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Abstract
Memory loss is the most common clinical sign in Alzheimer's disease (AD); thus, 
searching for peripheral biomarkers to predict cognitive decline is promising for early 
diagnosis of AD. As platelets share similarities to neuron biology, it may serve as a 
peripheral matrix for biomarkers of neurological disorders. Here, we conducted a 
comprehensive and in-depth platelet proteomic analysis using TMT-LC-MS/MS in the 
populations with mild cognitive impairment (MCI, MMSE = 18–23), severe cognitive 
impairments (AD, MMSE = 2–17), and the age-/sex-matched normal cognition controls 
(MMSE = 29–30). A total of 360 differential proteins were detected in MCI and AD 
patients compared with the controls. These differential proteins were involved in mul-
tiple KEGG pathways, including AD, AMP-activated protein kinase (AMPK) pathway, 
telomerase RNA localization, platelet activation, and complement activation. By cor-
relation analysis with MMSE score, three positively correlated pathways and two neg-
atively correlated pathways were identified to be closely related to cognitive decline 
in MCI and AD patients. Partial least squares discriminant analysis (PLS-DA) showed 
that changes of nine proteins, including PHB, UQCRH, CD63, GP1BA, FINC, RAP1A, 
ITPR1/2, and ADAM10 could effectively distinguish the cognitively impaired patients 
from the controls. Further machine learning analysis revealed that a combination of 
four decreased platelet proteins, that is, PHB, UQCRH, GP1BA, and FINC, was most 
promising for predicting cognitive decline in MCI and AD patients. Taken together, our 
data provide a set of platelet biomarkers for predicting cognitive decline which may be 
applied for the early screening of AD.
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1  |  INTRODUC TION

Alzheimer's disease (AD) is the most common cause of neurode-
generative disorders, and its prevalence is exacerbated by an aging 
population (Collaborators, 2019). It is estimated that about 47 mil-
lion people are currently affected by dementia, and the number is 
expected to reach 131 million by 2050, with appropriate interven-
tions and treatment leading to a reduction in prevalence (Hodson, 
2018). The main clinical manifestations of AD patients are memory 
impairment and cognitive deficits, which make them unable to ef-
fectively carry out daily life (Querfurth & LaFerla, 2010). However, 
the underlying pathology, including amyloid plaque deposition and 
neurofibrillary tangles, may have occurred before symptoms ap-
pear (Hodson, 2018; Jack et al., 2010). Therefore, timely diagnosis, 
intervention, and treatment are particularly important. However, 
the diagnosis of AD has not been standardized, and the main di-
agnostic methods include MRI and PET brain imaging, biochemical 
analysis of Aβ42/40, and total tau (t-tau) and phosphorylated tau 
(p-tau181) levels in the cerebrospinal fluid (CSF) (Bocchetta et al., 
2015; Rice & Bisdas, 2017; Ritchie et al., 2017). Although these di-
agnostic methods have made significant progress, they are hardly 
acceptable to the potential patients because these methods are ei-
ther expensive or invasive. In addition, researchers have paid more 
attention to the periphery, such as microRNA455-3p in blood has 
the potential to serve as a peripheral marker for early diagnosis of 
AD (Kumar & Reddy, 2018, 2019; Kumar, Vijayan, & Reddy, 2017). 
Therefore, finding blood biomarkers is of great significance for the 
early diagnosis of AD.

Platelet, a non-nuclear fragment from megakaryocytes (Cardigan 
et al., 2005; Kamath et al., 2001), shares multiple similarities with 
neuron biology, and it is easily affected by diseases (Akingbade et al., 
2018). Once activated, platelets will release a variety of biochemically 
active factors including cytokines, chemokines, and neurotransmit-
ters (Qureshi et al., 2009). In addition to participating in hemostasis, 
they also play an important role in the regulation of immunity and 
inflammation (Gawaz et al., 2005). It has been clearly documented 
that the specific brain pathology of AD is also reflected in platelets, 
including an increased membrane fluidity, abnormal cytoskeleton, 
cytochrome oxidase deficiency, abnormal cytoplasmic calcium flux, 
abnormal glutamate transporter activity, a decreased phospholipase 
A2 activity, an increased cytoplasmic protein kinase C level, and an 
increased oxidative stress level (Kawamoto et al., 2005; Vignini et al., 
2007). The brain and platelets contain high concentrations of APP, 
and during AD, the non-amyloidogenic pathway enzyme disintegrin 
and metalloproteinase domain-containing protein 10 (ADAM10) are 
down-regulated and the amyloidogenic pathway enzyme BACE1 is 
up-regulated (Colciaghi et al., 2002). The activity of GSK-3β, which 
promotes tau hyperphosphorylation and tangle formation in the AD 
brains, is significantly increased in the platelet of AD and MCI pa-
tients (Veitinger et al., 2014). Mao-B, a mitochondrial protein closely 
related to mitochondrial damage and neuronal apoptosis, is signifi-
cantly increased in the platelet of AD patients (Forlenza et al., 2011). 
In addition, the platelet activation state is positively correlated with 

the rate of cognitive decline measured by the mini-mental state ex-
amination (MMSE) (Stellos et al., 2010). In short, platelets can reflect 
the AD-related pathological events and thus may serve as a perfect 
peripheral matrix for searching biomarkers to objectively predict AD 
in early stage.

Proteome has special value in studying disease-related mech-
anisms and diagnostic markers, which reveals disease phenotype 
(Lygirou et al., 2018). Compared with traditional proteomic tech-
niques, TMT-LC-MS/MS can capture and quantify proteins in a 
comprehensive and efficient manner with a smaller sample require-
ment without offset. Recently, proteomic technology based on mass 
spectrometry has shown its strong power in the neurological field, 
such as overall analysis of protein expression level, inter-molecular 
correlation, and biomarker screening (Bader et al., 2020; Xiong et al., 
2019).

By using TMT-LC-MS/MS, we did a comprehensive proteomic 
analysis in the platelets of MCI and AD patients and as well as the 
age/sex-matched control population. We found that multiple path-
ways, including AD, AMPK signaling, platelet activation, telomer-
ase RNA localization, and complement activation, were remarkably 
changed in MCI and AD patients. Further PLS-DA analysis plus ma-
chine learning revealed that a combination of decreased proteins 
PHB, UQCRH, GP1BA, and FINC in platelets could be promising in 
objectively predict the cognitive decline in MCI and AD patients.

2  |  RESULTS

2.1  |  Common differential proteins and pathways 
in MCI and AD platelets by whole-proteome analysis

According to the MMSE score, platelet samples of 10 cases of mild 
cognitive impairment (MCI; MMSE score 18–23), 9 cases of se-
vere cognitive impairment (AD; MMSE score 2–17), and 9 age/sex-
matched healthy controls (Ctrl; MMSE score 29–30) were collected 
for proteomic analysis (Figure 1a). The major goals of platelet prot-
eomics data collection and their bioinformatic analysis were set as 
follows: (a) to analyze the changes of platelet protein profile during 
the progression of cognitive decline (from normal cognition to MCI 
to AD); (b) to clarify the biological mechanisms of platelet during the 
progression of cognitive decline; (c) to find MMSE-correlated pro-
teins; and finally (d) to identify peripheral diagnostic biomarkers for 
cognitive impairment.

A total of 2994 platelet proteins were captured by TMT-LC-MS/
MS proteomics, of which 360 significantly different proteins were 
identified in MCI and AD patients compared with the Ctrl group 
(p  <  0.05) (Figure 1b), relative abundance values were shown in 
Excel S1. Specifically, 207 differentially expressed (DE) proteins 
were down-regulated and 9 were up-regulated in MCI vs Ctrl 
(Figure 1c), while 121 DE proteins were down-regulated and 44 were 
up-regulated in AD vs Ctrl (Figure 1d). Moreover, 51 DE proteins 
were overlapped in both MCI vs Ctrl and AD vs Ctrl (Figure 1e), and 
all were reduced in MCI and AD (Figure 1f; Excel S2).
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To explore the dynamic changes of platelet proteome during the 
progression of cognitive decline, we performed cluster and protein–
protein interaction (PPI) network analyses in MCI, AD, and the cog-
nitively normal control populations. Proteins in cluster 1 (n = 160), 
including CD63, PHB, UQCRH, ANXA5, and EGF, showed a de-
creasing tendency from Ctrl to MCI to AD (Figure 2a left). These 
proteins were enriched in 7 KEGG pathways, including fatty acid 
metabolism, cGMP-PKG signaling pathway, AD, pathways in cancer, 
mineral absorption, AMPK signaling pathway, and platelet activation 
(Figure 2b). Pathways in cluster 2 (n = 135) displayed significant de-
crease in MCI and increase in AD compared with the normal con-
trols (Figure 2a middle), which were involved in Epstein–Barr virus 
infections, vasopressin-regulated water reabsorption, and antifolate 
resistance (Figure 2b). Proteins in cluster 3 (n = 65) showed an in-
creasing tendency from Ctrl to MCI to AD (Figure 2a right), includ-
ing PPP3CB, STMN1, PTPN7, MAP4 K2, and STK3, all of them were 
strongly pointed to the MAPK signaling pathway (Figure 2b). By PPI 
network analysis using MCODE (molecular complex detection) on 
the differentially expressed proteins, we further defined eight pro-
tein interaction modules which supported the identified pathways 
in the above-mentioned clusters (Figure 2c). By biological processes 

analyses of the differential proteins, more comprehensive and de-
tailed biological mechanisms were shown, including regulation of 
insulin secretion, platelet activation (cluster 1); protein transport, 
cell–cell adhesion, ER to Golgi vesicle-mediated transport (cluster 2); 
and complement activation, protein folding (cluster 3) (Figure 2d).

These whole-proteome data reveal the total differential proteins 
and the involved pathways during the progression of cognitive de-
cline in MCI and AD.

2.2  |  Differential platelet proteins or pathways 
correlated to MMSE score analyzed by Pearson

Mini-mental state examination (MMSE) score has been wildly used 
as a subjective measure of cognitive performance. To explore the 
periphery molecular markers that can objectively predict cognitive 
impairment, we performed correlation analysis of MMSE score to 
the entire omics data received from normal Ctrl, MCI, and AD. A 
total of 173 proteins were identified to be strongly correlated to 
MMSE score (p < 0.05), including 44 negatively correlated (NC) 
proteins and 129 positively correlated (PC) proteins (Figure 3a-b), 

F I G U R E  1 Schematics for study design and the general proteome information. (a) Schematic diagram of platelet TMT-LC-MS/MS 
proteomic operation process. (b) 360 differential proteins were identified in the platelet of MCI and AD patients compared with the Ctrl 
group, (p < 0.05, increased proteins: red; decreased proteins: blue). (c, d) The increased (red) or decreased (blue) level of proteins in MCI vs. 
Ctrl or AD vs. Ctrl (p < 0.05). (e, f) 51 overlapped protein changes in both comparison groups and their relative expression abundance (MCI 
vs. Ctrl and AD vs. Ctrl)
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relative abundance values were shown in Excel S3. Interestingly, the 
NC proteins were selectively enriched in the complement activation 
pathway (Figure 3c), while the PC proteins were enriched in multiple 
pathways, including pathways in cancer, AD, AMPK signaling, tight 
junction, and platelet activation (Figure 3c).

By further integrating the whole-proteome differential proteins 
and MMSE-correlated proteins, we identified five KEGG pathways 
closely related to the AD-related pathological mechanisms, includ-
ing three PC pathways and two NC pathways (Figure 4a-e). 19 pro-
teins, involved in the pathways of AD, platelet activation, telomerase 
RNA localization, and AMPK signaling, were not only differentially 
expressed proteins but also correlated to MMSE (Figure 4a-d; f-
i). Specifically, the Aβ-related protein ADAM10, mitochondrial 
dysfunction related proteins ADP/ATP translocase 2 (SLC25A5), 
UQCRH, PHB, mitochondrial-processing peptidase (MPPB), Ca2+ im-
balance related proteins ITPR1/2, and endoplasmic reticulum (ER)-
related protein reticulon-4 (RTN4), in AD pathways (Figure 4a,f); 
the expression levels of CD63, FINC, ITA2B, EGF, GP1BA, GNAI3, 
RAP1A (Figure 4b,g), mostly platelet activation-related molecules 
[25]; and the level of CPT1A (carnitine O-palmitoyltransferase 1) 
and DCMC (Malonyl-CoA decarboxylase), and as well as AMPK sig-
nals pathway (Figure 4c,h) involved in fat metabolism and energy 
controls (Derdak et al., 2013; Xie et al., 2019); were decreased or 
decreasing in MCI and AD patients compared with Ctrls (Figure 4a-c) 

and a positive correlation MMSE score was shown (Figure 4f-h). On 
the other hand, strong and unique enrichment of complement ac-
tivation pathway (Figure 3c) with a consistent negative correlation 
to MMSE score was detected in MCI and AD patients (Figure 4e) 
but the protein levels involved in this pathway was not significantly 
altered (Figure 4j). Interestingly, the platelet activation, an upstream 
regulatory pathway of complement activation, was also positively 
correlated to the MMSE score (Figure 4b), suggesting a peripheral 
and central connection of the complement pathway that was also 
observed in the AD brains (Bai et al., 2020).

By further ranking the correlation coefficients of the above 26 
platelet candidate proteins to the MMSE score, a complex associa-
tion was identified (Figure 5a; Excel S4), and the increase or decrease 
of these candidates was nicely uniformed in each group (Figure 5b). 
All 26 candidate proteins showed a moderate MMSE correlation 
(| r | =0.371–0.552; Figure 5a; Excel S4). Among them, the reduction 
of CD63 in platelet showed the strongest correlation with MMSE 
score (r = 0.552, p = 0.002; Figure 5a; Excel S4). Interestingly, we 
also found a close correlation between some of the proteins in the 
dataset, such as mitochondrial dysfunction related proteins PHB, 
SLC25A5, MPPB (| r | =0.60–0.69); complement activation pathway 
proteins C1S, SERPINA1, SERPINF2 (|  r  |  =0.63–0.75) (Figure 5a; 
Excel S4). In addition, Aβ-related protein ADAM10 was found to 
be strongly correlated with complement activation-related protein 

F I G U R E  2 Differential proteins and biological pathways identified in MCI and AD patients compared with normal cognition controls. (a) 
The protein changes were divided into three clusters according to trends from Ctrl to MCI to AD (each line represents a protein). (b) Pathway 
enrichment analysis of three cluster proteins with Metascape online analysis (the significantly enriched pathway has been defined as overlap 
proteins ≥3, p < 0.01). (c) Detected PPI modules in clusters. (d) Differential protein enrichment analysis of biological function. Differential 
protein enrichment analysis of biological function. The red modules, green modules, and green module represent top 3 biological process 
with –log 10 (p-value) in cluster 1, 2, and 3, respectively
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SERPINA1 and platelet activation-related protein integrin alpha-IIb 
(ITA2B) (| r  | =0.70–0.85) (Figure 5a; Excel S4), suggesting that the 
three may play a coordinated or antagonistic role in the pathogen-
esis of AD. These data together demonstrated that these platelet 
dysregulated proteins imply a complex regulatory network related 
to cognitive impairment.

2.3  |  Selecting the best combination of platelet 
biomarkers to predict cognitive decline by 
machine learning

Further machine learning was applied to select the best combi-
nation of the biomarkers. Considering the effectiveness of the 
biomarkers, seven proteins involved in the complement pathway 
were excluded, and 19 candidate proteins were selected from 26 
(Figure 5) for subsequent sample discrimination. Partial least squares 
discrimination analysis (PLS-DA) to the selected 19 candidate pro-
teins could nicely distinguish MCI and AD from the Ctrls, though it 
could not distinguish MCI from AD (Figure 6A). Nine of them, includ-
ing PHB, RAP1A, ITPR1, UQCRH, CD63, ADAM10, GP1BA, ITPR2, 
and FINC, were identified as the core contributors to distinguish-
ing normal cognition from the cognitively impaired individuals, and 
PHB showed the highest differentiation with the predictive variable 
importance in projection larger than 1 (VIPpred >1) among the nine 
core candidates (Figure 6B).

To receive the best combination of the platelet biomarkers for 
predicting cognitive decline, we further analyzed 9 core candidate 
proteins using leave-one-out (LOO) method. This method leaves 
out one sample at a time as validation set and uses the rest sam-
ples as the training set, so that all samples were trained n times and 

validated n times. By LOO analysis, various specificity and accuracy 
were observed using different combinations of the 9 biomarkers, 
and the combination of PHB, UQCRH, GP1BA, and FINC showed 
the highest specificity with a maximum receiver operating charac-
teristic (ROC) (AUCROC=0.965) and the highest accuracy (89.3%) 
(Figure 6c-e). Using this panel of the biomarkers, a generating re-
call of 0.895, precision of 0.944, F1 score of 0.919, and the largest 
precision-recall curve (AUCPR  =  0.985) were received (Figure 6d 
and f). Using this rigorous algorithm, PHB was identified as the most 
valuable single platelet biomarker to predict cognitive decline, with 
AUCROC of 0.842, accuracy of 78.6%, recall of 0.895, precision of 
0.810, F1 score of 0.850, and AUCPR of 0.929 (Figure 6c-f).

By using Western blotting to verify the above-mentioned nine 
target proteins (PHB, RAP1A, ITPR1, UQCRH, CD63, ADAM10, 
GP1BA, ITPR2, and FINC), we observed a decreasing trend of the 
levels of PHB, CD63, GP1BA, and FINC in MCI or/and AD, which was 
consistent with the proteomic results, but no significant decrease 
for the other five molecules (Figure S1). The discrepancy might be 
caused by the method or/and the limited sample size.

Together, the machine leaning further selects out the combina-
tion of PHB, UQCRH, GP1BA, and FINC as the best platelet bio-
markers for evaluating the cognitive decline in MCI and AD patients.

3  |  DISCUSSION

AD is most common neurodegenerative disorder affecting an in-
creasing number of the populations with old age. As there is no ef-
ficient cure for this devastating disease, finding objective periphery 
biomarkers is extremely important for early diagnosis and drug de-
velopment of AD.

F I G U R E  3 Proteins correlated to MMSE score in platelet proteomics. (a) Negative correlated (NC, blue) and positively correlated (PC, red) 
proteins to MMSE scores analyzed by Pearson (p < 0.05) and ranked according to their coefficients. (b) Heatmap of the relative abundance of 
all MMSE-correlated proteins in each sample (increased proteins: red; decreased proteins: blue). (c) Enriched KEGG pathway of all MMSE-
correlated proteins (the significance of the enriched pathway was defined as overlap proteins ≥3, p < 0.01)
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F I G U R E  4 Integration and quantitative analysis of MMSE-related pathways and DE proteins. (a-c) KEGG pathway enriched by proteins 
positively correlated with MMSE score, including Alzheimer's disease (a), platelet activation (b), and AMPK signaling pathway (c). (d, e) KEGG 
pathway enriched by proteins negatively correlated with MMSE score, including Telomerase RNA localization (d) and complement activation 
(e). Pearson correlation coefficients (r) and corresponding p < 0.05 were displayed at the top of each plots. X-axis shows MMSE score, y-axis 
indicates relative expression abundance of each protein. (f-j) Dot plots represent the relative expression level of each protein in different 
samples. Data were presented as mean ± SEM. *p < 0.05, **p < 0.01 and ***p < 0.001 vs. the Ctrl subjects
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Recently, proteomics has been widely applied for biomarker 
studies. With breakthroughs of the technology, we can comprehen-
sively and in-depth explore the expression changes of the peripheral 
platelet protein profile for the screening of the periphery biomarkers. 
Previous studies using platelet samples from AD patients were mostly 
limited to two-dimensional gel electrophoresis methods, and only 
a few to dozens of differential proteins were identified (Gonzalez-
Sanchez et al., 2018; Reumiller et al., 2018), and the highest number 
of proteins was identified by using LC-MS/MS (Donovan et al., 2013). 
Based on the high-resolution LC-MS/MS combined with the latest 
TMT tag technology, our present study had identified 4165 proteins, 
of which 2994 were effectively captured in each experimental group, 
providing the most in-depth platelet proteome changes so far for the 
cognitive decline in MCI and AD subjects. The high proteome cov-
erage provides a strong guarantee for the subsequent analysis of 
platelet-related biological mechanisms in cognitive impairment pro-
cess and the construction of machine learning models. With such rich 
proteomic information, three positively correlated modules and two 
negatively correlated modules with MMSE scores were revealed. The 
complex regulatory network in platelets, including AD, platelet acti-
vation, AMPK signaling, telomerase RNA localization, complement 
activation, may be closely related to the pathological mechanisms of 
AD. The resulting candidate proteins could efficiently discriminate 
MCI and AD from the cognitively normal control population, though 
it currently could not distinguish MCI from AD.

Integrating the existing brain/CSF proteomics (Bai et al., 2020; 
Wang et al., 2020), we found some interesting changes in the central 

and peripheral systems. Consistent with human brain and CSF pro-
teomics, the levels of mitochondrial proteins were decreased and 
complement-associated proteins were increased in patients with AD 
(Bai et al., 2020; Wang et al., 2020). In addition, lipid metabolism-
related proteins were increased in the brain and decreased in plate-
lets of AD (Bai et al., 2020). Importantly, we found that platelet 
activation, telomerase RNA localization pathway dysregulation was 
specific in platelets. Platelet and complement activation, calcium 
imbalance pathways were reported in another platelet proteomics 
(Donovan et al., 2013).

In addition to Aβ deposition and abnormal tau-related neuro-
fibrillary tangle formation, AD also includes a variety of pathological 
changes involving calcium imbalance, autophagy defects, mitochon-
drial abnormalities, and synaptic damage (Grontvedt et al., 2018). 
In the current study, we detected multiple enriched proteins in the 
AD pathways, including mitochondrial dysregulated proteins (PHB, 
SLC25A5, UQCRH, MPPB), Ca2+ flow imbalance (ITPR1, ITPR2), non-
amyloid protein production related proteins ADAM10, endoplasmic re-
ticulum protein RTN4. PHB (inhibin) plays a key role in the regulation of 
mitochondrial protein homeostasis through the proteolytic machinery 
m-AAA protease in the inner mitochondrial membrane (Steglich et al., 
1999). PHB also serves as a mitochondrial respiratory chain chaperone 
protein and the decrease of PHB induces mitochondrial dysfunction 
and ROS overproduction (Kathiria et al., 2012). MPPB is related to 
mitochondrial biogenesis (Nagayama et al., 2008), and UQCRH, as a 
subunit of mitochondrial respiratory chain complex III (Liu et al., 2016), 
cooperates with SLC25A5 (ADP/ATP transport enzyme 2) to regulate 

F I G U R E  5 Correlation ranking of candidate protein levels to MMSE score. (a) Negatively correlated (blue) and positively correlated (red) 
candidate biomarkers (p < 0.05) were ranked according to their Pearson correlation coefficients. The ratio of the color shade and the circle 
represent the degree of correlation. (b, c) The relative abundance of the negatively correlated (b) and positively correlated (c) proteins (brick 
red represents increased proteins and dark blue represents the decreased proteins)
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ATP synthesis and transport (Clemencon et al., 2013). Classical neuro-
pathological hallmarks of disease (Aβ and tau) may trigger mitochondrial 
disturbance, while mitochondrial dysfunction may incite pathology 
and cognitive deficits (Kerr et al., 2017; Perez Ortiz & Swerdlow, 2019). 
Inositol 1, 4, 5-trisphosphate (IP3R) is the most widely expressed 

calcium ion release channel, which regulates the entry of calcium ions 
from the endoplasmic reticulum into the cytoplasm (Thillaiappan et al., 
2019). Imbalance of calcium ion homeostasis can affect the release of 
synaptic signal transmitters, mitochondrial dysfunction, increase of 
ROS production, and ultimately lead to cell death, which can affect 

F I G U R E  6 The best combination of platelet biomarkers for cognitive decline identified by machine learning. (a) Discrimination power 
of the selected 19 candidate platelet proteins from Ctrl to MCI to AD analyzed by PLS-DA analysis. (b) 9 candidate proteins (VIP>1) were 
selected by predictive variable importance in projection (VIPpred) analysis (Red bar graph: VIP >1; Green bar graph: VIP <1). (c) The best 
performing panel based on the area under the receiver operating characteristic (ROC) curve using leave-one-out (LOO) algorithm was 
selected in the training set. Y-axis-left; the area under the ROC curve, Y-axis-right: accuracy, x-axis; proteins selected by the LOO algorithm. 
The red box shows the selected protein with high area under the curve (AUC) and accuracy for the blinded test set. (d) The red numbers 
represent the corresponding protein. Under each best combination, the corresponding protein and various parameters for evaluating the 
efficiency of the biomarkers. (e and f) Based on the LOO algorithm, the under the receiver operating characteristic curve (AUCROC) and 
precision-recall curve (AUCPR) for each best combination biomarkers. AUCROC was based on true positive rate and false positive rate: True 
positive rate = [true positive / (true positive +false negative)]; False positive rate = [false positive / (true negative +false negative)]. PRAUC 
was obtained based on precision and recall: Precision = [true positive / (true positive +false positive)]; Recall = [true positive / (true positive 
+false negative)]. In addition, F1 score = 2 * (precision * recall) / (precision +recall)
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amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), AD, and 
other neurodegenerative diseases (Takada et al., 2017).

Reticulon family members can reduce Aβ generation through 
negative regulation of β-secretase (BACE1) (He et al., 2004; 
Murayama et al., 2006). Several studies have shown that the level of 
platelet BACE1 increases from the early stage to the late stage of AD 
(Colciaghi et al., 2004; Marksteiner & Humpel, 2013). Interestingly, 
the activity of BACE1 in platelets only increases in AD, but does not 
change in MCI (Bermejo-Bescos et al., 2013). Moreover, our omics 
data showed that ADAM10 (α-secretase) was significantly decreased 
in MCI, which was consistent with a previous study (Colciaghi et al., 
2002). In a cohort study of the elderly in Brazil, it was found that the 
level of ADAM10 was continually decreased with the degree of cog-
nitive impairment, which has the potential as a diagnostic biomarker 
for AD (Manzine et al., 2013). Therefore, considering the patholog-
ical connection with Aβ deposition and the significant correlation 
with the clinical symptoms of dementia, ADAM10 and BACE1 could 
serve as peripheral platelet biomarkers for early diagnosis of AD.

It is well known that patients with AD have significant energy 
imbalance (Yin et al., 2016), and AMPK signaling pathways play a 
central role in energy balance (Carling, 2017). We found here that 
DCMC and CPT1A, involved in lipid metabolism-related processes 
regulated by AMPK (Derdak et al., 2013; Xie et al., 2019), were sig-
nificantly decreased in MCI and AD platelets. In a fatty liver study, 
pifithrin-α p-nitro (PFT) can promote the expression of DCMC 
by regulating the SIRT1/LKB1/AMPK pathway, and the activity 
of CPT1A could be stimulated by reducing malonyl-CoA (mCoA) 
(Derdak et al., 2013). Studies showed that abnormal lipid metabolism 
was closely related to AD pathology (Liu et al., 2013; Wong et al., 
2017). Cholesterol is an important part of axonal growth, formation, 
and remodeling (Liu et al., 2013). Therefore, the decreased expres-
sion of DCMC and CPT1A in peripheral platelets may be related to 
the abnormal lipid metabolism in MCI and AD patients. The produc-
tion of bioactive products of lipid peroxidation leads to continuous 
platelet activation, which may contribute to amyloid deposition and 
complications of atherosclerotic thrombosis (Ciabattoni et al., 2007).

Consistent with the previous reports, patients with AD have sig-
nificant dysregulation in the platelet activation pathway (Akingbade 
et al., 2018; Veitinger et al., 2014). Epidemiological data show that the 
increased levels of platelet activation biomarkers, activation of gly-
coprotein IIb-IIIa complex and P-selectin, are significantly related to 
cognitive decline in AD patients (Stellos et al., 2010). CD63, a mem-
ber of the four-transmembrane family, is easily located in the plasma 
membrane from lysosome during platelet activation (Maduskuie et al., 
1998), and cooperates with P-selectin to promote thrombosis in ath-
erosclerosis (Cha et al., 2003; Yamazaki et al., 2001). Interestingly, 
we also found that the expression of several proteins (GP1BA, FINC, 
RAP1A, and VWF) involved in platelet function related to hemostasis 
and thrombogenesis were decreased in MCI and AD patients. For ex-
ample, VWF/GP1BA interactions induce platelet activation/adhesion 
and regulate integrin signaling pathways for hemostasis and throm-
bosis (Li et al., 2010). FINC (Fibronectin) affects platelet activation by 
regulating the formation of PF4/heparin complex (Krauel et al., 2019). 

RAP1A and RAP1B, important components of RAP GTPase, identify 
injured sites and as important switches for platelet adhesion and acti-
vation to ensure vascular integrity (Stefanini & Bergmeier, 2019). The 
collective reduction of the platelet activation-related proteins may af-
fect hemostasis and maintain normal vascular function, which is con-
sistent with the vascular risk factors of AD patients, such as diabetes, 
hypertension, atherosclerosis (Casserly & Topol, 2004; Helzner et al., 
2009; Huo et al., 2003).

Our proteome data showed that the proteins negatively cor-
related with MMSE scores had strong enrichment in the complement 
activation pathway, suggesting a strong complement inflammatory 
response in the peripheral system; however, only slight increase of 
the complement activation pathway proteins (SERPINA1, C4BPA, 
C8A, C8G, SERPINF2, C1S, and C4BPB) were detected in MCI and 
AD patients. Recently, the complement pathway has attracted great 
attention, which is involved in the regulation of microglial synaptic 
pruning in the early stage of AD (Hong et al., 2016), and C1q-blocking 
antibody reverses synaptic damage in Tau-301S mice (Dejanovic 
et al., 2018). Brain proteomics also revealed that the complement 
pathway (C1R, C1S, C3, C4A, and C4B) was activated during pro-
gression of MCI into AD (Bai et al., 2020). Our data may be a good 
addition to illustrate the synchronous activation of the complement 
pathway in the peripheral and central systems.

Based on the nine candidate proteins identified from whole-
proteome and MMSE correlation, we conducted further machine 
learning. After twenty-eight rounds of training and testing, the strict 
LOO algorithm revealed that combination of platelet PHB, UQCRH, 
GP1BA, FINC could most accurately identify the cognitive decline in 
MCI and AD patients. Interestingly, the four molecules identified by 
the machine learning algorithm represent two important pathologi-
cal processes, that is, the mitochondrial dysfunction (PHB, UQCRH) 
and platelet activation (GP1BA, FINC).

In summary, such in-depth and comprehensive analysis of pe-
ripheral platelet protein expression profiles of MCI and AD pa-
tients has given us new understanding of the role of platelets in AD. 
Bioinformatics analysis revealed that the linkage effect between pe-
ripheral and AD reflected by platelet omics involved platelet activation, 
complement pathway activation, mitochondrial dysfunction, calcium 
ion imbalance, and APP metabolic abnormality. Machine learning iden-
tified distinctive cognitive impairment-platelet combination biomark-
ers (PHB, UQCRH, GP1BA, and FINC). Altogether, the exploration of 
platelet proteomics is novel and a great supplement to understanding 
the peripheral changes of AD, and platelet combination biomarkers 
have great application potential in precision medicine for AD.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Participants’ information

According to mini-mental state examination (MMSE) score (Folstein 
et al., 1975) and National Institute on Aging and the Alzheimer's 
Association Guidelines (Albert et al., 2011), we recruited 28 Han 
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People and divided them into three groups: with mild cognitive 
impairment (10 MCI, MMSE  =  18–23), with severe cognitive im-
pairment (9 AD, MMSE = 2–17) and the age-/sex-matched normal 
cognition controls (9 Ctrl, MMSE = 29–30) (Table 1). Any cases with 
head trauma, brain tumor, epilepsy, transient ischemic attack, coma, 
drug abuse, alcohol addiction, depression, schizophrenia, and other 
psychiatric disorders were excluded in all the samples. The influ-
ence of confounding factors such as apolipoprotein E (APOE), Aβ1-
42/1-40, diabetes, hypertension, hyperlipidemia, and coronary heart 
disease (CHD) were considered comprehensively (Table 1).

The study was approved by the Tongji Medical School Ethics 
Committee, complies with the Helsinki Declaration II, and includes 
written informed consent from all participants.

4.2  |  Sample preparation

The fresh blood stored in the anticoagulant tube was centrifuged at 
200 g for 20 min to remove the rich red blood cells and white blood 
cells from the plasma, and 2/3 of the platelet-rich supernatant was 
taken to the new centrifuge tube. Next, the platelet-rich plasma was 
centrifuged at 120 g for 6 min to remove residual white blood cells 
and centrifuged at 1,500 g for 10 min to obtain relatively pure plate-
let precipitate. Further, the platelet precipitate was washed with ty-
rode's solution (143.0 mM NaCl, 5.4 mM KCl, 0.25 mM NaH2PO4, 
1.8 mM CaCl2, 0.5 mM MgCl2, 5.0 mM HEPES, pH 7.4; Solarbio, 
T1420, Beijing, China) and centrifuged at 120 g for 4 to obtain puri-
fied platelet samples and stored at −80°C.

Platelet samples were added with lysis buffer (8 M urea, pH 8.0, 
1 cocktail, 1 mM PMSF) and completely lysed by ultrasound (120 s, 
4 s on and 6 s off). After lysis of the ice for 30 minutes, the sam-
ples were centrifuged at 12,000 g for 10 minutes to obtain protein 
solution.

4.3  |  Tandem mass tag (TMT) labeling

We performed a proteomic analysis of a large sample size (n = 9–
10), and each sample corresponds to a TMT label (ThermoFisher 
90406). Each sample was digested with mass spectrometric 
trypsin (Promega, V5072) into peptides and then labeled with 
TMT. Each labeled peptides was mixed into a group of 10 differ-
ent labeled samples, which were divided into 15 components by 
high-performance liquid chromatography  (HPLC) for subsequent 
experiments.

4.4  |  Data collection of TMT-labeled peptides using 
LC-MS/MS

The dried components were dissolved in 0.1% formic acid (FA), 
and captured with a silica gel capillary column filled with C18 
resin (Varian, Lexington, MA, USA) for subsequent Q Exactive 
(Thermo Scientific, NJ, USA) mass spectrometer analysis. Full scan 
in Orbitrap mass analyzer in data-dependent acquisition (DDA) 
mode, the specific parameters are set as follows: 400–1, 800 m/z, 
70000 resolution; MS/MS scans (100−1,800 m/z). Using Proteome 
Discoverer 2.1 software (Thermo Scientific) to retrieve MS/MS 
data according to Uniport-human database (2020–05). The search-
ing parameters were modified on the previous research settings 
(Xu et al., 2019).

4.5  |  Bioinformatics analysis

After we normalized and filled the data on the Perseus platform, 
we used the t test method to calculate the p-value of the protein 
abundance of log2-transformed between each comparison group 

Characteristic Ctrls (n = 9) MCI (n = 10) AD (n = 9) p-value

Age, mean (SD), year 72.67 (2.60) 72.50 (2.46) 73.11 (5.21) 0.931

MMSE (SD) 29.89 (0.33) 21.00 (1.56) 13.56 (4.69) <0.001

Sex (male, female) 4 M, 5F 4 M, 6F 4 M, 5F 0.974

Diabetes mellitus, n 0 0 0 >0.999

Hypertension, n 4 7 5 0.528

Coronary heart disease 
(CHD), n

2 1 1 0.709

Cerebral apoplexy, n 0 2 4 0.071

APOE ε2 (+), n (%) 2 (22.2%) 1 (10.0%) 1 (11.1%) 0.685

APOE ε3 (+), n (%) 9 (100%) 9 (90.0%) 8 (88.9%) 0.467

APOE ε4 (+), n (%) 0 (0.0%) 2 (20.0%) 2 (22.2%) 0.364

Aβ1-40 (SD) 335.6 (299.8) 307.1 (299.6) 502.2 (315.5) 0.347

Aβ1-42 (SD) 67.88 (26.46) 59.87 (42.65) 61.16 (22.27) 0.849

Aβ1-42/1-40 (SD) 1.02 (2.07) 1.19 (2.11) 0.29 (0.39) 0.504

Abbreviations: AD: severe cognitive impairment; APOE: apolipoprotein E; Ctrl: normal cognition 
controls group; MCI: mild cognitive impairment; MMSE: the Minimum-mental State Examination.

TA B L E  1 Information for patients and 
the age-/sex-matched controls
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(ctrl vs MCI; ctrl vs AD; MCI vs AD) (Bereczki et al., 2018). Proteins 
with p < 0.05 were defined as differentially expressed in the com-
parison group. R studio (v. 0.99.489) and heatmap gplots package 
were used for cluster analysis and heatmap drawing. Volcano plot 
and heatmap were performed using GraphPad Prism 8.00. Pathway 
and biological function enrichment of statistical clusters was per-
formed using Metascape (http://metas​cape.org), WEB-based GEne 
SeT AnaLysis Toolkit (http://www.webge​stalt.org) and DAVID ver-
sion 6.7 (https://david​-d.ncifc​rf.gov/). Cytoscape 3.6.1 and STRING 
(v10; https://strin​g-db.org/) plug-in were used for visual analysis of 
protein–protein interaction (PPI) network. We use 'Wu Kong' plat-
form (https://www.omics​oluti​on.com/wkomi​cs/main/) for relative 
Pearson analysis.

4.6  |  Machine learning

SIMCA (version 14.0) software was used for partial least squares 
discrimination analysis (PLS-DA). The protein of predictive variable 
importance in projection larger than 1 (VIPpred >1) was considered 
to be meaningful for sample discrimination. Further leave-one-out 
(LOO) cross validation was applied to select candidate biomark-
ers. The samples were trained and evaluated in a leave-one-out 
manner using scikit-learn python package. Logistic regression was 
chosen as the classifier with {\rm solver='liblinear’} and {\rm class 
weight='balanced’}. Specifically, twenty-eight cross-validations of 
the proteome samples (Ctrl = 9, MCI = 10, AD = 9) were performed, 
in which twenty-seven were randomly attributed into the training 
set, and one was in the validating set for each analysis. By twenty-
eight cycles, all the samples had been validated. Based on the LOO 
algorithm, the under the receiver operating characteristic curve 
(AUCROC) and precision-recall curve (AUCPR) for each best com-
bination biomarkers. AUCROC was based on true positive rate and 
false positive rate: True positive rate = [true positive / (true positive 
+false negative)]; False positive rate = [false positive / (true nega-
tive +false negative)]. PRAUC was obtained based on precision and 
recall: Precision = [true positive / (true positive +false positive)]; 
Recall = [true positive / (true positive +false negative)]. In addition, 
F1 score=2 * (precision * recall) / (precision +recall).

4.7  |  Western blot analysis

The primary antibodies, anti-ITPR1 (1:2000, Affinity, DF3000), 
anti-ITPR2 (1:2000, Affinity, DF13336), anti-FINC (1:2000, 
Abcam, ab45688), anti-GP1BA (1:2000, Abcam, ab134087), 
anti-ADAM10 (1:2000, Affinity, AF5294), anti-CD63 (1:2000, 
Abcam, ab134045), anti-PHB (1:3000, Abcam, ab75766), anti-
RAP1A (1:2000, Affinity, DF6157), anti-UQCRH (1:1000, Abcam, 
ab154803) were added and incubated on ice overnight. After 
washing with TBST, the membranes were incubated with anti-
rabbit or anti-mouse IgG HRPs (Thermo Fisher Scientific, 1:3000) 
for 50  min at room temperature. Then the membranes were 

treated with enhanced chemiluminescence (ECL) reagents from an 
ECL kit (Pierce, Thermo Scientific) for exposure.

4.8  |  Statistical analysis

Statistical analysis was performed by SPSS 24.0 software (Statistical 
Program for Social Sciences Inc., Chicago, IL, USA). We used one-
way variance analysis (ANOVA) to evaluate the statistical differ-
ences for the population information and Western blotting results, 
and the student's t test to compare the proteomic results of two 
groups. p < 0.05 was considered to be significant, and the data were 
expressed as mean ± SEM.
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