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Abstract
The inherently stochastic nature of community detection in real-world complex networks poses an important challenge in 
assessing the accuracy of the results. In order to eliminate the algorithmic and implementation artifacts, it is necessary to 
identify the groups of vertices that are always clustered together, independent of the community detection algorithm used. 
Such groups of vertices are called constant communities. Current approaches for finding constant communities are very 
expensive and do not scale to large networks. In this paper, we use binary edge classification to find constant communities. 
The key idea is to classify edges based on whether they form a constant community or not. We present two methods for edge 
classification. The first is a GCN-based semi-supervised approach that we term Line-GCN. The second is an unsupervised 
approach based on image thresholding methods. Neither of these methods requires explicit detection of communities and 
can thus scale to very large networks of the order of millions of vertices. Both of our semi-supervised and unsupervised 
results on real-world graphs demonstrate that the constant communities obtained by our method have higher F1-scores and 
comparable or higher NMI scores than other state-of-the-art baseline methods for constant community detection. While the 
training step of Line-GCN can be expensive, the unsupervised algorithm is 10 times faster than the baseline methods. For 
larger networks, the baseline methods cannot complete, whereas all of our algorithms can find constant communities in a 
reasonable amount of time. Finally, we also demonstrate that our methods are robust under noisy conditions. We use three 
different, well-studied noise models to add noise to the networks and show that our results are mostly stable.

Keywords Constant community · Unsupervised · Semi-supervised · GCN · Line graph

1 Introduction

Detecting communities is a fundamental operation in large-
scale real-world networks. Unfortunately, this operation is 
also inherently stochastic. The communities detected can 
vary based on the algorithm, the parameters, and even the 
order in which the vertices are processed. One method to 
reduce the effect of these algorithmic artifacts is to identify 
constant communities. Constant communities are a group of 
vertices which are always assigned to the same community 
and thus exhibit stable partitions. In Fig. 1, the first two rows 
represent the community structure from two different algo-
rithms, and the third row shows the constant communities 
that are common across the two results.

Current approaches to detecting constant communities 
involve executing a community detection algorithm multi-
ple times, or running different community detection algo-
rithms, and then combining the results to identify the set 
of vertices that are grouped together across all the runs. 
These approaches are, however, very expensive in terms of 
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time and memory and do not scale to large networks. In this 
paper, we propose binary edge classification as a method 
to identify constant communities. The edges of a network 
are classified as whether or not they are part of a constant 
community. Since the classification depends only on easily 
computable properties of edges and not on finding communi-
ties, our methods are much faster and can be applied to very 
large networks.

Our contribution Our primary contributions are as follows;

• Applying semi-supervised methods, namely the Graph 
Convolution Network (GCN) (Kipf and Welling 2017), 

to implement binary classification of edges. Since GCN 
is typically used for classifying nodes, we convert the 
graph into a line graph where each edge becomes a node 
(see Fig. 2).

• Applying unsupervised methods based on image thresh-
olding (namely bi-level dos Anjos and Reza Shahbazkia 
2008, histogram concavity Rosenfeld and De La Torre 
1983, Binary Otsu and TSMO aka Multi-Otsu Otsu 
1979) to implement binary classification. We create a 
histogram of the values of the features, and then classify 
the edges based on the thresholds in the histogram (see 
Fig. 3).

• We evaluate the accuracy and performance of our meth-
ods with two baseline approaches: CHAMP (Weir et al. 
2017) and the Consensus community algorithm (Aditya 
et al. 2019). Our experiments demonstrate that our pro-
posed methods provide comparable or higher accuracy, 
as per F1-score or normalized mutual information (NMI). 
For medium and large networks, the baseline methods do 
not complete, but all our methods finish at a reasonable 
time.

• Studying the effect of noise with respect to our 
approaches. Over three different noise models (Uniform, 
Crawled, and Censored), we show that our methods pro-
vide high accuracy, even when noise is introduced.

Fig. 1  Example of constant communities. Different colors (red and 
green) represent different communities to which vertices are assigned 
for each type of algorithm. Constant communities are the clusters that 
occur across all the outputs

Fig. 2  Steps to detect the constant community using semi-supervised 
workflow. In Step 1, the line graph is generated from the input graph. 
In Step 2, features are extracted from the original graph. In Step 3, the 
feature vector for each node in the line graph is constructed using the 
features in Step 2. In Step 4, the dimensions of the feature vectors are 

reduced using PCA. In Step 5, with the help of the selected training 
nodes, GCN is applied to the line graph to classify the nodes. Finally, 
the edges of the input graph are classified using the classified nodes 
in the line graph to find the constant community
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The present paper is an extension of our previous work 
(Chowdhury et al. 2021) published in the Proceedings of the 
ASONAM 2021 conference. In the earlier work, we only 
studied an unsupervised approach to detecting constant com-
munity while considering only the variants of the classic 
Otsu’s image thresholding algorithm to filter out the constant 
community edges. In this paper, we consider both the semi-
supervised and unsupervised approaches to obtaining con-
stant community. In the semi-supervised approach, we have 
used GCN and Line graph of the input graph to detect the 
constant community. In the unsupervised approach, in addi-
tion to Otsu’s algorithm, we also study the bi-level and histo-
gram concavity methods for better generalization in thresh-
olding. We have also added the study on noisy environment 
to the present work, and have empirically demonstrated that 
our method still performs better than the baselines.

This paper is organized as follows: In Sect. 2, we pro-
vide an overview of the semi-supervised and unsupervised 
methods used for our algorithms. In Sect. 3, we describe 
how we use these algorithms to find constant communities. 
In Sect. 4, we present the experimental results that demon-
strate the advantages of our approach, as well as how our 
methods perform in a noisy setting. We present related work 
in Sect. 5, reproducibility in Sect. 6, and conclude with a 
discussion of future directions in Sect. 7.

2  Overview of the methods

In this section, we describe the different semi-supervised 
and unsupervised methods that we used for binary classifi-
cation of edges.

2.1  Semi‑supervised classification

We use graph convolutional network (GCN) (Kipf and Well-
ing 2017) as our semi-supervised technique. Since GCN is a 
node-based classifier and we are doing an edge classification 
task, we convert our graph G to its corresponding line graph 
(Frank and Z 1960) L. A brief description of the line graph 
and the GCN is given as follows.

Line graph The line graph L(Vl , El ) (Frank and Z 1960) 
of a graph G(V, E) can be defined as follows:

• Each vertex ul in L represents an edge e in G.
• (ul, vl ) ∈ El iff the edges eu and ev in G representing 

ul and vl , respectively, are incident in G.

A toy example of the construction of the line graph is 
given in Fig. 4. We can obtain the number of nodes and 
edges in a line graph easily. The number of nodes in a 
line graph L is |Vl| = |E| and the number of edges in L is 
�El� =

1

2

∑�V�
i=1

deg2
i
− �E� , where degi is the degree of ver-

tex vi ∈ V . Conversion of a graph G to its line graph L can 
be done in linear time (Lehot 1974; Roussopoulos 1973).

Fig. 3  Steps to detect the constant community using unsupervised 
workflow. In Step 1, features are extracted using the neighbors of 
each edge. In Step 2, histograms are generated for each feature. In 
Step 3, by applying an image thresholding algorithm, an optimum 

threshold is obtained for each histogram. In Step 5, edges are filtered 
out based on the thresholds, and finally we get the constant communi-
ties

Fig. 4  Construction of the line graph L from the graph G. Edges in G 
are converted to nodes in L 



 Social Network Analysis and Mining           (2022) 12:70 

1 3

   70  Page 4 of 17

GCN The Graph Convolutional Neural Network (GCN) 
(Kipf and Welling 2017) is a type of Graph Neural Net-
work (GNN) used for semi-supervised node classification 
on graphs. It is a first-order approximation of the Spectral 
Graph Convolution (Hammond et al. 2011). Formally, the 
GCN can be described as the following equation:

where Â = D̃−0.5ÃD̃−0.5 , Ã = A + I  , I be the identity 
matrix of order |V| × |V| . D̃ =

∑
j Ãij , A be the adjacency 

matrix of the undirected graph G of size |V| × |V| , � 
is the activation function (e.g., ReLU(⋅) = max{0, ⋅} ), 
Hk  is the feature representation at layer k ; 
H0 = X = [x1, x2, ..., xn]

T ∈ ℝ
|V|×c be the feature matrix, 

xi ∈ ℝ
c be the feature vector of dimension c and Wk is the 

weight matrix at layer k. In the output layer, the softmax 
function can be used as the activation function to classify 
the nodes in the graph.

2.2  Unsupervised classification

In our unsupervised method, we use some popular image 
thresholding algorithms such as bi-level (dos Anjos and 
Reza Shahbazkia 2008), Binary Otsu Otsu (1979), Multi-
Otsu Huang and Wang (2009), and histogram concavity 
(Rosenfeld and De La Torre 1983).

2.2.1  Bi‑level thresholding

A histogram is perfectly balanced if it has the same distribu-
tion of background and foreground. In bi-level thresholding 
method, an unbalanced histogram is tried to balance to find 
out the optimum threshold. It assumes that the input image 
is divided into two main classes: (i) the background and (ii) 
the foreground.

Formal overview Let m(g) be the number of entries hav-
ing feature value g, L be the number of feature values, e0 
and eL−1 be the first and last feature values (along the 
x-axis) in the histogram. So, emid =

e0+eL−1

2
 be the middle 

of these two feature values. Now, the weight of the left 
side of the emid be Wl =

∑emid−1

i=e0
m(i) and the right side 

would be Wr =
∑eL−1

i=emid
m(i) . Based on the proposed algo-

rithm in dos Anjos and Reza Shahbazkia (2008) (Algo-
rithm 4.1), it checks which side is heavier and update Wl , 
Wr , e0 and eL−1 accordingly until e0 = eL−1 = T = optimum 
threshold.

2.2.2  Binary Otsu

Otsu’s binary classification (Otsu 1979) is used to binarize 
grayscale images such that the object in the foreground 

Hk+1 = 𝜎(ÂHkWk)

can be distinguished from the background. The output is 
a single intensity threshold that separates pixels into two 
classes: foreground and background. To determine this opti-
mal threshold, the algorithm adjusts the threshold values to 
maximize the variance in intensity between the two classes.

Formal overview The probability distribution of g is, 
p(g) = m(g)∕m ; m is the total number of entries. For a 
threshold T, all entries with feature value below T are 
given by nB(T) =

∑t

i=e0
p(i) and all entries with feature 

value over the threshold are given by nO(T) =
∑eL−1

i=T
p(i) . 

ei is the ith feature value, L is the number of the feature 
values, t ∈ {e0, ..., eL−1} is the maximum value just below 
T.
Let �B(T) be the mean, and �2

B
(T) be the variance of 

all entries with feature value less than the threshold, 
which in this case is analogous to the background of the 
image. Let �O(T) be the mean, and �2

O
(T) be the vari-

ance of all entries with feature value above the thresh-
old, which in this case is analogous to the foreground, 
i.e., the object present in the image. Let �2 is the com-
bined variance and � is the combined mean over all 
edges. Given these values, the within class variance 
can be defined as �2

W
(T) = nB(T)�

2

B
(T) + nO(T)�

2

O
(T) 

and between class variance can be defined as; 
�2

X
(T) = �2 − �2

W
(T) = nB(T)nO(T)[�B(T) − �O(T)]

2.
We apply Otsu’s method to obtain T such that �2

X
(T) 

is maximized. However, as shown in Fig. 5, the single 
threshold-based binarization may not always yield the 
best results. In this case, the flower (object) cannot be 
demarcated from the background by the conventional 
Binary Otsu.

2.2.3  Multi‑Otsu

Otsu’s binary-level thresholding (Otsu 1979) can be 
extended to multi-level thresholding (Huang and Wang 
2009) in order to determine a number of thresholds to seg-
ment an image into clusters and recognize the various parts 
of it. Fig. 5 provides an example of an image segmentation 
task using multi-level Otsu thresholding.

We have used the Two-Stage Multi-threshold Otsu algo-
rithm (TSMO) (Huang and Wang 2009; Huang and Lin 
2011). Our goal was to see if, from among the multiple 
thresholds, we might judiciously arrive at one that better 
demarcates the object and the background as compared to 
the Binary Otsu. Clearly, this improves the result over that 
of Binary Otsu in Fig. 5.

Formal overview In multi-level thresholding, if a graph 
is segmented into K clusters ( C0,C1, ...,CK−1 ) then we 
need to look for K − 1 thresholds. The histogram of L 
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values of a given feature is divided into M(> (K − 1)) 
groups. So, L can be written as 

⋃M−1

q=0
Lq , where each Lq 

is a non-empty subset of L and Lq1 ∩ Lq2 = � , where 
q1 ≠ q2 and q1, q2 ∈ {0, ...,M − 1} . The occurrence 
probability PLq

 and the mean feature value MLq
 of Lq can 

be written as PLq
=
∑

i∈Lq
p(i) and MLq

=

∑
i∈Lq

i∗p(i)

PLq

 . 

Therefore, for each cluster, Ck , where k ∈ {0, ...K − 1} , 
the cumulative probability wk =

∑
Lq∈Ck

PLq
 and mean 

feature value �k =
∑

Lq∈Ck

MLq
∗PLq

wk

 . Hence, the mean fea-
ture value of the whole graph � =

∑K−1

k=0
�kwk and 

between class variance �2

B
=
∑K−1

k=0
wk(�k − �)2 . In the 

first stage of TSMO, Multi-level Otsu thresholding is 
used to find the optimal sets with number {q∗

0
, q∗

1
, ..., q∗

K−2
 } 

for which �2

B
 is maximum; Formally, {q∗

0
, q∗

1
, ..., q∗

K−2
} = 

argmax e0≤q0<q1...<qK−2<M−1{𝜎
2

B
(q0, q1, ..., qK−2)} . Hence, 

optimal thresholds fall into {Lq∗
0

, Lq∗
1

, ..., Lq∗
K−2

} . In the sec-
ond stage, the optimal threshold th∗

k
 for each group Lq∗

k
 is 

computed using the Binary Otsu thresholding as 
th∗

k
= argmax thk∈Lq∗

k

{�2

B
(thk)} , k = 0, 1, ...,K − 2 , finding 

the optimal threshold th∗
k
 for which �2

B
 is maximum.

2.2.4  Histogram concavity analysis

For a histogram of an image, the ranges can be easily sep-
arated iff the image can be clearly segmented into object 
and background. In this case, the valley can be easily seen 
and the threshold is the point at the bottom of the valley. 
But when the ranges overlap, then there are no valleys in 

the histogram. In that case, the optimum threshold could 
be found at the root of the shoulder (where the object peak 
and background pick overlap). Finding the valleys and the 
shoulders is not a trivial task. But both of them are part of 
the concavities in the histogram. By analyzing the concavity 
structure, one can find the optimum threshold.

Formal overview We can see a histogram H as a 2-D 
bounded region as: ( e0, 0 ), ( e0,m(e0) ), ( eL−1,m(eL−1) ) 
and ( eL−1, 0 ). By constructing the convex hull of H, we 
can find the concavity of H. A convex hull H̄ of H is the 
smallest convex polygon that contains H. The concavity 
can be measured by the set difference H − H̄ . To con-
struct H̄ , we start from ( e0,m(e0) ) compute the slope �i 
between points ( e0,m(e0) ) and ( ei,m(ei) ) for 1 ≤ i < L . 
So, ( e0,m(e0) ), ( ek1 ,m(ek1 ) ) be the side of the convex hull 
if �k1 be the largest among the slopes. This process will be 
repeated, i.e., we find the slope of ( ek1 ,m(ek1 ))(ei,m(ei) ), 
k2 + 1 ≤ i < L and �k2 be the largest slope yielding 
( ek1 ,m(ek1 ))(ek2 ,m(ek2 ) ) and so on, until we reach L − 1.
Let m̄(ei) be the height of H̄ at property value ei . A point 
ei is in a concavity if ( m̄(ei) - m(ei) ) > 0 . Optimum thresh-
olds can be found at et for which ( m̄(et) - m(et) ) is maxi-
mum.
Example An example of how the optimum threshold 
can be found using histogram concavity is provided in 
Fig. 6. In Fig. 6(a), we can see a histogram H. In Fig. 6(b) 
to 6(f), the construction of the convex hull H̄ of H is 
shown. Fig. 6(f) shows the convex hull H̄ of H along with 
H. In Fig. 6(g), we scan from left to right and compute 

Fig. 5  Various image thresholding techniques that delineate the foreground of an image from its background
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m̄(ei) - m(ei) , ∀i ∈ {0, 1, ..., L − 1} , and finally, a value et 
is found for which ( m̄(et) - m(et) ) is maximum. Therefore 
et is chosen as the optimum threshold.

3  Our contribution

We first propose a semi-supervised edge classification 
method for constant community identification. We also pro-
pose an unsupervised edge classification task for the same 
purpose. In both of our classification methods, we find the 
constant communities by transforming the problem to a 
binary classification of edges.

3.1  Semi‑supervised edge classification method

In the semi-supervised (graph-based) technique, we only 
know a few node labels, and the goal is to predict the labels 
of other nodes. A popular deep learning approach that uses 
graph-based semi-supervised learning techniques is GCN. 
GCN is primarily used to classify the nodes in a graph.

In our work, we use the GCN for the edge classification 
task and find constant communities. To enable the GCN to 
classify the edges, we convert the input graph to its cor-
responding line graph. In this way, each edge in the input 
graph is represented by a unique node in its corresponding 
line graph. Finally, the classification of nodes in the line 
graph implies the classification of edges in the input graph.

A schematic diagram of how this approach works is pro-
vided in Fig. 2 . Details of the key steps are given as follows:

Step 1: Line graph generation By default, GCN is a node 
classifier. So, to make the GCN work as an edge classifier, 
we first convert the input graph G to its corresponding 
line graph L, and then we classify the nodes in the line 
graph. Since each node in the line graph L represents an 
edge in the input graph G, classifying the nodes in L is 
the same as classifying the edges in G.

Step 2: Feature generation from the input graph One of 
the requirements to classify the nodes in L is to have a 
feature vector for each node. Each feature vector com-
prises a sequence of features. In this step, we will dis-
cuss the generation of the features required to construct 
a feature vector.
The likelihood that an edge will always be within a com-
munity is determined by the connections between the 
neighbors of the endpoints. To classify the edges in G, 
we select several features that indicate that the neighbors 
of the endpoints and the endpoints themselves form dense 
clusters. Since an edge e in G represents a node ule in L, 
therefore, constructing features for e ∈ E is the same as 
constructing features for ule ∈ Vl.
We extracted the features of an edge e = (u, v) in G based 
on four methods that use the neighbors of u and v to cre-
ate four vectors of features, viz., FEI(e) , FEU(e) , FNI(e) , 
and FNU(e) . Each element in the vectors represents a 
feature. The construction of these four vectors is given 
below: 

 (i) FEI(e) : For each edge e, we generate a vector 
FEI(e) of size |E| while initializing each cell to 
zero. Note that each cell represents an edge in G 
and hence a node in L. Then, we collect the set 
of common edges EIe between the neighbors of 
the two terminals of the edge e. We then mark 
those cells in the vector to 1, corresponding to 
the edges in EIe.

 (ii) FEU(e) : For each edge e, we create a vector 
FEU(e) of size |E| while initializing each cell to 
zero. Note that each cell represents an edge in 
G and hence a node in L. Then, we collect the 
union of edges EUe between the neighbors of 
the two terminals of the edge e. We then mark 
those cells in the vector to 1, corresponding to 
the edges in EUe.

 (iii) FNI(e) : For each edge e, we create a vector 
FNI(e) of size |V| while initializing each cell to 

Fig. 6  Finding the optimum 
threshold using histogram 
concavity. Fig. a denotes the 
histogram H constructed using 
the feature values and their fre-
quencies. Figs. b to f represent 
the construction of the convex 
hull H̄ over H (represented by 
black lines). In Fig. g, a point et 
is found for which the difference 
between m̄(et) , the frequency of 
et in H̄ and m(et) , the frequency 
of et in H is maximum
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zero. Note that each cell represents a node in G. 
Then, we collect the set of common nodes NIe 
between the neighbors of the two terminals of 
the edge e. We then mark those cells in the vec-
tor to 1 corresponding to the nodes in NIe.

 (iv) FNU(e) : For each edge e, we create a vector 
FNU(e) of size |V| while initializing each cell to 
zero. Note that each cell represents a node in G. 
Then, we collect the set of union of nodes NUe 
between the neighbors of the two terminals of 
the edge e. We then mark those cells in the vec-
tor to 1, corresponding to the nodes in NUe.

Step 3: Feature vector generation for the line graph Let 
F(ule) represent the feature vector of a node ule ∈ Vl . We 
can write F(ule) as F(e), where F(e) represents the feature 
vector of the edge (corresponding to ule ) in V. F(e) is 
constructed by horizontally concatenating four vectors: 
FEI(e) , FEU(e) , FNI(e) , and FNU(e).
Therefore the length of the feature vector F(e) and hence 
F(ule) will be: |E| + |E| + |V| + |V|.
Step 4: Dimension reduction of the feature vectors The 
length of the feature vector is too large for a large graph, 
which causes an increase in the training time of the GCN. 
Therefore we reduce the dimension of the feature vector 
to 20 by applying Principle Component Analysis (PCA) 
(Karl 1901).
Step 5: Training nodes selection and applying GCN.

(a) Training nodes selection Since semi-supervised 
learning requires a set of known label nodes for its 
training purpose, we run a particular community 
detection algorithm a few times (2 - 3 times) on G 
and select two sets of edges: (a) edges that always 
belong to the same community EC and (b) edges 
that do not belong to any particular community 
ENC for all runs. We then label the nodes in L cor-
responding to edges in EC to 1, constructing the 
node set VCl ⊂ Vl , and the nodes in L correspond-
ing to edges in ENC to 0, constructing the node 
set VNCl ⊂ Vl . The set of training nodes is thus: 
VTl = VCl ∪ VNCl.

(b) Applying GCN for node classification After gener-
ating the feature vectors and selecting the training 
nodes, we apply GCN to L. GCN classifies the 
node set Vl into two classes: Vl1 and Vl0 . The edges 
in G representing the nodes in Vl1 denote the set 
of constant community edges and the edges in G 
representing the nodes in Vl0 denote the set of non-
constant community edges.

3.2  Unsupervised edge classification methods

Although the semi-supervised approach performs well, it has 
some drawbacks. (i) It needs a set of training nodes (known 
labeled nodes) and obtaining a sufficient number of training 
nodes can be difficult; (ii) Generation of line graph is time 
and memory consuming; (iii) Training a large line graph is 
also time-consuming. In order to deal with these problems, 
we tried a novel unsupervised approach. In this approach, 
we find four local properties of each edge with the help of 
the neighbors of its two terminals and generate a histogram 
for each of these properties. Then, using a popular image 
thresholding algorithm, we find optimum thresholds for each 
histogram. Finally, we plug these thresholds into our novel 
Algorithms 1 and 2 to filter out the edges in the graph and 
generate the constant communities. A schematic diagram of 
how this approach works is provided in Fig. 3. Our unsuper-
vised approach consists of the following key steps:

Step 1: Extracting the features for each edge For a vertex 
u, let N(u) denote the set of neighbors; Δ(u) denotes the 
set of triangles containing vertex u; Also, for a vertex 
set Y, let Γ(Y) denote the density of the subgraph that is 
induced by the nodes in Y, i.e., the ratio of the number 
of edges in the subgraph to the total possible edges in 
the subgraph. To classify these edges, we compute four 
features (see Fig. 7) as follows:

• Subgraph density induced by both u and v’s neigh-
bors ( Dboth ). Formally, Dboth(u, v) = Γ(N(v) ∩ N(u)).

• Subgraph density caused by u  and v , as 
well as their neighbors ( Dany ). Formally, 
Dany(u, v) = Γ(N(v) ∪ N(u)).

Fig. 7  Features used for edge classification. For an edge (u,  v); the 
red vertices are connected to u only, the green vertices are connected 
to v only, and the orange vertices are connected to u and v both. For 
ease of visualization, the connections to u and v are not shown.
Dboth(u, v) = density of (3,  4,  5) = 1

3
 Dany(u, v) = density of 

(1, 2, 3, 4, 5, 6, 7, 8, u, v) =
18

45
 D

tri
(u, v) = |{(u, v, 3), (u, v, 4), (u, v, 5)}|

÷|{(u, v, 3), (u, v, 4), (u, v, 5), (u, 1, 2), (u, 3, 4), 
(v, 7, 8), (v, 4, 6), (v, 3, 7), (v, 3, 4)}| = 1

3
 JI(u,  v) = 

|{3, 4, 5}| ÷ |{1, 2, 3, 4, 5, 6, 7, 8, u, v}| = 3
10
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• The Proportion of triangles containing both u and v 
to triangles containing at least one of u or v. ( Dtri ). 
Formally, Dtri(u, v) =

|Δ(u)∩Δ(v)|
|Δ(u)∪Δ(v)|.

• The Jaccard index of u and v’s neighbors ( JI). For-
mally, JI(u, v) = |N(v)∩N(u)|

|N(v)∪N(u)|.

Step 2: Formation of histograms We create a histogram for 
each of the features (the x-axis has values; the y-axis has 
frequency). We named the histograms as Hany,Hboth,Htri , 
and HJI , corresponding to Dany,Dboth,Dtri , and JI, respec-
tively.
Step 3: Obtaining threshold using image thresholding 
algorithm In this step, we obtain an optimum thresh-
old for each of the histograms. We use a popular image 
thresholding algorithm to obtain these thresholds: 
Tany, Tboth, Ttri and TJI correspond to Hany,Hboth,Htri and 
HJI , respectively.
Step 4: Filtering the edges Suppose B100 denotes the set 
that contains the edges that always belong to a commu-
nity, and B0 denotes the rest of the edges that may or may 
not belong to some community. The following conditions 
hold for an edge to be classified as B100:

 (i)  JI is high, i.e., it has a high percentage of com-
mon neighbors, and also, Dboth is high, i.e., the 
density of the subgraph induced by the common 
neighbors is high.

 (ii)  Dany is high, i.e., the subgraph induced by all 
the neighbors of u and v (including u and v) has 
a high density.

 (iii)  Dtri is high, which means the proportion of 
triangles containing both u and v to triangles 
containing at least one of u or v is high. Since 
many triangles are supported by an edge, it is 
very likely that their terminals are co-clustered.

3.2.1  Variants of Image thresholding algorithm for edge 
classification

In Step 3 of the above unsupervised approach, we used two 
variants of thresholding algorithm: (i) binary-thresholding 
and (ii) multi-thresholding. In addition to this, we also stud-
ied two modifications of the multi-thresholding approach to 
obtain better output.

Edge classification using binary-thresholding algorithm 
(Algorithm  1). In the binary classification algorithm, an 
optimal threshold for each histogram is separately found 
and the results are combined for the classification of the 
edges as per the rules in Step 4 above. We define a high 
value of the features as being higher than the threshold 
given by the corresponding thresholding algorithm. We 
used three variants of binary-thresholding approaches 
viz; bi-level, histogram concavity, and Binary Otsu in 
our study.
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Edge classification using multi-thresholding algorithm 
(Algorithm 2). We used TSMO (henceforth called Multi-
Otsu) as the multi-thresholding algorithm to find the opti-
mum thresholds. The main challenge in applying Multi-
Otsu is that once the set of thresholds is generated, all the 
possible combinations of the thresholds and features have 
to be tested to find the optimal one. For example, if the 
Multi-Otsu algorithm returns k different thresholds, then 
with 4 features, O(k4) combinations should be checked. 
Checking each edge’s property against all these thresh-
olds is computationally expensive.
To make classification computationally feasible, we con-
sider the thresholds for each feature separately rather 
than in combination. For each threshold, we compute 
how many edges are to the right (i.e., are higher) than 
the threshold and how many edges are to the left (i.e., 
are lower) than the threshold. Given a strong commu-

nity structure, the number of edges within communities 
should be at least as much as the number of edges across 
communities – if not higher. Therefore, as a first cut, we 
identify the threshold that produces an almost equal num-
ber of edges on the left (lower) and right (higher) sides. 
This optimal threshold gives us the initial set of edges that 
will always be within communities.
Modification 1: Using iterative multi-thresholding We 
further improve the accuracy of Algorithm  2 by itera-
tively applying Multi-Otsu on the subgraph induced 
by the edges in B0, which can potentially contain more 
within community edges.
We recompute the histograms for the edges in B0 
based on the feature values of only these edges. Using 
Algorithm  2, we find the optimal threshold on this set 
and obtain a split of B0 into B0’ and B100’ where the 
assumptions for B0’ and B100’ are the same as for B0 
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and B100, respectively. We then move the edges of B100’ 
into B100 and set B0 to B0’
This iteration is continued until the change in threshold 
is very low(≤ � , where we set � = 0.01) and no new edges 
move from B0 to B100. We named this method Multi-
Otsu iterative.
Modification 2: Fixing the singleton communities Once 
the edges in B100 have been classified, i.e., they are 
always within a community, the subgraph induced by the 
edges in B100 forms the constant communities. However, 
as seen in the case of the blue vertex in Fig. 1, some com-
munities may be composed of just one vertex, i.e., form 
singleton communities.
Most community detection algorithms do not retain sin-
gleton communities and absorb this vertex into a neigh-
boring community. We identify nodes that are not part 
of the constant communities. If the node (vertex) has 
degree 2, then, if both of its neighbors belong to the same 
community, we put the node into that community. If the 
neighbors are in different communities, then we move the 

node to one of those communities, since there is a 50% 
chance that at least one of them will be included in one of 
the two communities. We named this method Multi-Otsu 
iterative+SC.
We have seen empirically that this heuristic produces a 
slightly higher F1-score. However, the accuracy decreases 
as the heuristic is applied to vertices of a higher degree. 
This is because if the vertex was classified as a singleton, 
then it could be in any of its neighboring communities. 
The probability that the vertex is in a certain community 
decreases with the number of neighboring communities.
To summarize, we present multiple heuristics to classify 
edges that form constant communities. First, we study the 
semi-supervised method where we convert a graph G to 
its corresponding line graph L. By classifying the nodes 
in the line graph L using GCN, we classify the edges 
in the input graph G to obtain the edges that are possi-
ble candidates for constant communities. Then, we dis-
cuss the pitfalls of the semi-supervised approach, which 
includes the problem of obtaining the training set and 
time and memory requirements. After that, we discuss 
some unsupervised approaches where we use different 
local neighborhood properties and generate histograms 
based on these properties. This is followed by applying 
a popular image thresholding algorithm to find the opti-
mum threshold in the histogram. After the generation of 
the threshold for each histogram, we apply certain rules 
based on the combination of these thresholds to filter 
out the constant community edges. In our unsupervised 
approach, we use both binary and multi-thresholding 
algorithms. We use several variants of binary-threshold-
ing algorithms like bi-level, histogram concavity, and 
Binary Otsu. In our multi-thresholding algorithm, we 
use the extended version of Binary Otsu’s (Multi-Otsu) 
algorithm. To improve the results, we applied two modifi-
cations to the Multi-Otsu method: (i) Multi-Otsu iterative, 
where we apply the Multi-Otsu method to the predicted 
non-constant community edges set, and (ii) Multi-Otsu 
iterative+SC, where we take care of the singleton com-
munities.

4  Empirical results

In this section, we present our experimental setup and the 
results from these experiments.

4.1  Experimental setup

Datasets and Ground Truth A set of real-world networks 
are used for our work (Table 1). We obtain ground truth 
constant community by executing a community detection 
50 times. The order of the vertices is permuted at each 

Table 1  The test suite of real-world networks

 Network  # Vertices  # Edges

Small-size n/ws
Football Kolodziej et al. (2019) 115 613
Jazz Kolodziej et al. (2019) 198 2742
Dolphin Kolodziej et al. (2019) 62 159
Email Guimerà et al. (2003) 1133 5451
Karate club Kolodziej et al. (2019) 34 77
Polbooks Kolodziej et al. (2019) 105 441
Medium-size n/ws
Co-authorship Chakraborty et al. (2014) 103,677 352,183
Com-dblp Leskovec and Krevl (2014) 317,080 1,049,866
Com-amazon Leskovec and Krevl (2014) 334,863 925,872
Large-size n/ws
Com-Youtube Leskovec and Krevl (2014) 1,134,890 2,987,624
Com-LiveJournal Leskovec and Krevl 

(2014)
3,997,962 34,681,189

Wiki-topcats Leskovec and Krevl (2014) 1,791,489 28,511,807

Table 2  The list of hyper-parameters used in Optuna

 Name  Methods/values

Optimizer Adam, RMSprop, SGD
Learning rate 10−5 to 10−1

Weight decay 5 × 10−5 to 5 × 10−1

Loss function Negative Log-likeli-
hood

Number of epochs 200
Number of layers 2
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execution. As shown in Chakraborty et al. (2013), chang-
ing the order in which vertices are processed changes the 
results. The communities that were common to all of 
these runs were designated as the constant community 
ground truth for the given community detection method.
We used three community detection algorithms: Louvain 
Blondel et al. (2008), Infomap Rosvall and Bergstrom 

(2008), and Label Propagation Raghavan et al. (2007) 
to create the ground truth for the small-sized networks.
For medium-sized (nodes = 10K+ and edges in the range 
of 10K+ to 1M+) and large-sized networks (nodes = 
1M+ and edges in the range of 1M+ to 10M+), it is 
very expensive to run a community detection algorithm 
multiple times. Therefore, we used only the Louvain 
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Fig. 8  Performance of different methods for obtaining constant com-
munities for small networks. The ground truth constant community 
edges are obtained by executing the Louvain algorithm. The abbre-
viated names are as follows; L-GCN: Line-GCN, B-Level: Bi-level, 

H-Con: Histogram concavity, Bin-Otsu: Binary Otsu, Mul-Otsu: 
Multi-Otsu, Mul-Otsu-itr: Multi-Otsu iterative, Mul-Otsu-itr+: Multi-
Otsu iterative with singleton community, Consen: Consensus
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Fig. 9  Performance of different methods for obtaining constant com-
munities for small networks. The ground truth constant community 
edges are obtained by executing the Infomap algorithm. The abbre-
viated names are as follows; L-GCN: Line-GCN, B-Level: Bi-level, 

H-Con: Histogram concavity, Bin-Otsu: Binary Otsu, Mul-Otsu: 
Multi-Otsu, Mul-Otsu-itr: Multi-Otsu iterative, Mul-Otsu-itr+: Multi-
Otsu iterative with singleton community, Consen: Consensus
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Fig. 10  Performance of different methods for obtaining constant com-
munities for small networks. The ground truth constant community 
edges are obtained by executing the Label propagation algorithm. 
The abbreviated names are as follows; L-GCN: Line-GCN, B-Level: 

Bi-level, H-Con: Histogram concavity, Bin-Otsu: Binary Otsu, Mul-
Otsu: Multi-Otsu, Mul-Otsu-itr: Multi-Otsu iterative, Mul-Otsu-itr+: 
Multi-Otsu iterative with singleton community, Consen: Consensus
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method (which is faster than the other two methods) for 
the ground truth creation.
Specifics of the classification algorithms For the semi-
supervised method, we used GCN to classify the nodes 
in the line graph (and hence the edges in the correspond-
ing graph). For this GCN model, we use Optuna Akiba 
et al. (2019) for hyper-parameter tuning. The list of hyper-
parameters, we used, can be found in Table 2. We have 
used 15% training nodes from both classes. To measure 
the F1-scores, we have used all the nodes in the network.
For the unsupervised methods, we implemented bi-level, 
histogram concavity, and Otsu’s thresholding (both 
Binary and Multi-Otsu) algorithms.
Baselines methods We use two baseline algorithms to 
compare with our method. The first method is the con-
sensus community algorithm presented in Aditya et al. 
(2019). This involves forming a consensus matrix D 
based on multiple (we selected 100) executions of com-
munity detection, where Dij represents the number of 
times vertices i and j were co-clustered in the same com-
munity. A community detection algorithm is iteratively 
applied to the weighted graphs formed from the consen-
sus matrices until less than a convergence percent (default 
value of 2%) of all nonzero entries in Di have weights of 
less than one.
The second method is called CHAMP (Convex Hull of 
Admissible Modularity Partitions) (Weir et al. 2017). 

Given a set of partitions, CHAMP identifies the modu-
larity optimization for each partition to obtain the subset 
of partitions that are potentially optimal while discarding 
the other partitions. These baseline methods can typically 
handle only one type of community detection algorithm at 
a time. For equitable comparison, we also compared our 
classification algorithms with a fixed community detec-
tion method.
Implementation details We implemented the algorithms 
in python (version 3.6). Code to implement Multi-Otsu 
can be found in George (2019). The codes for the base-
line methods, consensus community and CHAMP, are 
at (Tandon et al. 2019) and (Weir et al. 2017), respec-
tively. All algorithms were run on an IntelXeon(R) Pro-
cessor with CPU E3-1270 V2, 3.50GHz8, and 128 GB 
of memory.

4.2  Comparisons among various methods

We compared both our proposed semi-supervised ((i) 
Line-GCN) and unsupervised methods; ((ii) bi-level; (iii) 
histogram concavity; (iv) Binary Otsu; (v) multi-level 
Otsu thresholding (Multi-Otsu); (vi) iterative multi-level 
Otsu thresholding (Multi-Otsu iterative); (vii) Multi-Otsu 
iterative+SC) with the baseline methods Consensus and 
CHAMP. Since the baselines are stochastic, the average 
results from several runs are reported.
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Fig. 11  Performance of different methods for obtaining constant com-
munities for medium and large networks. The ground truth constant 
community edges are obtained by executing the Louvain algorithm. 

The baselines are not shown here because they did not end within a 
sizable amount of time. Only for co-authorship network (not shown in 
the figure), the consensus method gives 70% F1-scores

Table 3  Comparison of NMI. Best results are highlighted in green, second-best results are highlighted in blue, and the worst in red. X: The pro-
cess did not end within a sizable amount of time. L-GCN: Line-GCN
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Comparison of F1-scores with the ground truth communi-
ties In our results, B100 holds the set of constant com-
munity edges. We compared the set B100 with the set of 
edges in the constant communities that are obtained from 
the ground truth.
Figs. 8, 9, and 10 depict the results (F1-score) for the 
small-sized networks. Fig. 11 shows the results for the 
medium and large-sized networks. In Figs. 8,  9, and 10, 
the ground truth community edges are obtained by exe-
cuting the Louvain, Infomap, and Label propagation algo-
rithms, respectively, whereas in Fig. 11, only the Louvain 
algorithm is used to obtain the ground truth community 
edges.
For the few small networks (Jazz, Email, and Polbooks) 
and all the large networks, the semi-supervised (Line-
GCN) approach gives the maximum F1-score. For the few 
networks like Jazz, Email, Com-amazon, Com-Youtube, 
and Com-liveJ, the bi-level thresholding approach gives 
poor performance. Other binary and multi-thresholding 
methods performed well in most of the networks. Com-
pared to the baselines, our methods, especially Line-
GCN, histogram concavity, Binary Otsu, Multi-Otsu, 
and its variants, exhibit better results in most cases. For 
medium- and large-scale networks, baseline methods (not 
shown in Fig. 11) were not completed within a reason-
able time (i.e., within 2 days) except for the co-authorship 
network (F1-scores = 70%).
NMI comparison with the ground truth communities How 
well are the predicted constant communities overlapped 
with the ground truth constant communities? To know 
that, we construct the constant communities from the 
edges in B100 by obtaining the connected components. 
After that, the normalized mutual information (NMI) is 
computed between the set of predicted constant commu-
nities and the set of ground truth communities. As we can 
see in Table 3, our results are giving comparable or 
better NMI scores than the baselines. More specifically, 
for the small-sized networks, in most cases (except for 
the Football graph), Line-GCN gives comparable scores 
(second best or best) to the baselines. The unsupervised 
approach gives the worst performance in Jazz and Email 
networks, but in other cases, this approach gives the best 
or second-best performance. For all the medium and 
large-sized graphs, both the semi-supervised (Line-GCN) 
and the unsupervised approaches (especially the Multi-
Otsu iterative with singleton community) perform well. 
Both methods give equally good results for Com-amazon 
and Wiki-topcats networks. For Com-dblp and Co-author-
ship networks, L-GCN gives the best result, whereas the 
unsupervised method gives the second best, and for the 
Com-Youtube network, the unsupervised method gives 
the best result, whereas L-GCN gives the second best.
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Execution time Table  4 reports the time to compute 
ground truth constant communities, which increases to as 
much as 963 hours for the largest network. Thus, finding 
constant communities empirically is not feasible for large 
networks and an efficient algorithm of the like proposed 
in this paper is essential.
Table 5 shows the execution time for obtaining constant 
communities using our algorithms as well as the baselines 
for the small networks. Our unsupervised algorithms are 
~ 10 times faster. For medium and large networks (see 
Table 5), our unsupervised algorithms are fast, even for 
networks with 10M+ nodes and 100M+ edges. Although 
sometimes the semi-supervised algorithms give compara-
ble results to the unsupervised ones, it takes longer time. 

The baseline methods take either a long time to finish or 
do not finish within a feasible time frame.

4.3  Results under noisy domains

Real-world networks are often noisy and can be missing 
some edges. We use three noise models from Yan and Greg-
ory (2011) as follows to test how well our method performs 
under noise.

Uniform: The edges are removed randomly and repeat-
edly until a certain number of edges remain.

Table 5  Time for identifying constant communities for all networks. 
Best timing performances for each dataset are denoted by green cells 
and the worst by red cells. X: The process did not end within a siz-
able amount of time. The abbreviated names are as follows; L-GCN: 

Line-GCN, B-Level: Bi-level, H-Con: Histogram concavity, Bin-
Otsu: Binary Otsu, Mul-Otsu: Multi-Otsu, Mul-Otsu-itr: Multi-Otsu 
iterative, Mul-Otsu-itr+: Multi-Otsu iterative with singleton commu-
nity, Consen: Consensus

Fig. 12  F1-scores under different noise scenarios
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Crawled: Starting from a node with the smallest maxi-
mum distance from all other nodes, use BFS to crawl the 
network and keep the required number of edges.
Censored: At each step, randomly choose one of the 
maximum degree nodes and then randomly delete one 
of its edges, until a certain number of edges remain in 
the network.

Because introducing noise into small networks causes 
them to disconnect, we only tested on larger networks. For 
each noise type and percentage of edges removed, we cre-
ated the ground truth and computed the F1-score of our pre-
dicted edge labels. In Fig.  12, we show that even when the 
network is noisy, our method gives good accuracy.

5  Related work

5.1  Classification using Image Thresholding

We didn’t find any work where image thresholding algo-
rithms are applied to detect communities or any graph-
related problems. However, the image thresholding algo-
rithms are very commonly used for classification of images 
such as Mahdy et  al. (2020) where they use the image 
thresholding algorithms to classify detection of COVID-
19 patients. Iqbal et al. (2018) presented a survey for the 
detection and classification of citrus plant diseases, and 
Amin et al. (2020) presented a method to detect and clas-
sify tumors. Survey papers by Garcia-Lamont et al. (2018), 
Asokan and Anitha (2019), and Chouhan et al. (2018) pre-
sent an overview of all the works related to image threshold-
ing algorithms for classifying images. This paper is the first 
attempt to use this approach for graph-related classification 
problems. We believe this approach will be extended to other 
classification problems in the future.

5.2  Graph neural networks

Graph Convolution Networks are categorized as a sub-class 
of techniques under the broader domain of Graph Neural 
Networks (GNNs). There are various types of GNNs based 
on their application domains. A graph neural network can 
be used in many fields, such as classifying the nodes (Kipf 
and Welling 2017; Hagenbuchner and Monfardini 2009), 
link prediction (Zhang and Chen 2018; Li et al. 2021), graph 
classification (Defferrard et al. 2016; Wu et al. 2022; Muel-
ler et al. 2022), graph generation (Li et al. 2018; Liao et al. 
2019; Hu et al. 2020), and community detection (Sun et al. 
2021; Luo et al. 2021). A comprehensive survey on GNNs 
can be found here (Wu et al. 2019, 2020). Souravlas et al. 
(2021) gave a brief overview of current state& advances 
in deep learning techniques for community detection. We 

have also seen many attempts to detect communities using 
GNN such as Bruna and Li (2017), Shchur and Günne-
mann (2019), and Moradan et al. (2021). We didn’t find any 
work that has attempted to use GNN for detecting constant 
communities.

In recent studies, GNNs have also been used with line 
graphs. For example, a supervised community detection 
task using a GNN model called line graph neural network 
(LGNN) is proposed in Chen et al. (2017). LGNN uses both 
the graph G and its corresponding line graph L(G) to find the 
communities in G. Using the LGNN, the authors in Cai et al. 
(2021) study the link prediction task in the graph.

5.3  Constant or consensus community

Community detection is a well-studied problem and numer-
ous algorithms exist (see survey el-Moussaoui et al. 2019). 
However, finding the non-stochastic communities is a much 
less studied and much more challenging problem.

Community detection algorithms are primarily based on 
optimizing objective functions. Due to underlying stochas-
ticity, resulting structures show considerable variations. 
Riolo and Newman (2020) suggest that stochasticity can 
be reduced by identifying “building blocks,” i.e., groups of 
network nodes that are usually found together in the same 
community. In Chakraborty et al. (2013), a precursor of this 
work, the authors have investigated the properties of con-
stant communities with respect to within community and 
across community edges.

A popular approach to finding stable communities is via 
consensus clustering as introduced in Lancichinetti and For-
tunato (2012). Variations include multi-resolution consensus 
clustering (Jeub et al. 2018), ensemble clustering (Poulin 
and Théberge 2019; Chakraborty et al. 2016) and fast con-
sensus (Aditya et al. 2019) clustering and CHAMP Weir 
et al. (2017). Nevertheless, as seen here, these are not yet 
fast enough for large networks.

6  Reproducibility

All our source code and implementations, including the 
baseline implementation, are available at https:// github. 
com/ anjan git000/ ImgTh AlgoC onsCo mm. The URL pro-
vided above has a Readme file which explains the steps 
to reproduce the results presented in this paper. For large 
networks such as Com-Amazon, Com-Dblp, Youtube, and 
wiki-topcats, we recommend to use a HPC cluster with a 
minimum RAM of 128GB and Python parallel framework 
such as mpi4py (Dalcin and Fang 2021), and Dask (Rocklin 
2015). The results can also be executed on non-HPC clus-
ters, but it will take a long time for large networks.

https://github.com/anjangit000/ImgThAlgoConsComm
https://github.com/anjangit000/ImgThAlgoConsComm
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7  Conclusions and future work

We applied the semi-supervised and the unsupervised clas-
sification techniques for identifying constant communities 
that scale to large networks. Although the semi-supervised 
approach gives good results, it requires training data, which 
is sometimes difficult to obtain. We also applied an image 
segmentation inspired unsupervised approach. We showed 
that the unsupervised approach gives results as good as the 
semi-supervised approach and in less time. Our work is an 
important contribution to stabilizing community detection 
results for large networks.

One of the important future works that we wish to take up 
is the detection of overlapping constant communities. Over-
lapping community detection requires grouping the nodes 
into clusters so that there exist some nodes that belong to 
more than one community; in other words, some nodes may 
have multiple community ID’s. In the overlapping constant 
communities, the nodes should maintain two properties, (i) 
they should always belong to the same overlapping com-
munity (s), and, (ii) nodes may have multiple labels. To 
identify the edges of the overlapping communities we have 
to explore which features are the most informative for clas-
sification. Another challenge for overlapping communities is 
the increased memory footprint as nodes can have multiple 
communities. To make our application scalable and handle 
large-scale graphs for detecting constant overlapping com-
munities, we need to run this on distributed clusters. We 
plan to modify our data structure and use high-performance 
computing framework (HPC) such as MPI/Open ACC to 
implement the proposed algorithm and overlapping version.

Other future plans include applying the constant com-
munities obtained using our method to design various down-
stream applications, including outlier detection, domain 
adaptation, feature selection, and other important prob-
lems in data mining. On the implementation side, we aim 
to develop a parallel version of our algorithms to further 
improve their performance.
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