
cells	from	the	plasma,	and	2/3	of	the	platelet-	rich	supernatant	was	
taken	to	the	new	centrifuge	tube.	Next,	the	platelet-	rich	plasma	was	
centrifuged	at	120	g	for	6	min	to	remove	residual	white	blood	cells	
and	centrifuged	at	1,500	g	for	10	min	to	obtain	relatively	pure	plate-
let	precipitate.	Further,	the	platelet	precipitate	was	washed	with	ty-
rode's	solution	(143.0	mM	NaCl,	5.4	mM	KCl,	0.25	mM	NaH2PO4,	
1.8	mM	CaCl2,	 0.5	mM	MgCl2,	 5.0	mM	HEPES,	 pH	7.4;	 Solarbio,	
T1420,	Beijing,	China)	and	centrifuged	at	120	g	for	4	to	obtain	puri-
fied	platelet	samples	and	stored	at	−80°C.

Platelet	samples	were	added	with	lysis	buffer	(8	M	urea,	pH	8.0,	
1	cocktail,	1	mM	PMSF)	and	completely	lysed	by	ultrasound	(120	s,	
4	s	on	and	6	s	off).	After	 lysis	of	 the	 ice	 for	30	minutes,	 the	sam-
ples	were	centrifuged	at	12,000	g	for	10	minutes	to	obtain	protein	
solution.

4.3  |  Tandem mass tag (TMT) labeling

We	performed	a	proteomic	analysis	of	a	large	sample	size	(n	=	9–	
10),	and	each	sample	corresponds	to	a	TMT	label	 (ThermoFisher	
90406).	 Each	 sample	 was	 digested	 with	 mass	 spectrometric	
trypsin	 (Promega,	 V5072)	 into	 peptides	 and	 then	 labeled	 with	
TMT.	Each	labeled	peptides	was	mixed	into	a	group	of	10	differ-
ent	 labeled	samples,	which	were	divided	 into	15	components	by	
high-	performance	 liquid	 chromatography	 (HPLC)	 for	 subsequent	
experiments.

4.4  |  Data collection of TMT- labeled peptides using 
LC- MS/MS

The	 dried	 components	 were	 dissolved	 in	 0.1%	 formic	 acid	 (FA),	
and captured with a silica gel capillary column filled with C18 
resin	 (Varian,	 Lexington,	 MA,	 USA)	 for	 subsequent	 Q	 Exactive	
(Thermo	Scientific,	NJ,	USA)	mass	spectrometer	analysis.	Full	scan	
in	 Orbitrap	 mass	 analyzer	 in	 data-	dependent	 acquisition	 (DDA)	
mode,	the	specific	parameters	are	set	as	follows:	400–	1,	800	m/z,	
70000	resolution;	MS/MS	scans	(100−1,800	m/z).	Using	Proteome	
Discoverer	 2.1	 software	 (Thermo	 Scientific)	 to	 retrieve	 MS/MS	
data	according	to	Uniport-	human	database	(2020–	05).	The	search-
ing parameters were modified on the previous research settings 
(Xu	et	al.,	2019).

4.5  |  Bioinformatics analysis

After	we	normalized	and	 filled	 the	data	on	 the	Perseus	platform,	
we used the t test method to calculate the p- value of the protein 
abundance of log2- transformed between each comparison group 

Characteristic Ctrls (n = 9) MCI (n = 10) AD (n = 9) p- value

Age,	mean	(SD),	year 72.67	(2.60) 72.50	(2.46) 73.11	(5.21) 0.931

MMSE	(SD) 29.89	(0.33) 21.00	(1.56) 13.56	(4.69) <0.001

Sex	(male,	female) 4	M,	5F 4	M,	6F 4	M,	5F 0.974

Diabetes	mellitus,	n 0 0 0 >0.999

Hypertension,	n 4 7 5 0.528

Coronary heart disease 
(CHD),	n

2 1 1 0.709

Cerebral	apoplexy,	n 0 2 4 0.071

APOE	ε2	(+),	n	(%) 2	(22.2%) 1	(10.0%) 1	(11.1%) 0.685

APOE	ε3	(+),	n	(%) 9	(100%) 9	(90.0%) 8	(88.9%) 0.467

APOE	ε4	(+),	n	(%) 0	(0.0%) 2	(20.0%) 2	(22.2%) 0.364

Aβ1-	40	(SD) 335.6	(299.8) 307.1	(299.6) 502.2	(315.5) 0.347

Aβ1-	42	(SD) 67.88	(26.46) 59.87	(42.65) 61.16	(22.27) 0.849

Aβ1-	42/1-	40	(SD) 1.02	(2.07) 1.19	(2.11) 0.29	(0.39) 0.504

Abbreviations:	AD:	severe	cognitive	impairment;	APOE:	apolipoprotein	E;	Ctrl:	normal	cognition	
controls	group;	MCI:	mild	cognitive	impairment;	MMSE:	the	Minimum-	mental	State	Examination.

TA B L E  1 Information	for	patients	and	
the	age-	/sex-	matched	controls
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(ctrl	vs	MCI;	ctrl	vs	AD;	MCI	vs	AD)	(Bereczki	et	al.,	2018).	Proteins	
with p <	0.05	were	defined	as	differentially	expressed	in	the	com-
parison	group.	R	studio	 (v.	0.99.489)	and	heatmap	gplots	package	
were	used	for	cluster	analysis	and	heatmap	drawing.	Volcano	plot	
and heatmap were performed using GraphPad Prism 8.00. Pathway 
and biological function enrichment of statistical clusters was per-
formed	using	Metascape	(http://metas	cape.org),	WEB-	based	GEne	
SeT	AnaLysis	Toolkit	(http://www.webge	stalt.org)	and	DAVID	ver-
sion	6.7	(https://david	-	d.ncifc	rf.gov/).	Cytoscape	3.6.1	and	STRING	
(v10;	https://strin	g-	db.org/)	plug-	in	were	used	for	visual	analysis	of	
protein–	protein	interaction	(PPI)	network.	We	use	'Wu	Kong'	plat-
form	 (https://www.omics	oluti	on.com/wkomi	cs/main/)	 for	 relative	
Pearson analysis.

4.6  |  Machine learning

SIMCA	 (version	 14.0)	 software	was	 used	 for	 partial	 least	 squares	
discrimination	analysis	(PLS-	DA).	The	protein	of	predictive	variable	
importance	in	projection	larger	than	1	(VIPpred	>1)	was	considered	
to	be	meaningful	 for	sample	discrimination.	Further	 leave-	one-	out	
(LOO)	 cross	 validation	 was	 applied	 to	 select	 candidate	 biomark-
ers. The samples were trained and evaluated in a leave- one- out 
manner	using	 scikit-	learn	python	package.	 Logistic	 regression	was	
chosen	as	 the	classifier	with	 {\rm	solver='liblinear’}	 and	 {\rm	class	
weight='balanced’}.	 Specifically,	 twenty-	eight	 cross-	validations	 of	
the	proteome	samples	(Ctrl	=	9,	MCI	=	10,	AD	=	9)	were	performed,	
in which twenty- seven were randomly attributed into the training 
set,	and	one	was	in	the	validating	set	for	each	analysis.	By	twenty-	
eight	cycles,	all	the	samples	had	been	validated.	Based	on	the	LOO	
algorithm,	 the	 under	 the	 receiver	 operating	 characteristic	 curve	
(AUCROC)	and	precision-	recall	 curve	 (AUCPR)	 for	each	best	com-
bination	biomarkers.	AUCROC	was	based	on	true	positive	rate	and	
false	positive	rate:	True	positive	rate	=	[true	positive	/	(true	positive	
+false	negative)];	 False	positive	 rate	=	 [false	positive	 /	 (true	nega-
tive	+false	negative)].	PRAUC	was	obtained	based	on	precision	and	
recall:	 Precision	 =	 [true	 positive	 /	 (true	 positive	 +false	 positive)];	
Recall	=	[true	positive	/	(true	positive	+false	negative)].	In	addition,	
F1	score=2	*	(precision	*	recall)	/	(precision	+recall).

4.7  |  Western blot analysis

The	 primary	 antibodies,	 anti-	ITPR1	 (1:2000,	 Affinity,	 DF3000),	
anti-	ITPR2	 (1:2000,	 Affinity,	 DF13336),	 anti-	FINC	 (1:2000,	
Abcam,	 ab45688),	 anti-	GP1BA	 (1:2000,	 Abcam,	 ab134087),	
anti-	ADAM10	 (1:2000,	 Affinity,	 AF5294),	 anti-	CD63	 (1:2000,	
Abcam,	 ab134045),	 anti-	PHB	 (1:3000,	 Abcam,	 ab75766),	 anti-	
RAP1A	(1:2000,	Affinity,	DF6157),	anti-	UQCRH	(1:1000,	Abcam,	
ab154803)	 were	 added	 and	 incubated	 on	 ice	 overnight.	 After	
washing	 with	 TBST,	 the	 membranes	 were	 incubated	 with	 anti-	
rabbit	or	anti-	mouse	IgG	HRPs	(Thermo	Fisher	Scientific,	1:3000)	
for 50 min at room temperature. Then the membranes were 

treated	with	enhanced	chemiluminescence	(ECL)	reagents	from	an	
ECL	kit	(Pierce,	Thermo	Scientific)	for	exposure.

4.8  |  Statistical analysis

Statistical	analysis	was	performed	by	SPSS	24.0	software	(Statistical	
Program	for	Social	Sciences	 Inc.,	Chicago,	 IL,	USA).	We	used	one-	
way	 variance	 analysis	 (ANOVA)	 to	 evaluate	 the	 statistical	 differ-
ences	for	the	population	information	and	Western	blotting	results,	
and	 the	 student's	 t	 test	 to	 compare	 the	 proteomic	 results	 of	 two	
groups. p	<	0.05	was	considered	to	be	significant,	and	the	data	were	
expressed	as	mean	±	SEM.
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SUPPORTING INFORMATION
Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
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