
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2022) 12:70
https://doi.org/10.1007/s13278-022-00895-8

ORIGINAL ARTICLE

Constant community identification in million‑scale networks

Anjan Chowdhury1 · Sriram Srinivasan2 · Sanjukta Bhowmick3 · Animesh Mukherjee4 · Kuntal Ghosh5

Received: 20 February 2022 / Revised: 27 May 2022 / Accepted: 1 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022

Abstract
The inherently stochastic nature of community detection in real-world complex networks poses an important challenge in
assessing the accuracy of the results. In order to eliminate the algorithmic and implementation artifacts, it is necessary to
identify the groups of vertices that are always clustered together, independent of the community detection algorithm used.
Such groups of vertices are called constant communities. Current approaches for finding constant communities are very
expensive and do not scale to large networks. In this paper, we use binary edge classification to find constant communities.
The key idea is to classify edges based on whether they form a constant community or not. We present two methods for edge
classification. The first is a GCN-based semi-supervised approach that we term Line-GCN. The second is an unsupervised
approach based on image thresholding methods. Neither of these methods requires explicit detection of communities and
can thus scale to very large networks of the order of millions of vertices. Both of our semi-supervised and unsupervised
results on real-world graphs demonstrate that the constant communities obtained by our method have higher F1-scores and
comparable or higher NMI scores than other state-of-the-art baseline methods for constant community detection. While the
training step of Line-GCN can be expensive, the unsupervised algorithm is 10 times faster than the baseline methods. For
larger networks, the baseline methods cannot complete, whereas all of our algorithms can find constant communities in a
reasonable amount of time. Finally, we also demonstrate that our methods are robust under noisy conditions. We use three
different, well-studied noise models to add noise to the networks and show that our results are mostly stable.

Keywords Constant community · Unsupervised · Semi-supervised · GCN · Line graph

1 Introduction

Detecting communities is a fundamental operation in large-
scale real-world networks. Unfortunately, this operation is
also inherently stochastic. The communities detected can
vary based on the algorithm, the parameters, and even the
order in which the vertices are processed. One method to
reduce the effect of these algorithmic artifacts is to identify
constant communities. Constant communities are a group of
vertices which are always assigned to the same community
and thus exhibit stable partitions. In Fig. 1, the first two rows
represent the community structure from two different algo-
rithms, and the third row shows the constant communities
that are common across the two results.

Current approaches to detecting constant communities
involve executing a community detection algorithm multi-
ple times, or running different community detection algo-
rithms, and then combining the results to identify the set
of vertices that are grouped together across all the runs.
These approaches are, however, very expensive in terms of

 * Anjan Chowdhury
 anjan_r@isical.ac.in

 Sriram Srinivasan
 sriram.srinivasan@vcuhealth.org

 Sanjukta Bhowmick
 sanjukta.bhowmick@unt.edu

 Animesh Mukherjee
 animeshm@cse.iitkgp.ac.in

 Kuntal Ghosh
 kuntal@isical.ac.in

1 Center for Soft Computing Research, Indian Statistical
Institute, Kolkata, India

2 Department of Radiation Oncology, Virginia Commonwealth
University, Richmond, USA

3 Department of Computer Science, University of North Texas,
Denton, USA

4 Department of Computer Science and Engineering, IIT
Kharagpur, Kharagpur, India

5 Machine Intelligence Unit, Indian Statistical Institute,
Kolkata, India

http://orcid.org/0000-0003-1056-1568
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-022-00895-8&domain=pdf

 Social Network Analysis and Mining (2022) 12:70

1 3

 70 Page 2 of 17

time and memory and do not scale to large networks. In this
paper, we propose binary edge classification as a method
to identify constant communities. The edges of a network
are classified as whether or not they are part of a constant
community. Since the classification depends only on easily
computable properties of edges and not on finding communi-
ties, our methods are much faster and can be applied to very
large networks.

Our contribution Our primary contributions are as follows;

• Applying semi-supervised methods, namely the Graph
Convolution Network (GCN) (Kipf and Welling 2017),

to implement binary classification of edges. Since GCN
is typically used for classifying nodes, we convert the
graph into a line graph where each edge becomes a node
(see Fig. 2).

• Applying unsupervised methods based on image thresh-
olding (namely bi-level dos Anjos and Reza Shahbazkia
2008, histogram concavity Rosenfeld and De La Torre
1983, Binary Otsu and TSMO aka Multi-Otsu Otsu
1979) to implement binary classification. We create a
histogram of the values of the features, and then classify
the edges based on the thresholds in the histogram (see
Fig. 3).

• We evaluate the accuracy and performance of our meth-
ods with two baseline approaches: CHAMP (Weir et al.
2017) and the Consensus community algorithm (Aditya
et al. 2019). Our experiments demonstrate that our pro-
posed methods provide comparable or higher accuracy,
as per F1-score or normalized mutual information (NMI).
For medium and large networks, the baseline methods do
not complete, but all our methods finish at a reasonable
time.

• Studying the effect of noise with respect to our
approaches. Over three different noise models (Uniform,
Crawled, and Censored), we show that our methods pro-
vide high accuracy, even when noise is introduced.

Fig. 1 Example of constant communities. Different colors (red and
green) represent different communities to which vertices are assigned
for each type of algorithm. Constant communities are the clusters that
occur across all the outputs

Fig. 2 Steps to detect the constant community using semi-supervised
workflow. In Step 1, the line graph is generated from the input graph.
In Step 2, features are extracted from the original graph. In Step 3, the
feature vector for each node in the line graph is constructed using the
features in Step 2. In Step 4, the dimensions of the feature vectors are

reduced using PCA. In Step 5, with the help of the selected training
nodes, GCN is applied to the line graph to classify the nodes. Finally,
the edges of the input graph are classified using the classified nodes
in the line graph to find the constant community

Social Network Analysis and Mining (2022) 12:70

1 3

Page 3 of 17 70

The present paper is an extension of our previous work
(Chowdhury et al. 2021) published in the Proceedings of the
ASONAM 2021 conference. In the earlier work, we only
studied an unsupervised approach to detecting constant com-
munity while considering only the variants of the classic
Otsu’s image thresholding algorithm to filter out the constant
community edges. In this paper, we consider both the semi-
supervised and unsupervised approaches to obtaining con-
stant community. In the semi-supervised approach, we have
used GCN and Line graph of the input graph to detect the
constant community. In the unsupervised approach, in addi-
tion to Otsu’s algorithm, we also study the bi-level and histo-
gram concavity methods for better generalization in thresh-
olding. We have also added the study on noisy environment
to the present work, and have empirically demonstrated that
our method still performs better than the baselines.

This paper is organized as follows: In Sect. 2, we pro-
vide an overview of the semi-supervised and unsupervised
methods used for our algorithms. In Sect. 3, we describe
how we use these algorithms to find constant communities.
In Sect. 4, we present the experimental results that demon-
strate the advantages of our approach, as well as how our
methods perform in a noisy setting. We present related work
in Sect. 5, reproducibility in Sect. 6, and conclude with a
discussion of future directions in Sect. 7.

2 Overview of the methods

In this section, we describe the different semi-supervised
and unsupervised methods that we used for binary classifi-
cation of edges.

2.1 Semi‑supervised classification

We use graph convolutional network (GCN) (Kipf and Well-
ing 2017) as our semi-supervised technique. Since GCN is a
node-based classifier and we are doing an edge classification
task, we convert our graph G to its corresponding line graph
(Frank and Z 1960) L. A brief description of the line graph
and the GCN is given as follows.

Line graph The line graph L(Vl , El) (Frank and Z 1960)
of a graph G(V, E) can be defined as follows:

• Each vertex ul in L represents an edge e in G.
• (ul, vl) ∈ El iff the edges eu and ev in G representing

ul and vl , respectively, are incident in G.

A toy example of the construction of the line graph is
given in Fig. 4. We can obtain the number of nodes and
edges in a line graph easily. The number of nodes in a
line graph L is |Vl| = |E| and the number of edges in L is
�El� =

1

2

∑�V�
i=1

deg2
i
− �E� , where degi is the degree of ver-

tex vi ∈ V . Conversion of a graph G to its line graph L can
be done in linear time (Lehot 1974; Roussopoulos 1973).

Fig. 3 Steps to detect the constant community using unsupervised
workflow. In Step 1, features are extracted using the neighbors of
each edge. In Step 2, histograms are generated for each feature. In
Step 3, by applying an image thresholding algorithm, an optimum

threshold is obtained for each histogram. In Step 5, edges are filtered
out based on the thresholds, and finally we get the constant communi-
ties

Fig. 4 Construction of the line graph L from the graph G. Edges in G
are converted to nodes in L

 Social Network Analysis and Mining (2022) 12:70

1 3

 70 Page 4 of 17

GCN The Graph Convolutional Neural Network (GCN)
(Kipf and Welling 2017) is a type of Graph Neural Net-
work (GNN) used for semi-supervised node classification
on graphs. It is a first-order approximation of the Spectral
Graph Convolution (Hammond et al. 2011). Formally, the
GCN can be described as the following equation:

where Â = D̃−0.5ÃD̃−0.5 , Ã = A + I , I be the identity
matrix of order |V| × |V| . D̃ =

∑
j Ãij , A be the adjacency

matrix of the undirected graph G of size |V| × |V| , �
is the activation function (e.g., ReLU(⋅) = max{0, ⋅}),
Hk is the feature representation at layer k ;
H0 = X = [x1, x2, ..., xn]

T ∈ ℝ
|V|×c be the feature matrix,

xi ∈ ℝ
c be the feature vector of dimension c and Wk is the

weight matrix at layer k. In the output layer, the softmax
function can be used as the activation function to classify
the nodes in the graph.

2.2 Unsupervised classification

In our unsupervised method, we use some popular image
thresholding algorithms such as bi-level (dos Anjos and
Reza Shahbazkia 2008), Binary Otsu Otsu (1979), Multi-
Otsu Huang and Wang (2009), and histogram concavity
(Rosenfeld and De La Torre 1983).

2.2.1 Bi‑level thresholding

A histogram is perfectly balanced if it has the same distribu-
tion of background and foreground. In bi-level thresholding
method, an unbalanced histogram is tried to balance to find
out the optimum threshold. It assumes that the input image
is divided into two main classes: (i) the background and (ii)
the foreground.

Formal overview Let m(g) be the number of entries hav-
ing feature value g, L be the number of feature values, e0
and eL−1 be the first and last feature values (along the
x-axis) in the histogram. So, emid =

e0+eL−1

2
 be the middle

of these two feature values. Now, the weight of the left
side of the emid be Wl =

∑emid−1

i=e0
m(i) and the right side

would be Wr =
∑eL−1

i=emid
m(i) . Based on the proposed algo-

rithm in dos Anjos and Reza Shahbazkia (2008) (Algo-
rithm 4.1), it checks which side is heavier and update Wl ,
Wr , e0 and eL−1 accordingly until e0 = eL−1 = T = optimum
threshold.

2.2.2 Binary Otsu

Otsu’s binary classification (Otsu 1979) is used to binarize
grayscale images such that the object in the foreground

Hk+1 = 𝜎(ÂHkWk)

can be distinguished from the background. The output is
a single intensity threshold that separates pixels into two
classes: foreground and background. To determine this opti-
mal threshold, the algorithm adjusts the threshold values to
maximize the variance in intensity between the two classes.

Formal overview The probability distribution of g is,
p(g) = m(g)∕m ; m is the total number of entries. For a
threshold T, all entries with feature value below T are
given by nB(T) =

∑t

i=e0
p(i) and all entries with feature

value over the threshold are given by nO(T) =
∑eL−1

i=T
p(i) .

ei is the ith feature value, L is the number of the feature
values, t ∈ {e0, ..., eL−1} is the maximum value just below
T.
Let �B(T) be the mean, and �2

B
(T) be the variance of

all entries with feature value less than the threshold,
which in this case is analogous to the background of the
image. Let �O(T) be the mean, and �2

O
(T) be the vari-

ance of all entries with feature value above the thresh-
old, which in this case is analogous to the foreground,
i.e., the object present in the image. Let �2 is the com-
bined variance and � is the combined mean over all
edges. Given these values, the within class variance
can be defined as �2

W
(T) = nB(T)�

2

B
(T) + nO(T)�

2

O
(T)

and between class variance can be defined as;
�2

X
(T) = �2 − �2

W
(T) = nB(T)nO(T)[�B(T) − �O(T)]

2.
We apply Otsu’s method to obtain T such that �2

X
(T)

is maximized. However, as shown in Fig. 5, the single
threshold-based binarization may not always yield the
best results. In this case, the flower (object) cannot be
demarcated from the background by the conventional
Binary Otsu.

2.2.3 Multi‑Otsu

Otsu’s binary-level thresholding (Otsu 1979) can be
extended to multi-level thresholding (Huang and Wang
2009) in order to determine a number of thresholds to seg-
ment an image into clusters and recognize the various parts
of it. Fig. 5 provides an example of an image segmentation
task using multi-level Otsu thresholding.

We have used the Two-Stage Multi-threshold Otsu algo-
rithm (TSMO) (Huang and Wang 2009; Huang and Lin
2011). Our goal was to see if, from among the multiple
thresholds, we might judiciously arrive at one that better
demarcates the object and the background as compared to
the Binary Otsu. Clearly, this improves the result over that
of Binary Otsu in Fig. 5.

Formal overview In multi-level thresholding, if a graph
is segmented into K clusters (C0,C1, ...,CK−1) then we
need to look for K − 1 thresholds. The histogram of L

Social Network Analysis and Mining (2022) 12:70

1 3

Page 5 of 17 70

values of a given feature is divided into M(> (K − 1))
groups. So, L can be written as

⋃M−1

q=0
Lq , where each Lq

is a non-empty subset of L and Lq1 ∩ Lq2 = � , where
q1 ≠ q2 and q1, q2 ∈ {0, ...,M − 1} . The occurrence
probability PLq

 and the mean feature value MLq
 of Lq can

be written as PLq
=
∑

i∈Lq
p(i) and MLq

=

∑
i∈Lq

i∗p(i)

PLq

 .

Therefore, for each cluster, Ck , where k ∈ {0, ...K − 1} ,
the cumulative probability wk =

∑
Lq∈Ck

PLq
 and mean

feature value �k =
∑

Lq∈Ck

MLq
∗PLq

wk

 . Hence, the mean fea-
ture value of the whole graph � =

∑K−1

k=0
�kwk and

between class variance �2

B
=
∑K−1

k=0
wk(�k − �)2 . In the

first stage of TSMO, Multi-level Otsu thresholding is
used to find the optimal sets with number {q∗

0
, q∗

1
, ..., q∗

K−2
 }

for which �2

B
 is maximum; Formally, {q∗

0
, q∗

1
, ..., q∗

K−2
} =

argmax e0≤q0<q1...<qK−2<M−1{𝜎
2

B
(q0, q1, ..., qK−2)} . Hence,

optimal thresholds fall into {Lq∗
0

, Lq∗
1

, ..., Lq∗
K−2

} . In the sec-
ond stage, the optimal threshold th∗

k
 for each group Lq∗

k
 is

computed using the Binary Otsu thresholding as
th∗

k
= argmax thk∈Lq∗

k

{�2

B
(thk)} , k = 0, 1, ...,K − 2 , finding

the optimal threshold th∗
k
 for which �2

B
 is maximum.

2.2.4 Histogram concavity analysis

For a histogram of an image, the ranges can be easily sep-
arated iff the image can be clearly segmented into object
and background. In this case, the valley can be easily seen
and the threshold is the point at the bottom of the valley.
But when the ranges overlap, then there are no valleys in

the histogram. In that case, the optimum threshold could
be found at the root of the shoulder (where the object peak
and background pick overlap). Finding the valleys and the
shoulders is not a trivial task. But both of them are part of
the concavities in the histogram. By analyzing the concavity
structure, one can find the optimum threshold.

Formal overview We can see a histogram H as a 2-D
bounded region as: (e0, 0), (e0,m(e0)), (eL−1,m(eL−1))
and (eL−1, 0). By constructing the convex hull of H, we
can find the concavity of H. A convex hull H̄ of H is the
smallest convex polygon that contains H. The concavity
can be measured by the set difference H − H̄ . To con-
struct H̄ , we start from (e0,m(e0)) compute the slope �i
between points (e0,m(e0)) and (ei,m(ei)) for 1 ≤ i < L .
So, (e0,m(e0)), (ek1 ,m(ek1)) be the side of the convex hull
if �k1 be the largest among the slopes. This process will be
repeated, i.e., we find the slope of (ek1 ,m(ek1))(ei,m(ei)),
k2 + 1 ≤ i < L and �k2 be the largest slope yielding
(ek1 ,m(ek1))(ek2 ,m(ek2)) and so on, until we reach L − 1.
Let m̄(ei) be the height of H̄ at property value ei . A point
ei is in a concavity if (m̄(ei) - m(ei)) > 0 . Optimum thresh-
olds can be found at et for which (m̄(et) - m(et)) is maxi-
mum.
Example An example of how the optimum threshold
can be found using histogram concavity is provided in
Fig. 6. In Fig. 6(a), we can see a histogram H. In Fig. 6(b)
to 6(f), the construction of the convex hull H̄ of H is
shown. Fig. 6(f) shows the convex hull H̄ of H along with
H. In Fig. 6(g), we scan from left to right and compute

Fig. 5 Various image thresholding techniques that delineate the foreground of an image from its background

 Social Network Analysis and Mining (2022) 12:70

1 3

 70 Page 6 of 17

m̄(ei) - m(ei) , ∀i ∈ {0, 1, ..., L − 1} , and finally, a value et
is found for which (m̄(et) - m(et)) is maximum. Therefore
et is chosen as the optimum threshold.

3 Our contribution

We first propose a semi-supervised edge classification
method for constant community identification. We also pro-
pose an unsupervised edge classification task for the same
purpose. In both of our classification methods, we find the
constant communities by transforming the problem to a
binary classification of edges.

3.1 Semi‑supervised edge classification method

In the semi-supervised (graph-based) technique, we only
know a few node labels, and the goal is to predict the labels
of other nodes. A popular deep learning approach that uses
graph-based semi-supervised learning techniques is GCN.
GCN is primarily used to classify the nodes in a graph.

In our work, we use the GCN for the edge classification
task and find constant communities. To enable the GCN to
classify the edges, we convert the input graph to its cor-
responding line graph. In this way, each edge in the input
graph is represented by a unique node in its corresponding
line graph. Finally, the classification of nodes in the line
graph implies the classification of edges in the input graph.

A schematic diagram of how this approach works is pro-
vided in Fig. 2 . Details of the key steps are given as follows:

Step 1: Line graph generation By default, GCN is a node
classifier. So, to make the GCN work as an edge classifier,
we first convert the input graph G to its corresponding
line graph L, and then we classify the nodes in the line
graph. Since each node in the line graph L represents an
edge in the input graph G, classifying the nodes in L is
the same as classifying the edges in G.

Step 2: Feature generation from the input graph One of
the requirements to classify the nodes in L is to have a
feature vector for each node. Each feature vector com-
prises a sequence of features. In this step, we will dis-
cuss the generation of the features required to construct
a feature vector.
The likelihood that an edge will always be within a com-
munity is determined by the connections between the
neighbors of the endpoints. To classify the edges in G,
we select several features that indicate that the neighbors
of the endpoints and the endpoints themselves form dense
clusters. Since an edge e in G represents a node ule in L,
therefore, constructing features for e ∈ E is the same as
constructing features for ule ∈ Vl.
We extracted the features of an edge e = (u, v) in G based
on four methods that use the neighbors of u and v to cre-
ate four vectors of features, viz., FEI(e) , FEU(e) , FNI(e) ,
and FNU(e) . Each element in the vectors represents a
feature. The construction of these four vectors is given
below:

 (i) FEI(e) : For each edge e, we generate a vector
FEI(e) of size |E| while initializing each cell to
zero. Note that each cell represents an edge in G
and hence a node in L. Then, we collect the set
of common edges EIe between the neighbors of
the two terminals of the edge e. We then mark
those cells in the vector to 1, corresponding to
the edges in EIe.

 (ii) FEU(e) : For each edge e, we create a vector
FEU(e) of size |E| while initializing each cell to
zero. Note that each cell represents an edge in
G and hence a node in L. Then, we collect the
union of edges EUe between the neighbors of
the two terminals of the edge e. We then mark
those cells in the vector to 1, corresponding to
the edges in EUe.

 (iii) FNI(e) : For each edge e, we create a vector
FNI(e) of size |V| while initializing each cell to

Fig. 6 Finding the optimum
threshold using histogram
concavity. Fig. a denotes the
histogram H constructed using
the feature values and their fre-
quencies. Figs. b to f represent
the construction of the convex
hull H̄ over H (represented by
black lines). In Fig. g, a point et
is found for which the difference
between m̄(et) , the frequency of
et in H̄ and m(et) , the frequency
of et in H is maximum

Social Network Analysis and Mining (2022) 12:70

1 3

Page 7 of 17 70

zero. Note that each cell represents a node in G.
Then, we collect the set of common nodes NIe
between the neighbors of the two terminals of
the edge e. We then mark those cells in the vec-
tor to 1 corresponding to the nodes in NIe.

 (iv) FNU(e) : For each edge e, we create a vector
FNU(e) of size |V| while initializing each cell to
zero. Note that each cell represents a node in G.
Then, we collect the set of union of nodes NUe
between the neighbors of the two terminals of
the edge e. We then mark those cells in the vec-
tor to 1, corresponding to the nodes in NUe.

Step 3: Feature vector generation for the line graph Let
F(ule) represent the feature vector of a node ule ∈ Vl . We
can write F(ule) as F(e), where F(e) represents the feature
vector of the edge (corresponding to ule) in V. F(e) is
constructed by horizontally concatenating four vectors:
FEI(e) , FEU(e) , FNI(e) , and FNU(e).
Therefore the length of the feature vector F(e) and hence
F(ule) will be: |E| + |E| + |V| + |V|.
Step 4: Dimension reduction of the feature vectors The
length of the feature vector is too large for a large graph,
which causes an increase in the training time of the GCN.
Therefore we reduce the dimension of the feature vector
to 20 by applying Principle Component Analysis (PCA)
(Karl 1901).
Step 5: Training nodes selection and applying GCN.

(a) Training nodes selection Since semi-supervised
learning requires a set of known label nodes for its
training purpose, we run a particular community
detection algorithm a few times (2 - 3 times) on G
and select two sets of edges: (a) edges that always
belong to the same community EC and (b) edges
that do not belong to any particular community
ENC for all runs. We then label the nodes in L cor-
responding to edges in EC to 1, constructing the
node set VCl ⊂ Vl , and the nodes in L correspond-
ing to edges in ENC to 0, constructing the node
set VNCl ⊂ Vl . The set of training nodes is thus:
VTl = VCl ∪ VNCl.

(b) Applying GCN for node classification After gener-
ating the feature vectors and selecting the training
nodes, we apply GCN to L. GCN classifies the
node set Vl into two classes: Vl1 and Vl0 . The edges
in G representing the nodes in Vl1 denote the set
of constant community edges and the edges in G
representing the nodes in Vl0 denote the set of non-
constant community edges.

3.2 Unsupervised edge classification methods

Although the semi-supervised approach performs well, it has
some drawbacks. (i) It needs a set of training nodes (known
labeled nodes) and obtaining a sufficient number of training
nodes can be difficult; (ii) Generation of line graph is time
and memory consuming; (iii) Training a large line graph is
also time-consuming. In order to deal with these problems,
we tried a novel unsupervised approach. In this approach,
we find four local properties of each edge with the help of
the neighbors of its two terminals and generate a histogram
for each of these properties. Then, using a popular image
thresholding algorithm, we find optimum thresholds for each
histogram. Finally, we plug these thresholds into our novel
Algorithms 1 and 2 to filter out the edges in the graph and
generate the constant communities. A schematic diagram of
how this approach works is provided in Fig. 3. Our unsuper-
vised approach consists of the following key steps:

Step 1: Extracting the features for each edge For a vertex
u, let N(u) denote the set of neighbors; Δ(u) denotes the
set of triangles containing vertex u; Also, for a vertex
set Y, let Γ(Y) denote the density of the subgraph that is
induced by the nodes in Y, i.e., the ratio of the number
of edges in the subgraph to the total possible edges in
the subgraph. To classify these edges, we compute four
features (see Fig. 7) as follows:

• Subgraph density induced by both u and v’s neigh-
bors (Dboth). Formally, Dboth(u, v) = Γ(N(v) ∩ N(u)).

• Subgraph density caused by u and v , as
well as their neighbors (Dany). Formally,
Dany(u, v) = Γ(N(v) ∪ N(u)).

Fig. 7 Features used for edge classification. For an edge (u, v); the
red vertices are connected to u only, the green vertices are connected
to v only, and the orange vertices are connected to u and v both. For
ease of visualization, the connections to u and v are not shown.
Dboth(u, v) = density of (3, 4, 5) = 1

3
 Dany(u, v) = density of

(1, 2, 3, 4, 5, 6, 7, 8, u, v) =
18

45
 D

tri
(u, v) = |{(u, v, 3), (u, v, 4), (u, v, 5)}|

÷|{(u, v, 3), (u, v, 4), (u, v, 5), (u, 1, 2), (u, 3, 4),
(v, 7, 8), (v, 4, 6), (v, 3, 7), (v, 3, 4)}| = 1

3
 JI(u, v) =

|{3, 4, 5}| ÷ |{1, 2, 3, 4, 5, 6, 7, 8, u, v}| = 3
10

 Social Network Analysis and Mining (2022) 12:70

1 3

 70 Page 8 of 17

• The Proportion of triangles containing both u and v
to triangles containing at least one of u or v. (Dtri).
Formally, Dtri(u, v) =

|Δ(u)∩Δ(v)|
|Δ(u)∪Δ(v)|.

• The Jaccard index of u and v’s neighbors (JI). For-
mally, JI(u, v) = |N(v)∩N(u)|

|N(v)∪N(u)|.

Step 2: Formation of histograms We create a histogram for
each of the features (the x-axis has values; the y-axis has
frequency). We named the histograms as Hany,Hboth,Htri ,
and HJI , corresponding to Dany,Dboth,Dtri , and JI, respec-
tively.
Step 3: Obtaining threshold using image thresholding
algorithm In this step, we obtain an optimum thresh-
old for each of the histograms. We use a popular image
thresholding algorithm to obtain these thresholds:
Tany, Tboth, Ttri and TJI correspond to Hany,Hboth,Htri and
HJI , respectively.
Step 4: Filtering the edges Suppose B100 denotes the set
that contains the edges that always belong to a commu-
nity, and B0 denotes the rest of the edges that may or may
not belong to some community. The following conditions
hold for an edge to be classified as B100:

 (i) JI is high, i.e., it has a high percentage of com-
mon neighbors, and also, Dboth is high, i.e., the
density of the subgraph induced by the common
neighbors is high.

 (ii) Dany is high, i.e., the subgraph induced by all
the neighbors of u and v (including u and v) has
a high density.

 (iii) Dtri is high, which means the proportion of
triangles containing both u and v to triangles
containing at least one of u or v is high. Since
many triangles are supported by an edge, it is
very likely that their terminals are co-clustered.

3.2.1 Variants of Image thresholding algorithm for edge
classification

In Step 3 of the above unsupervised approach, we used two
variants of thresholding algorithm: (i) binary-thresholding
and (ii) multi-thresholding. In addition to this, we also stud-
ied two modifications of the multi-thresholding approach to
obtain better output.

Edge classification using binary-thresholding algorithm
(Algorithm 1). In the binary classification algorithm, an
optimal threshold for each histogram is separately found
and the results are combined for the classification of the
edges as per the rules in Step 4 above. We define a high
value of the features as being higher than the threshold
given by the corresponding thresholding algorithm. We
used three variants of binary-thresholding approaches
viz; bi-level, histogram concavity, and Binary Otsu in
our study.

Social Network Analysis and Mining (2022) 12:70

1 3

Page 9 of 17 70

Edge classification using multi-thresholding algorithm
(Algorithm 2). We used TSMO (henceforth called Multi-
Otsu) as the multi-thresholding algorithm to find the opti-
mum thresholds. The main challenge in applying Multi-
Otsu is that once the set of thresholds is generated, all the
possible combinations of the thresholds and features have
to be tested to find the optimal one. For example, if the
Multi-Otsu algorithm returns k different thresholds, then
with 4 features, O(k4) combinations should be checked.
Checking each edge’s property against all these thresh-
olds is computationally expensive.
To make classification computationally feasible, we con-
sider the thresholds for each feature separately rather
than in combination. For each threshold, we compute
how many edges are to the right (i.e., are higher) than
the threshold and how many edges are to the left (i.e.,
are lower) than the threshold. Given a strong commu-

nity structure, the number of edges within communities
should be at least as much as the number of edges across
communities – if not higher. Therefore, as a first cut, we
identify the threshold that produces an almost equal num-
ber of edges on the left (lower) and right (higher) sides.
This optimal threshold gives us the initial set of edges that
will always be within communities.
Modification 1: Using iterative multi-thresholding We
further improve the accuracy of Algorithm 2 by itera-
tively applying Multi-Otsu on the subgraph induced
by the edges in B0, which can potentially contain more
within community edges.
We recompute the histograms for the edges in B0
based on the feature values of only these edges. Using
Algorithm 2, we find the optimal threshold on this set
and obtain a split of B0 into B0’ and B100’ where the
assumptions for B0’ and B100’ are the same as for B0

 Social Network Analysis and Mining (2022) 12:70

1 3

 70 Page 10 of 17

and B100, respectively. We then move the edges of B100’
into B100 and set B0 to B0’
This iteration is continued until the change in threshold
is very low(≤ � , where we set � = 0.01) and no new edges
move from B0 to B100. We named this method Multi-
Otsu iterative.
Modification 2: Fixing the singleton communities Once
the edges in B100 have been classified, i.e., they are
always within a community, the subgraph induced by the
edges in B100 forms the constant communities. However,
as seen in the case of the blue vertex in Fig. 1, some com-
munities may be composed of just one vertex, i.e., form
singleton communities.
Most community detection algorithms do not retain sin-
gleton communities and absorb this vertex into a neigh-
boring community. We identify nodes that are not part
of the constant communities. If the node (vertex) has
degree 2, then, if both of its neighbors belong to the same
community, we put the node into that community. If the
neighbors are in different communities, then we move the

node to one of those communities, since there is a 50%
chance that at least one of them will be included in one of
the two communities. We named this method Multi-Otsu
iterative+SC.
We have seen empirically that this heuristic produces a
slightly higher F1-score. However, the accuracy decreases
as the heuristic is applied to vertices of a higher degree.
This is because if the vertex was classified as a singleton,
then it could be in any of its neighboring communities.
The probability that the vertex is in a certain community
decreases with the number of neighboring communities.
To summarize, we present multiple heuristics to classify
edges that form constant communities. First, we study the
semi-supervised method where we convert a graph G to
its corresponding line graph L. By classifying the nodes
in the line graph L using GCN, we classify the edges
in the input graph G to obtain the edges that are possi-
ble candidates for constant communities. Then, we dis-
cuss the pitfalls of the semi-supervised approach, which
includes the problem of obtaining the training set and
time and memory requirements. After that, we discuss
some unsupervised approaches where we use different
local neighborhood properties and generate histograms
based on these properties. This is followed by applying
a popular image thresholding algorithm to find the opti-
mum threshold in the histogram. After the generation of
the threshold for each histogram, we apply certain rules
based on the combination of these thresholds to filter
out the constant community edges. In our unsupervised
approach, we use both binary and multi-thresholding
algorithms. We use several variants of binary-threshold-
ing algorithms like bi-level, histogram concavity, and
Binary Otsu. In our multi-thresholding algorithm, we
use the extended version of Binary Otsu’s (Multi-Otsu)
algorithm. To improve the results, we applied two modifi-
cations to the Multi-Otsu method: (i) Multi-Otsu iterative,
where we apply the Multi-Otsu method to the predicted
non-constant community edges set, and (ii) Multi-Otsu
iterative+SC, where we take care of the singleton com-
munities.

4 Empirical results

In this section, we present our experimental setup and the
results from these experiments.

4.1 Experimental setup

Datasets and Ground Truth A set of real-world networks
are used for our work (Table 1). We obtain ground truth
constant community by executing a community detection
50 times. The order of the vertices is permuted at each

Table 1 The test suite of real-world networks

 Network # Vertices # Edges

Small-size n/ws
Football Kolodziej et al. (2019) 115 613
Jazz Kolodziej et al. (2019) 198 2742
Dolphin Kolodziej et al. (2019) 62 159
Email Guimerà et al. (2003) 1133 5451
Karate club Kolodziej et al. (2019) 34 77
Polbooks Kolodziej et al. (2019) 105 441
Medium-size n/ws
Co-authorship Chakraborty et al. (2014) 103,677 352,183
Com-dblp Leskovec and Krevl (2014) 317,080 1,049,866
Com-amazon Leskovec and Krevl (2014) 334,863 925,872
Large-size n/ws
Com-Youtube Leskovec and Krevl (2014) 1,134,890 2,987,624
Com-LiveJournal Leskovec and Krevl

(2014)
3,997,962 34,681,189

Wiki-topcats Leskovec and Krevl (2014) 1,791,489 28,511,807

Table 2 The list of hyper-parameters used in Optuna

 Name Methods/values

Optimizer Adam, RMSprop, SGD
Learning rate 10−5 to 10−1

Weight decay 5 × 10−5 to 5 × 10−1

Loss function Negative Log-likeli-
hood

Number of epochs 200
Number of layers 2

Social Network Analysis and Mining (2022) 12:70

1 3

Page 11 of 17 70

execution. As shown in Chakraborty et al. (2013), chang-
ing the order in which vertices are processed changes the
results. The communities that were common to all of
these runs were designated as the constant community
ground truth for the given community detection method.
We used three community detection algorithms: Louvain
Blondel et al. (2008), Infomap Rosvall and Bergstrom

(2008), and Label Propagation Raghavan et al. (2007)
to create the ground truth for the small-sized networks.
For medium-sized (nodes = 10K+ and edges in the range
of 10K+ to 1M+) and large-sized networks (nodes =
1M+ and edges in the range of 1M+ to 10M+), it is
very expensive to run a community detection algorithm
multiple times. Therefore, we used only the Louvain

Football Jazz Email Dolphin Karate Polbooks

40

60

80

100

F
1-
sc
or
es

(%
)

L-GCN B-Level H-con Bin-Otsu Mul-Otsu Mul-Otsu-itr Mul-Otsu-itr+ Consen CHAMP

Fig. 8 Performance of different methods for obtaining constant com-
munities for small networks. The ground truth constant community
edges are obtained by executing the Louvain algorithm. The abbre-
viated names are as follows; L-GCN: Line-GCN, B-Level: Bi-level,

H-Con: Histogram concavity, Bin-Otsu: Binary Otsu, Mul-Otsu:
Multi-Otsu, Mul-Otsu-itr: Multi-Otsu iterative, Mul-Otsu-itr+: Multi-
Otsu iterative with singleton community, Consen: Consensus

Football Jazz Email Dolphin Karate Polbooks

20

40

60

80

100

F
1-
sc
or
es

(%
)

L-GCN B-Level H-con Bin-Otsu Mul-Otsu Mul-Otsu-itr Mul-Otsu-itr+ Consen CHAMP

Fig. 9 Performance of different methods for obtaining constant com-
munities for small networks. The ground truth constant community
edges are obtained by executing the Infomap algorithm. The abbre-
viated names are as follows; L-GCN: Line-GCN, B-Level: Bi-level,

H-Con: Histogram concavity, Bin-Otsu: Binary Otsu, Mul-Otsu:
Multi-Otsu, Mul-Otsu-itr: Multi-Otsu iterative, Mul-Otsu-itr+: Multi-
Otsu iterative with singleton community, Consen: Consensus

Football Jazz Email Dolphin Karate Polbooks

20

40

60

80

100

F
1-
sc
or
es

(%
)

L-GCN B-Level H-con Bin-Otsu Mul-Otsu Mul-Otsu-itr Mul-Otsu-itr+ Consen CHAMP

Fig. 10 Performance of different methods for obtaining constant com-
munities for small networks. The ground truth constant community
edges are obtained by executing the Label propagation algorithm.
The abbreviated names are as follows; L-GCN: Line-GCN, B-Level:

Bi-level, H-Con: Histogram concavity, Bin-Otsu: Binary Otsu, Mul-
Otsu: Multi-Otsu, Mul-Otsu-itr: Multi-Otsu iterative, Mul-Otsu-itr+:
Multi-Otsu iterative with singleton community, Consen: Consensus

 Social Network Analysis and Mining (2022) 12:70

1 3

 70 Page 12 of 17

method (which is faster than the other two methods) for
the ground truth creation.
Specifics of the classification algorithms For the semi-
supervised method, we used GCN to classify the nodes
in the line graph (and hence the edges in the correspond-
ing graph). For this GCN model, we use Optuna Akiba
et al. (2019) for hyper-parameter tuning. The list of hyper-
parameters, we used, can be found in Table 2. We have
used 15% training nodes from both classes. To measure
the F1-scores, we have used all the nodes in the network.
For the unsupervised methods, we implemented bi-level,
histogram concavity, and Otsu’s thresholding (both
Binary and Multi-Otsu) algorithms.
Baselines methods We use two baseline algorithms to
compare with our method. The first method is the con-
sensus community algorithm presented in Aditya et al.
(2019). This involves forming a consensus matrix D
based on multiple (we selected 100) executions of com-
munity detection, where Dij represents the number of
times vertices i and j were co-clustered in the same com-
munity. A community detection algorithm is iteratively
applied to the weighted graphs formed from the consen-
sus matrices until less than a convergence percent (default
value of 2%) of all nonzero entries in Di have weights of
less than one.
The second method is called CHAMP (Convex Hull of
Admissible Modularity Partitions) (Weir et al. 2017).

Given a set of partitions, CHAMP identifies the modu-
larity optimization for each partition to obtain the subset
of partitions that are potentially optimal while discarding
the other partitions. These baseline methods can typically
handle only one type of community detection algorithm at
a time. For equitable comparison, we also compared our
classification algorithms with a fixed community detec-
tion method.
Implementation details We implemented the algorithms
in python (version 3.6). Code to implement Multi-Otsu
can be found in George (2019). The codes for the base-
line methods, consensus community and CHAMP, are
at (Tandon et al. 2019) and (Weir et al. 2017), respec-
tively. All algorithms were run on an IntelXeon(R) Pro-
cessor with CPU E3-1270 V2, 3.50GHz8, and 128 GB
of memory.

4.2 Comparisons among various methods

We compared both our proposed semi-supervised ((i)
Line-GCN) and unsupervised methods; ((ii) bi-level; (iii)
histogram concavity; (iv) Binary Otsu; (v) multi-level
Otsu thresholding (Multi-Otsu); (vi) iterative multi-level
Otsu thresholding (Multi-Otsu iterative); (vii) Multi-Otsu
iterative+SC) with the baseline methods Consensus and
CHAMP. Since the baselines are stochastic, the average
results from several runs are reported.

Com-dblp Coauthorship Com-amazon Youtube Wiki-topcat Com-liveJ

40

60

80

F
1-
sc
or
es

(%
)

L-GCN B-Level H-con Bin-Otsu Mul-Otsu Mul-Otsu-itr Mul-Otsu-itr+

Fig. 11 Performance of different methods for obtaining constant com-
munities for medium and large networks. The ground truth constant
community edges are obtained by executing the Louvain algorithm.

The baselines are not shown here because they did not end within a
sizable amount of time. Only for co-authorship network (not shown in
the figure), the consensus method gives 70% F1-scores

Table 3 Comparison of NMI. Best results are highlighted in green, second-best results are highlighted in blue, and the worst in red. X: The pro-
cess did not end within a sizable amount of time. L-GCN: Line-GCN

Social Network Analysis and Mining (2022) 12:70

1 3

Page 13 of 17 70

Comparison of F1-scores with the ground truth communi-
ties In our results, B100 holds the set of constant com-
munity edges. We compared the set B100 with the set of
edges in the constant communities that are obtained from
the ground truth.
Figs. 8, 9, and 10 depict the results (F1-score) for the
small-sized networks. Fig. 11 shows the results for the
medium and large-sized networks. In Figs. 8, 9, and 10,
the ground truth community edges are obtained by exe-
cuting the Louvain, Infomap, and Label propagation algo-
rithms, respectively, whereas in Fig. 11, only the Louvain
algorithm is used to obtain the ground truth community
edges.
For the few small networks (Jazz, Email, and Polbooks)
and all the large networks, the semi-supervised (Line-
GCN) approach gives the maximum F1-score. For the few
networks like Jazz, Email, Com-amazon, Com-Youtube,
and Com-liveJ, the bi-level thresholding approach gives
poor performance. Other binary and multi-thresholding
methods performed well in most of the networks. Com-
pared to the baselines, our methods, especially Line-
GCN, histogram concavity, Binary Otsu, Multi-Otsu,
and its variants, exhibit better results in most cases. For
medium- and large-scale networks, baseline methods (not
shown in Fig. 11) were not completed within a reason-
able time (i.e., within 2 days) except for the co-authorship
network (F1-scores = 70%).
NMI comparison with the ground truth communities How
well are the predicted constant communities overlapped
with the ground truth constant communities? To know
that, we construct the constant communities from the
edges in B100 by obtaining the connected components.
After that, the normalized mutual information (NMI) is
computed between the set of predicted constant commu-
nities and the set of ground truth communities. As we can
see in Table 3, our results are giving comparable or
better NMI scores than the baselines. More specifically,
for the small-sized networks, in most cases (except for
the Football graph), Line-GCN gives comparable scores
(second best or best) to the baselines. The unsupervised
approach gives the worst performance in Jazz and Email
networks, but in other cases, this approach gives the best
or second-best performance. For all the medium and
large-sized graphs, both the semi-supervised (Line-GCN)
and the unsupervised approaches (especially the Multi-
Otsu iterative with singleton community) perform well.
Both methods give equally good results for Com-amazon
and Wiki-topcats networks. For Com-dblp and Co-author-
ship networks, L-GCN gives the best result, whereas the
unsupervised method gives the second best, and for the
Com-Youtube network, the unsupervised method gives
the best result, whereas L-GCN gives the second best.

Ta
bl

e
4

 T
im

e
re

qu
ire

d
fo

r g
ro

un
d

tru
th

 g
en

er
at

io
n

(#
ite

ra
tio

ns
 =

 5
0)

A
ll

ne
tw

or
ks

Fo
ot

-b
al

l
Ja

zz
Em

ai
l

D
ol

-p
hi

n
K

ar
-a

te
Po

l-b
oo

ks
C

oa
ut

h-
or

sh
ip

C
om

-a
m

a-
zo

n
C

om
-d

bl
p

Yo
u-

tu
be

C
om

-li
ve

J
W

ik
i-t

op
ca

ts
1.

06
 s

5.
05

 s
20

.0
9

s
0.

49
 s

0.
25

 s
1.

17
 s

2
h

26
 m

5
h

25
 m

34
 h

 8
 m

14
0

h
8

m
87

2
h

10
 m

96
3

h
3

m

 Social Network Analysis and Mining (2022) 12:70

1 3

 70 Page 14 of 17

Execution time Table 4 reports the time to compute
ground truth constant communities, which increases to as
much as 963 hours for the largest network. Thus, finding
constant communities empirically is not feasible for large
networks and an efficient algorithm of the like proposed
in this paper is essential.
Table 5 shows the execution time for obtaining constant
communities using our algorithms as well as the baselines
for the small networks. Our unsupervised algorithms are
~ 10 times faster. For medium and large networks (see
Table 5), our unsupervised algorithms are fast, even for
networks with 10M+ nodes and 100M+ edges. Although
sometimes the semi-supervised algorithms give compara-
ble results to the unsupervised ones, it takes longer time.

The baseline methods take either a long time to finish or
do not finish within a feasible time frame.

4.3 Results under noisy domains

Real-world networks are often noisy and can be missing
some edges. We use three noise models from Yan and Greg-
ory (2011) as follows to test how well our method performs
under noise.

Uniform: The edges are removed randomly and repeat-
edly until a certain number of edges remain.

Table 5 Time for identifying constant communities for all networks.
Best timing performances for each dataset are denoted by green cells
and the worst by red cells. X: The process did not end within a siz-
able amount of time. The abbreviated names are as follows; L-GCN:

Line-GCN, B-Level: Bi-level, H-Con: Histogram concavity, Bin-
Otsu: Binary Otsu, Mul-Otsu: Multi-Otsu, Mul-Otsu-itr: Multi-Otsu
iterative, Mul-Otsu-itr+: Multi-Otsu iterative with singleton commu-
nity, Consen: Consensus

Fig. 12 F1-scores under different noise scenarios

Social Network Analysis and Mining (2022) 12:70

1 3

Page 15 of 17 70

Crawled: Starting from a node with the smallest maxi-
mum distance from all other nodes, use BFS to crawl the
network and keep the required number of edges.
Censored: At each step, randomly choose one of the
maximum degree nodes and then randomly delete one
of its edges, until a certain number of edges remain in
the network.

Because introducing noise into small networks causes
them to disconnect, we only tested on larger networks. For
each noise type and percentage of edges removed, we cre-
ated the ground truth and computed the F1-score of our pre-
dicted edge labels. In Fig. 12, we show that even when the
network is noisy, our method gives good accuracy.

5 Related work

5.1 Classification using Image Thresholding

We didn’t find any work where image thresholding algo-
rithms are applied to detect communities or any graph-
related problems. However, the image thresholding algo-
rithms are very commonly used for classification of images
such as Mahdy et al. (2020) where they use the image
thresholding algorithms to classify detection of COVID-
19 patients. Iqbal et al. (2018) presented a survey for the
detection and classification of citrus plant diseases, and
Amin et al. (2020) presented a method to detect and clas-
sify tumors. Survey papers by Garcia-Lamont et al. (2018),
Asokan and Anitha (2019), and Chouhan et al. (2018) pre-
sent an overview of all the works related to image threshold-
ing algorithms for classifying images. This paper is the first
attempt to use this approach for graph-related classification
problems. We believe this approach will be extended to other
classification problems in the future.

5.2 Graph neural networks

Graph Convolution Networks are categorized as a sub-class
of techniques under the broader domain of Graph Neural
Networks (GNNs). There are various types of GNNs based
on their application domains. A graph neural network can
be used in many fields, such as classifying the nodes (Kipf
and Welling 2017; Hagenbuchner and Monfardini 2009),
link prediction (Zhang and Chen 2018; Li et al. 2021), graph
classification (Defferrard et al. 2016; Wu et al. 2022; Muel-
ler et al. 2022), graph generation (Li et al. 2018; Liao et al.
2019; Hu et al. 2020), and community detection (Sun et al.
2021; Luo et al. 2021). A comprehensive survey on GNNs
can be found here (Wu et al. 2019, 2020). Souravlas et al.
(2021) gave a brief overview of current state& advances
in deep learning techniques for community detection. We

have also seen many attempts to detect communities using
GNN such as Bruna and Li (2017), Shchur and Günne-
mann (2019), and Moradan et al. (2021). We didn’t find any
work that has attempted to use GNN for detecting constant
communities.

In recent studies, GNNs have also been used with line
graphs. For example, a supervised community detection
task using a GNN model called line graph neural network
(LGNN) is proposed in Chen et al. (2017). LGNN uses both
the graph G and its corresponding line graph L(G) to find the
communities in G. Using the LGNN, the authors in Cai et al.
(2021) study the link prediction task in the graph.

5.3 Constant or consensus community

Community detection is a well-studied problem and numer-
ous algorithms exist (see survey el-Moussaoui et al. 2019).
However, finding the non-stochastic communities is a much
less studied and much more challenging problem.

Community detection algorithms are primarily based on
optimizing objective functions. Due to underlying stochas-
ticity, resulting structures show considerable variations.
Riolo and Newman (2020) suggest that stochasticity can
be reduced by identifying “building blocks,” i.e., groups of
network nodes that are usually found together in the same
community. In Chakraborty et al. (2013), a precursor of this
work, the authors have investigated the properties of con-
stant communities with respect to within community and
across community edges.

A popular approach to finding stable communities is via
consensus clustering as introduced in Lancichinetti and For-
tunato (2012). Variations include multi-resolution consensus
clustering (Jeub et al. 2018), ensemble clustering (Poulin
and Théberge 2019; Chakraborty et al. 2016) and fast con-
sensus (Aditya et al. 2019) clustering and CHAMP Weir
et al. (2017). Nevertheless, as seen here, these are not yet
fast enough for large networks.

6 Reproducibility

All our source code and implementations, including the
baseline implementation, are available at https:// github.
com/ anjan git000/ ImgTh AlgoC onsCo mm. The URL pro-
vided above has a Readme file which explains the steps
to reproduce the results presented in this paper. For large
networks such as Com-Amazon, Com-Dblp, Youtube, and
wiki-topcats, we recommend to use a HPC cluster with a
minimum RAM of 128GB and Python parallel framework
such as mpi4py (Dalcin and Fang 2021), and Dask (Rocklin
2015). The results can also be executed on non-HPC clus-
ters, but it will take a long time for large networks.

https://github.com/anjangit000/ImgThAlgoConsComm
https://github.com/anjangit000/ImgThAlgoConsComm

 Social Network Analysis and Mining (2022) 12:70

1 3

 70 Page 16 of 17

7 Conclusions and future work

We applied the semi-supervised and the unsupervised clas-
sification techniques for identifying constant communities
that scale to large networks. Although the semi-supervised
approach gives good results, it requires training data, which
is sometimes difficult to obtain. We also applied an image
segmentation inspired unsupervised approach. We showed
that the unsupervised approach gives results as good as the
semi-supervised approach and in less time. Our work is an
important contribution to stabilizing community detection
results for large networks.

One of the important future works that we wish to take up
is the detection of overlapping constant communities. Over-
lapping community detection requires grouping the nodes
into clusters so that there exist some nodes that belong to
more than one community; in other words, some nodes may
have multiple community ID’s. In the overlapping constant
communities, the nodes should maintain two properties, (i)
they should always belong to the same overlapping com-
munity (s), and, (ii) nodes may have multiple labels. To
identify the edges of the overlapping communities we have
to explore which features are the most informative for clas-
sification. Another challenge for overlapping communities is
the increased memory footprint as nodes can have multiple
communities. To make our application scalable and handle
large-scale graphs for detecting constant overlapping com-
munities, we need to run this on distributed clusters. We
plan to modify our data structure and use high-performance
computing framework (HPC) such as MPI/Open ACC to
implement the proposed algorithm and overlapping version.

Other future plans include applying the constant com-
munities obtained using our method to design various down-
stream applications, including outlier detection, domain
adaptation, feature selection, and other important prob-
lems in data mining. On the implementation side, we aim
to develop a parallel version of our algorithms to further
improve their performance.

Acknowledgements S.B.’s work was supported by NSF CCF#
1956373.

References

Aditya T, Aiiad A, Vijey T, Wadee A, Santo F (2019) Fast consensus
clustering in complex networks. Physical Review E. https:// doi.
org/ 10. 1103/ physr eve. 99. 042301

Akiba T, Sano S, Yanase T, Ohta T, Koyama M (2019) Optuna: A
next-generation hyperparameter optimization framework. In: Pro-
ceedings of the 25rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining

Amin J, Sharif M, Yasmin M, Fernandes SL (2020) A distinctive
approach in brain tumor detection and classification using mri.
Pattern Recogn Lett 139:118–127

Asokan A, Anitha J (2019) Change detection techniques for remote
sensing applications: a survey. Earth Sci Inf 12(2):143–160

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast
unfolding of communities in large networks. J. of Stat. Mech.
(10), 10008

Bruna J, Li X (2017) Community detection with graph neural networks.
stat 1050, 27

Cai L, Li J, Wang J, Ji S (2021) Line graph neural networks for link
prediction. IEEE Transactions on Pattern Analysis and Machine
Intelligence

Chakraborty T, Srinivasan S, Ganguly N, Bhowmick S, Mukherjee
A (2013) Constant communities in complex networks. Sci Rep
3(1):1–9

Chakraborty T, Park N, Subrahmanian VS (2016). Ensemble-based
algorithms to detect disjoint and overlapping communities in net-
works. https:// doi. org/ 10. 1109/ ASONAM. 2016. 77522 16

Chakraborty T, Srinivasan S, Ganguly N, Mukherjee A, Bhowmick S
(2014) On the permanence of vertices in network communities.,
1396–1405

Chen Z, Li X, Bruna J (2017) Supervised community detection with
line graph neural networks. arXiv preprint arXiv: 1705. 08415

Chouhan SS, Kaul A, Singh UP (2018) Soft computing approaches
for image segmentation: a survey. Multimed Tools Appl
77(21):28483–28537

Chowdhury A, Srinivasan S, Bhowmick S, Mukherjee A, Ghosh K
(2021) Constant community identification in million scale net-
works using image thresholding algorithms. In: Proceedings of
the 2021 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining. ASONAM ’21, pp. 116–
120. Association for Computing Machinery, New York, NY, USA
. https:// doi. org/ 10. 1145/ 34873 51. 34883 50

Dalcin L, Fang Y-LL (2021) mpi4py: Status update after 12 years of
development. Comput Sci Eng. https:// doi. org/ 10. 1109/ MCSE.
2021. 30832 16

Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional Neu-
ral Networks on Graphs with Fast Localized Spectral Filtering

dos Anjos A, Reza Shahbazkia H (2008) Bi-level Image Thresholding
- A Fast Method. In: Proceedings of the First International Confer-
ence on Bio-inspired Systems and Signal Processing - Volume 2:
BIOSIGNALS, (BIOSTEC 2008), pp. 70–76 . https:// doi. org/ 10.
5220/ 00010 64300 700076. INSTICC

el-Moussaoui M, Agouti T, Tikniouine A, el Adnani M, (2019) A com-
prehensive literature review on community detection: approaches
and applications. Procedia Comput Sci. https:// doi. org/ 10. 1016/j.
procs. 2019. 04. 042

Frank H, Z NR, (1960) Some properties of line digraphs. Rendiconti
del Circolo Matematico di Palermo. https:// doi. org/ 10. 1007/
BF028 54581

Garcia-Lamont F, Cervantes J, López A, Rodriguez L (2018) Segmen-
tation of images by color features: A survey. Neurocomputing
292:1–27

George P (2019) Improved two-stage multithreshold Otsu method.
https:// github. com/ ps- george/ multi thres hold

Guimerà R, Danon L, Díaz-Guilera A, Giralt F, Arenas A (2003) Self-
similar community structure in a network of human interactions.
Phys Rev E. https:// doi. org/ 10. 1103/ physr eve. 68. 065103

Guimerà R, Danon L, Díaz-Guilera A, Giralt F, Arenas A (2003) Self-
similar community structure in a network of human interactions.
Phys Rev E. https:// doi. org/ 10. 1103/ physr eve. 68. 065103

Hagenbuchner FSMGACTM, Monfardini G (2009) The graph neural
network model. Appl Netw Sci 20(1):61–80

Hammond DK, Vandergheynst P, Gribonval R (2011) Wavelets on
graphs via spectral graph theory. Appl Comput Harmon Anal
30(2):129–150. https:// doi. org/ 10. 1016/j. acha. 2010. 04. 005

Huang Deng-Yuan WCH, Ta-Wei Lin (2011) Automatic multilevel
thresholding based on two-stage otsu’s method with cluster

https://doi.org/10.1103/physreve.99.042301
https://doi.org/10.1103/physreve.99.042301
https://doi.org/10.1109/ASONAM.2016.7752216
http://arxiv.org/abs/1705.08415
https://doi.org/10.1145/3487351.3488350
https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.5220/0001064300700076
https://doi.org/10.5220/0001064300700076
https://doi.org/10.1016/j.procs.2019.04.042
https://doi.org/10.1016/j.procs.2019.04.042
https://doi.org/10.1007/BF02854581
https://doi.org/10.1007/BF02854581
https://github.com/ps-george/multithreshold
https://doi.org/10.1103/physreve.68.065103
https://doi.org/10.1103/physreve.68.065103
https://doi.org/10.1016/j.acha.2010.04.005

Social Network Analysis and Mining (2022) 12:70

1 3

Page 17 of 17 70

determination by valley estimation. Int J Innovative Comput, Inf
Control 7(10):5631–5644

Huang D-Y, Wang C-H (2009) Optimal multi-level thresholding using
a two-stage otsu optimization approach. Pattern Recogn Lett
30:275–284. https:// doi. org/ 10. 1016/j. patrec. 2008. 10. 003

Hu Z, Dong Y, Wang K, Chang K-W, Sun Y (2020) Gpt-gnn: Gen-
erative pre-training of graph neural networks. In: Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1857–1867

Iqbal Z, Khan MA, Sharif M, Shah JH (2018) An automated detection
and classification of citrus plant diseases using image processing
techniques: a review. Comput and Electron Agric 153:12–32

Jeub L, Sporns O, Fortunato S (2018) Multiresolution consen-
sus clustering in networks. Sci Rep. https:// doi. org/ 10. 1038/
s41598- 018- 21352-7

Karl P (1901) On lines and planes of closest fit to systems of points in
space. LIII. https:// doi. org/ 10. 1080/ 14786 44010 94627 20

Kipf TN, Welling M (2017) Semi-Supervised Classification with Graph
Convolutional Networks. In: Proceedings of the 5th International
Conference on Learning Representations. ICLR ’17 . https:// openr
eview. net/ forum? id= SJU4a yYgl

Lancichinetti A, Fortunato S (2012) Consensus clustering in complex
networks. Sci Rep. https:// doi. org/ 10. 1038/ srep0 0336

Lehot PGH (1974) An optimal algorithm to detect a line graph and
output its root graph. J ACM 21(4):569–575. https:// doi. org/ 10.
1145/ 321850. 321853

Leskovec J, Krevl A (2014) SNAP Datasets: Stanford Large Network
Dataset Collection. http:// snap. stanf ord. edu/ data

Liao R, Li Y, Song Y, Wang S, Hamilton W, Duvenaud DK, Urtasun R,
Zemel R (2019) Efficient graph generation with graph recurrent
attention networks. Advances in Neural Information Processing
Systems 32

Li Y, Vinyals O, Dyer C, Pascanu R, Battaglia P (2018) Learning Deep
Generative Models of Graphs

Li B, Xia Y, Xie S, Wu L, Qin T (2021) Distance-enhanced graph
neural network for link prediction. ICML 2021 Workshop on
Computational Biology

Luo L, Fang Y, Cao X, Zhang X, Zhang W (2021) Detecting com-
munities from heterogeneous graphs: A context path-based graph
neural network model. In: Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge Management,
pp. 1170–1180

Mahdy LN, Ezzat KA, Elmousalami HH, Ella HA, Hassanien AE
(2020) Automatic x-ray covid-19 lung image classification system
based on multi-level thresholding and support vector machine.
MedRxiv

Moradan A, Draganov A, Mottin D, Assent I (2021) Ucode: Unified
community detection with graph convolutional networks. arXiv
preprint arXiv: 2112. 14822

Mueller TT, Paetzold JC, Prabhakar C, Usynin D, Rueckert D, Kaissis
G (2022) Differentially private graph classification with gnns.
arXiv preprint arXiv: 2202. 02575

Otsu NA (1979) Threshold Selection Method from Gray-level His-
tograms. IEEE Transa Sys, Man and Cybernetics 9(1):62–66.
https:// doi. org/ 10. 1109/ TSMC. 1979. 43100 76

Poulin V, Théberge F (2019) Ensemble clustering for graphs: compari-
sons and applications. Appl Netw Sci 4(1):51

Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm
to detect community structures in large-scale networks. Phys Rev
E. https:// doi. org/ 10. 1103/ physr eve. 76. 036106

Riolo MA, Newman MEJ (2020) Consistency of community structure
in complex networks. Phys Rev E. https:// doi. org/ 10. 1103/ physr
eve. 101. 052306

Rocklin M (2015) Dask: Parallel computation with blocked algorithms
and task scheduling. In: Proceedings of the 14th Python in Science
Conference . Citeseer

Rosenfeld A, De La Torre P (1983) Histogram concavity analysis as an
aid in threshold selection. IEEE Trans Systems, Man, and Cyber-
netics SMC 13(2):231–235. https:// doi. org/ 10. 1109/ TSMC. 1983.
63131 18

Rosvall M, Bergstrom CT (2008) Maps of random walks on complex
networks reveal community structure. PNAS 105(4):1118–1123

Roussopoulos N (1973) A max m, n algorithm for determining the
graph h from its line graph g. Inf Process Lett 2:108–112

Shchur O, Günnemann S (2019) Overlapping community detection
with graph neural networks. arXiv preprint arXiv: 1909. 12201

Souravlas S, Anastasiadou S, Katsavounis S (2021) A survey on
the recent advances of deep community detection. Appl Sci
11(16):7179

Sun J, Zheng W, Zhang Q, Xu Z (2021) Graph neural network encoding
for community detection in attribute networks. IEEE Transactions
on Cybernetics

Tandon A, Albeshri A, Thayananthan V, Alhalabi W, Fortunato S
(2019) Fast consensus clustering in complex networks. https://
github. com/ adity at/ fastc onsen sus

Weir W, Emmons S, Gibson R, Taylor D, Mucha P (2017) Post-pro-
cessing partitions to identify domains of modularity optimization.
Algorithms. https:// doi. org/ 10. 3390/ a1003 0093

Weir W, Emmons S, Gibson R, Taylor D, Mucha P (2017) CHAMP -
Convex Hull of Admissible Modularity Partitions. https:// github.
com/ wweir 827/ CHAMP

Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2019) A comprehen-
sive survey on graph neural networks. IEEE transact neural netw
learn syst 32(1):4–24

Wu L, Cui P, Pei J, Zhao L, Song L (2022) In: Wu, L., Cui, P., Pei,
J., Zhao, L. (eds.) Graph Neural Networks, pp. 27–37. Springer,
Singapore . https:// doi. org/ 10. 1007/ 978- 981- 16- 6054-2_3

Wu S, Sun F, Zhang W, Cui B (2020) Graph neural networks in rec-
ommender systems: a survey. arXiv preprint arXiv: 2011. 02260

Yan B, Gregory S (2011) Finding missing edges and communities
in incomplete networks. J Phys A: Math Theor 44(49):495102.
https:// doi. org/ 10. 1088/ 1751- 8113/ 44/ 49/ 495102

Zhang M, Chen Y (2018) Link prediction based on graph neural net-
works. In: Proceedings of the 32nd International Conference on
Neural Information Processing Systems. NIPS’18, pp. 5171–5181.
Curran Associates Inc., Red Hook, NY, USA

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.patrec.2008.10.003
https://doi.org/10.1038/s41598-018-21352-7
https://doi.org/10.1038/s41598-018-21352-7
https://doi.org/10.1080/14786440109462720
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1038/srep00336
https://doi.org/10.1145/321850.321853
https://doi.org/10.1145/321850.321853
http://snap.stanford.edu/data
http://arxiv.org/abs/2112.14822
http://arxiv.org/abs/2202.02575
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1103/physreve.76.036106
https://doi.org/10.1103/physreve.101.052306
https://doi.org/10.1103/physreve.101.052306
https://doi.org/10.1109/TSMC.1983.6313118
https://doi.org/10.1109/TSMC.1983.6313118
http://arxiv.org/abs/1909.12201
https://github.com/adityat/fastconsensus
https://github.com/adityat/fastconsensus
https://doi.org/10.3390/a10030093
https://github.com/wweir827/CHAMP
https://github.com/wweir827/CHAMP
https://doi.org/10.1007/978-981-16-6054-2_3
http://arxiv.org/abs/2011.02260
https://doi.org/10.1088/1751-8113/44/49/495102

	Constant community identification in million-scale networks
	Abstract
	1 Introduction
	2 Overview of the methods
	2.1 Semi-supervised classification
	2.2 Unsupervised classification
	2.2.1 Bi-level thresholding
	2.2.2 Binary Otsu
	2.2.3 Multi-Otsu
	2.2.4 Histogram concavity analysis

	3 Our contribution
	3.1 Semi-supervised edge classification method
	3.2 Unsupervised edge classification methods
	3.2.1 Variants of Image thresholding algorithm for edge classification

	4 Empirical results
	4.1 Experimental setup
	4.2 Comparisons among various methods
	4.3 Results under noisy domains

	5 Related work
	5.1 Classification using Image Thresholding
	5.2 Graph neural networks
	5.3 Constant or consensus community

	6 Reproducibility
	7 Conclusions and future work
	Acknowledgements
	References

