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Abstract: Iron-fortified formulas and iron drops (both usually ferrous sulfate, FS) prevent early
life iron deficiency, but may delay growth and adversely affect neurodevelopment by providing
excess iron. We used a rat pup model to investigate iron status, growth, and development outcomes
following daily iron supplementation (10 mg iron/kg body weight, representative of iron-fortified
formula levels) with FS or an alternative, bioavailable form of iron, ferrous bis-glycinate chelate (FC).
On postnatal day (PD) 2, sex-matched rat litters (n = 3 litters, 10 pups each) were randomly assigned
to receive FS, FC, or vehicle control until PD 14. On PD 15, we evaluated systemic iron regulation and
CNS mineral interactions and we interrogated iron loading outcomes in the hippocampus, in search
of mechanisms by which iron may influence neurodevelopment. Body iron stores were elevated
substantially in iron-supplemented pups. All pups gained weight normally, but brain size on PD 15
was dependent on iron source. This may have been associated with reduced hippocampal oxidative
stress but was not associated with CNS mineral interactions, iron regulation, or myelination, as these
were unchanged with iron supplementation. Additional studies are warranted to investigate iron
form effects on neurodevelopment so that iron recommendations can be optimized for all infants.
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1. Introduction

Postnatal iron deficiency (ID) adversely affects both physical and cognitive develop-
ment and should be prevented [1–5]. The American Academy of Pediatrics recommends
infants receive iron through liquid supplements or fortified formula to prevent ID [6].
Iron-fortified formulas prevent postnatal ID effectively but provide, on average, 20 times
the adequate intake (AI) for infants 0–6 months of age [7,8]. Excess iron can also be harmful
to infants, and recent studies report adverse effects of iron supplementation in infants who
are not ID [9–14]. In response to rising concern regarding the efficacy of blanket iron sup-
plementation in infants, pediatric nutrition researchers as well as expert committees have
recommended reevaluation of iron recommendations and stressed the need for postnatal
iron supplementation research to identify adverse outcomes and define their biological
mechanisms [15–22].

Previous studies on infants have reported reduced growth and deleterious cognitive
outcomes due to iron supplementation [9–14]. In a randomized controlled trial (RCT),
iron-sufficient infants who had received standard iron formula (12.7 mg iron/L) had
poorer cognitive outcomes at 10 and 16 years of age [10,11] compared to those who had
received low-iron formula (2.3 mg iron/L). Comparable cognitive effects were observed in
both rodents and pigs [23–26]. In these studies, several biological mechanisms may have
contributed to the cognitive outcomes, including but not limited to iron under-regulation,
iron–mineral interactions, or CNS iron overload-induced oxidative stress.
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Iron can compete with other essential trace minerals for absorption and transport
and iron loading causes oxidative stress in biological environments through generation
of reactive oxygen species (ROS). Systemic and cellular regulators of iron homeostasis
work to ensure that the diverse iron needs of all tissues are met and still prevent iron
toxicity. In early development, however, iron homeostasis might not be as responsive to
elevated body iron stores. Indeed, postnatal iron supplementation increases body iron
stores even in iron-replete infants [8,27], and under-regulation of iron metabolism in early
life is further supported by postnatal iron regulation studies in humans [28], rats [29,30],
mice [31], and piglets [25]. It is possible that under-regulation of iron homeostasis would
permit iron overload in the CNS with increased iron intake, and iron uptake in the CNS
may also be under-regulated postnatally, as previously indicated in rats [30]. Dysregu-
lation of iron metabolism and iron loading contribute to neurodegeneration by causing
oxidative stress [32,33]. Removal of iron from the CNS through iron chelation may even be
a promising new therapy for those suffering cognitive effects of neurodegeneration [34].
Studies in rodents have concluded that neonatal iron exposure can promote neurodegener-
ative disease progression later in life, and this may be a result of neonatal CNS oxidative
stress [19,24,26,35–37]. In neonatal pigs, increased iron supplementation led to iron loading
in the hippocampus, the region that forms memories, as well as markers of lipid perox-
idation (a form of oxidative stress), and impaired social behavior after weaning [25]. It
was concluded that iron loading in the hippocampus might disrupt cognitive development
directly through oxidative stress injury. Cognitive effects of iron supplementation have
also been associated with reduced expression of myelin basic protein (MBP) in the hip-
pocampus [38]. In summary, due to under-regulation of iron in early life, postnatal iron
supplementation might lead to iron loading, and in the CNS, this could lead to oxidative
stress and disrupt myelination, thereby explaining deficits in cognitive development.

The existence of a causal link between early life CNS iron exposure and neurode-
generative disease can only be speculated, but this possibility only highlights the need
to study the effects of postnatal iron supplementation [19]. Previous studies in animals
have relied on a range of iron intervention designs, but none have closely modeled routine
postnatal interventions nor have they accounted for differences in milk iron intake be-
tween humans and model species [23,25,35,38,39]. Moreover, the vast majority all studies
reporting adverse neurodevelopment effects of iron supplementation in humans have used
ferrous sulfate (FS), whereas alternative chemical forms of iron have rarely been explored.
Therefore, in addition to FS, we investigated the effects of ferrous bis-glycinate (FC), an
amino acid chelated form of iron, which due to its unique absorptive fate may be less likely
to cause the adverse effects attributed to FS [40]. FC has been shown to be effective and
safe for use in infants as a bioavailable source of iron [41]. Herein, we characterized FS and
FC iron supplementation effects on growth, iron status, iron regulation, and neurodevelop-
ment in healthy, nursing rat litters, providing new insight into the activities of exogenous
iron during one of the critical windows of development.

2. Materials and Methods
2.1. Animals

The use of animal models is essential for advancing infant nutrition knowledge
because a multitude of ethical and procedural limitations preclude this research in humans.
Rats are often preferred for postnatal nutrition research because regular handling of pups
is comparatively well-tolerated [42,43]. The use of rats for studying outcomes of postnatal
iron supplementation is also reinforced by evidence that mechanisms of iron homeostasis
across stages of development are consistent between rats and humans [26–28].

Animal procedures for this study were approved by the University of California
Davis Institutional Animal Care and Use Committee. Sprague Dawley rats between 8 and
10 weeks of age were obtained from Charles River Laboratories (Wilmington, MA, USA)
and maintained on standard 18% protein rodent chow (200 mg Fe/kg diet; 2018, Teklad
Diets, Madison, WI, USA) in clear polycarbonate hanging cages at constant temperature
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(22 ◦C) and humidity (63%) with standard 12 h light cycles; these conditions applied during
habituation, breeding, and throughout the entire postnatal experimental period. Rats were
habituated to the vivarium for one week prior to breeding. There were 11 nulliparous
female breeders and 9 of them had litters, all of which were used for the experiment.
Original litter sizes ranged between 10 to 15 pups. In order to normalize growth between
litters, newborn pups born within the same 24 h period were randomly assigned to sex-
matched litters of 10 pups. All litters nursed freely throughout the experiment, except for a
brief period during daily supplementation. On postnatal day (PD) 2, litters were randomly
assigned to supplementation groups (n = 3 litters, 10 pups each) to receive 10% sucrose
vehicle control (CON) or iron as either ferrous sulfate heptahydrate (Cat#215422-250G,
Sigma-Aldrich, St. Louis, MO, USA) or ferrous bis-glycinate chelate (Albion Minerals
Ferrochel®, Balchem Inc., New Hampton, NY, USA). Littermates were assigned to the same
treatment group to avoid coprophagic iron transfer across treatment groups, which would
be highly confounding.

Pups were weighed every other day beginning PD 2, and litter average body weight
(BW) was used to calculate the supplement volume, which provided 10 mg Fe/kg BW· day.
This experimental iron dose for postnatal supplementation was designed to represent the
daily iron intake of an exclusively formula-fed infant, after adjusting for known differences
in milk iron and iron absorption efficiency between humans and rats. References and
calculations for iron dose determination are shown in Table 1 and Equation (1) (below).
Iron supplements were prepared in acid-washed glassware by dissolving FS or FC in sterile
10% w/v sucrose at 6 mg iron/mL. Supplementation was performed by hand-pipetting,
at the same time each day from PD 2 through PD 14. To deliver calculated volume, a
sterile pipette was placed gently on the roof of the mouth to stimulate natural suckling,
and solution was dispensed slowly, allowing swallowing at intervals. On PD 15, pups
were fasted for 6 h and euthanized by cardiac venipuncture under deep anesthesia (100 mg
ketamine × 10 mg xylazine/kg BW). Hippocampi were dissected immediately from fresh
brains and all hippocampi were dissected by the same researcher for consistency.

Rat Pup Supplementation Dose = RM · (IF/HM) = [6.4-14] ≈ 10 mg iron/kg BW (1)

Table 1. The daily rat pup iron supplementation dose—10 mg elemental iron per kg body weight (BW)—was determined
by estimating Adjusted Daily Iron Intakes of human milk (HM), iron-fortified formula (IF), and rat milk (RM) diets; these
values were then used to calculate a daily supplemental iron intake for nursing rat pups that is proportional to the Adjusted
Daily Iron Intake in infants fed exclusively IF relative to HM-fed infants (Equation (1)). Recommended iron intakes and
experimental iron overload doses for adult rats are included for comparison and reference.

Species Diet Diet Intake Dietary Iron
(ppm)

Daily Iron
Intake 1

(mg/kg BW)

Iron
Absorption (%)

Adjusted Daily
IronIntake 2

(mg/kg BW)

Human Human milk
(HM) 600–800 mL [6] 0.35 [44] 0.04–0.07 50 [27] 0.02–0.035

Human
Iron-Fortified

Formula
(IF)

600–800 mL [6] 12 [7] 1.4 10 [28] 0.14

Rat (pup) Rat Milk
(RM) 4–10 mL [45] 5 [46] 1.6–2.0 100 [30] 1.6–2.0

Rat (adult) Standard Chow 25–30 g [47] 35–250 [48] 3.5–21 100 [49] 3.5–21

Rat (adult) Iron Overload 25–30 g [47] 8000–10,000
[50,51] 800–2500 NA NA

1 Estimations based on 5–7 kg infant; 10–30 g rat pup; 250–300 g adult rat. BW = Body Weight. 2 Values have been adjusted for
iron absorption.
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2.2. Blood Measurements

Whole blood (n = 20 per group) was collected in EDTA tubes (Safe-T-Fill Capillary
Blood Collection Systems, RAM Scientific, Nashville, TN), and blood measurements were
performed on the day of collection. Hemoglobin was measured by the cyanmethemoglobin
method using a commercially available kit (Cat#MAK115-1KT, Sigma-Aldrich, St. Louis,
MO, USA). For hematocrit measurement, whole blood (n = 20) was collected in heparinized
capillary tubes (Fisher Scientific, Pittsburgh, PA, USA), centrifuged, and measured in a
hematocrit reader.

2.3. Tissue Iron, Zinc, Copper, and Manganese

Tissues (liver, n = 12 per group; whole brains, n = 12 per group) were flash frozen at
time of collection and stored at −20 ◦C. Sample weights were recorded prior to digestion in
HNO3 (16 mol/L) at room temperature for 7 d. The HNO3 was evaporated at sub-boiling
temperatures for 6–8 h [52], and remaining tissue ash was rehydrated with ultrapure water
(Milli-Q®, Millipore Sigma, Burlington, MA, USA) for quantification of iron, zinc, copper,
and manganese by atomic absorption spectrometry (Model Smith-Heifjie 4000, Thermo
Jarrell Ash Corporation, Franklin, MA, USA).

2.4. Histology

At the time of collection, liver tissue (n = 6 per group) and whole brains (n = 6 per
group) were immersion-fixed in 4% w/v PFA at 4 ◦C for 24 h. Tissues were then washed in
1× PBS three times, stored in 70% ethanol at 4 ◦C, and submitted to the UC Davis School of
Veterinary Medicine Anatomic Pathology Laboratory for embedding by standard protocols.
Tissue sections were stained for iron by Perls’ Prussian blue method with nuclear fast red
counterstain.

2.5. Real-Time PCR

Tissue samples (liver, n = 7 per group; hippocampus, n = 7 per group) were stored in
RNAlater® (Sigma-Aldrich, St.Louis, MO, USA) solution at time of collection, kept at 4 ◦C
for 24 h, and then stored at −20 ◦C until extraction by the TRIzol™ protocol (Invitrogen™,
Carlsbad, CA, USA). RNA was reverse transcribed to cDNA using a High-Capacity cDNA
Reverse Transcription Kit with RNase Inhibitor (Cat#4374966, Applied Biosystems™, Foster
City, CA, USA) as outlined by the manufacturer. RT-PCR reactions were performed using a
CFX96 Real-Time PCR System (Cat#1725121, Bio-Rad, Hercules, CA, USA) with iTaq Universal
SYBR® Green Supermix to determine relative expression of target transcripts. The fold change
in target gene expression was calculated and normalized to Actb expression using the 2∆∆Ct

method. Primer sequences for target and housekeeping genes are listed in Table 2.

Table 2. Real-time PCR primer sequences.

Gene Primer Sequence Reference

Actb F: GAAATCGTGCGTGACATTAAAGAG
R: GCGGCAGTGGCCATCTC [53]

Hamp F: GCTGCCTGTCTCCTGCTTCT
R: CTGCAGAGCCGTAGTCTGTCTCGTC [29]

Tf F: GCATCAGACTCCAGCATCAA
R: CAGGACAGTCTGGTGCTTCA [54]

TfR1 F: GAGTTCACTGACATCATCAA
R: GCAATCCAGATGACTGAGAT [53]

Mag F: TGTGTAGCTGAGAAGGAGTATGG
R: ACAGTGCGATTCCAGAAGGATTAT [55]

Mbp F: CTCTGGCAAGGACTCACACAC
R: TCTGCTGAGGGACAGGCCTCTC [56]

Plp F: GTGTTCTCCCATGGAATGCT
R: TGAAGGTGAGCAGGGAAACT [57]
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2.6. Western Blotting

Tissues (duodenum, n = 4 per group; hippocampus, n = 6 per group) were flash frozen
in liquid nitrogen immediately after collection and stored at −80 ◦C. Frozen tissue samples
were homogenized by bead beating with 5 mm stainless steel beads (Qiagen, Valencia,
CA, USA) in Pierce® RIPA Buffer (Cat#PI89900, Thermo Fisher Scientific™, Waltham,
MA, USA) with Roche cOmplete™ protease inhibitor cocktail (Cat#NC0969110, Sigma-
Aldrich, St. Louis, MO, USA) in a TissueLyser II (Qiagen, Valencia, CA, USA). Following
quantification of tissue lysate protein by the Bradford assay, 30 ug protein samples diluted
in Laemmli buffer were loaded onto 10% TGX Stain-Free™ polyacrylamide gels (Bio-
Rad, Hercules, CA, USA) and separated by electrophoresis under reducing conditions
(5% 2-mercaptoethanol). Protein was transferred to nitrocellulose membranes using a
Trans-Blot Turbo Transfer System (Bio-Rad). Stain-Free™ blot images were captured using
a ChemiDoc MP (Bio-Rad, Hercules, CA, USA) and membranes were blocked with 5%
non-fat milk (Sigma-Aldrich, St. Louis, MO, USA) in 0.1% Tween®20 PBS (PBST) buffer
for 1 h. Blots were washed in PBST and resuspended in primary antibody solution for
overnight incubation at 4 ◦C. Primary antibody solutions were prepared according to
the following ratios: rabbit 1:1000 rabbit anti-4-HNE (Cat#ab46545; Abcam, Cambridge,
MA, USA), 1:1000 rabbit anti-Slc40a1 (Cat#ab58695; Abcam, Cambridge, MA, USA), and
1:100 mouse anti-Fth1 (Cat#sc-376594; Santa Cruz Biotechnologies, Santa Cruz, CA, USA).
Following overnight incubation blots were washed thoroughly with PBST and then treated
with horseradish peroxidase-conjugated secondary antibody (1:5000 anti-rabbit or anti-
mouse, Sigma-Aldrich, St. Louis, MO, USA) in blocking solution. After a final wash in
PBST, SuperSignal™ West Femto Maximum Sensitivity Substrate (Thermo Scientific, Fisher
Scientific™, Waltham, MA, USA) was used for chemiluminescent detection of Slc40a1 and 4-
HNE protein bands and ECL Plus Reagent (Thermo Scientific, Fisher Scientific™, Waltham,
MA, USA) was used for detection of Fth1. Blot images were captured on the ChemiDoc™

MP (Bio-Rad, Hercules, CA, USA). Total adjusted band densities of target proteins were
analyzed by Image Lab Software (Bio-Rad, Hercules, CA, USA) and normalized to total
lane protein using Stain-Free™ blot images [58–60].

2.7. Protein Carbonyl Content

Protein carbonyl content was quantified in hippocampi (n = 6 per group) using an
OxiSelect™ Protein Carbonyl ELISA kit (Cat#STA-310; Cell Biolabs, Inc., San Diego, CA,
USA) according to the manufacturer’s instructions.

2.8. Statistical Analysis

Data were analyzed and plotted in GraphPad Prism (Version 8). A repeated-measures
two-way ANOVA with Geisser–Greenhouse correction was used to test for treatment
group effect on body weight across the supplementation period. Litters were analyzed as
biological replicates, with respective pups as technical replicates when testing for effects
on growth. Significant differences in gene and protein expression with treatment were
detected with a one-way ANOVA with post hoc Tukey’s test. The Shapiro–Wilk test was
used to check for normality, and Kruskal–Wallis tests were used with Dunn’s multiple
comparison’s test to detect group differences in nonparametric data. Individual data points
representing biological replicates are plotted with the mean ± SEM, except for growth data,
where, for clarity purposes, only the mean ± SD was plotted. Significance was determined
at p ≤ 0.05.

3. Results
3.1. Iron Status

We provided daily ferrous sulfate (FS) or ferrous bis-glycinate chelate (FC) iron sup-
plements to rat pups from postnatal day (PD) 2–14 to investigate outcomes of postnatal iron
supplementation. Supplements were delivered based on 10 mg iron/kg body weight (BW),
a dose we designed to represent the estimated routine iron intake of an infant fed exclu-
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sively iron-fortified infant formula (Table 1 and Equation (1)). We interrogated hemoglobin
and hepatic iron pools to evaluate body iron stores at PD 15 following supplementa-
tion. Initially, we tested whether differences in liver iron, hemoglobin, and hematocrit
may be due to sex. We did not detect any effects on these metrics due to sex, so this
variable was dropped when testing for differences among iron supplementation groups.
Hemoglobin and hematocrit were 15% higher in iron-supplemented pups (FS and FC)
over CON (p < 0.0001; Figure 1a,b). Substantial liver iron loading was also observed in all
iron-supplemented pups (Figure 1c,d). Liver iron concentration following FS or FC supple-
mentation was around 100× CON liver iron levels (p < 0.0001; Figure 1a), and marked ferric
iron deposition blue was clearly visible with Perls’ Prussian Blue iron staining in both FS
and FC liver sections while nearly undetectable in CON livers (Figure 1d). No difference in
hemoglobin (p = 0.87; Figure 1a), hematocrit (p = 0.27; Figure 1b), or liver iron concentration
(p = 0.93; Figure 1c) was found between FS vs. FC groups (p = 0.93), suggesting that both
iron forms elevated body iron levels similarly following daily supplementation.
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3.2. Growth and Development

Iron supplementation can delay growth when provided to iron-sufficient infants [12–14],
and therefore we recorded BW every two days across this study to investigate the influence
of supplementation on growth. Litter average BW increased steadily in all litters from
postnatal day (PD) 2 to PD 15 (Figure 2a) and all individual pup weights fell within normal
growth curve percentiles for Sprague Dawley rats (individual values not plotted for clarity).
Litter averages were analyzed as biological replicates when testing for treatment effects
on BW. A repeated-measures two-way ANOVA of litter average BW detected a significant
effect of time (p < 0.0001) but not litter group (p = 0.18), suggesting that postnatal BW gain
was not affected by iron.
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in rats. (a) Pup body weights (n = 3 litters/group, 10 pups each litter) were recorded across the
supplementation period from postnatal day (PD) 2–15; litter averages were analyzed as biological
replicates and plotted as mean ± SD. Group and time effects were assessed by repeated-measures
two-way ANOVA with Geisser–Greenhouse correction. (b) Liver and (c) brain weights were recorded
at time of collection on PD 15 and normalized to body weight (d,e). Organ weight values are plotted
as the means ± SEM. p-value summary: *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Organ weights were measured on PD 15 at time of collection to detect organ toxicity
effects [61]. No effect of sex on liver or brain weight was detected at this age. Treatment
influenced brain weight, but results of pairwise comparisons were affected when raw brain
weight values were normalized to BW. Mean FS brain weight (raw weight in g) was greater
than in the FC and CON groups (p < 0.05; Figure 2c). However, mean FS brain weight (%
BW) was not different from CON, and FC brain weight (% BW) was significantly lower
than both FS (p < 0.01) and CON (p < 0.05; Figure 2e). With or without normalization,
FS brains were significantly heavier than FC brains. Liver weight, in contrast, was not
different between groups (p = 0.10; Figure 2b), and this remained true when values were
normalized to body weight (p = 0.99; Figure 2d). Overall, brain development was affected
by iron supplement form and this effect does not appear to be related to iron status, since
iron status was similar between the FS and FC groups (Figure 1a–d).
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3.3. Systemic Iron Homeostasis

When iron stores become elevated in healthy individuals, the liver releases the iron
regulator hepcidin to prevent iron overload [62,63]. Hepcidin reduces dietary iron uptake
by blocking activity of the iron exporter ferroportin in enterocytes [62,64] and inherited
disruptions to this pathway result in hemochromatosis (i.e., iron overload) [65–69]. We
assessed liver hepcidin (Hamp) and duodenal ferroportin (Slc40a1) expression in rats at PD
15 to observe systemic iron homeostasis following daily postnatal iron supplementation,
and to test for differences between FS and FC. Hamp was increased by at least 1000-fold
in FS and FC pups (p < 0.0001; Figure 3a), but no difference was found between iron
groups. We did not observe a treatment effect on duodenal Slc40a1 expression (p = 0.09;
Figure 3b), in support of findings suggesting that iron absorption is under-regulated in early
life [25,28,30,31]. It appears that duodenal Slc40a1 trended toward increased expression
with iron supplementation, but due to the small sample size (n = 4 per group), it is possible
that our Slc40a1 analysis was underpowered to detect a significant change. Further, iron
homeostasis outcomes of iron supplementation may not depend upon iron form.

Nutrients 2021, 13, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 3. Changes in systemic iron regulation at PD 15. (a) Liver hepcidin (Hamp) mRNA expression was assessed by real-
time PCR (n = 7–8/group). Values with the mean ± SEM are plotted as fold change relative to CON means. (b) Relative 
expression of the iron exporter protein, ferroportin (Slc40a1), was assessed in the proximal small intestine (n = 4/group). 
Adjusted Slc40a1 band density was normalized to total protein with the Stain-Free™ method, and values are plotted rel-
ative to mean CON expression (%) as the means ± SEM. p-value summary: ****, p < 0.0001. 

3.4. Iron and Trace Minerals in the Central Nervous System 
Next, we measured iron levels in the CNS at PD 15 to determine whether postnatal 

iron supplementation led to sustained brain iron loading, but in spite of increased overall 
iron status this was not the case. Indeed, no difference was found in whole brain iron 
concentrations among groups (p = 0.91), suggesting that, in contrast to the liver, the CNS 
may be protected from iron loading following postnatal supplementation at physiological 
doses. 

We suspected that iron supplementation might reduce availability of other trace min-
erals in the CNS, as iron can disrupt the metabolism of other essential trace minerals 
through mineral-mineral interactions [15,20]. To test whether availability of these miner-
als was altered in the CNS following postnatal iron supplementation, zinc (Zn), copper 
(Cu), and manganese (Mn) concentrations were also quantified in whole brains. Congru-
ent with brain iron results, brain zinc (p = 0.28), manganese (p = 0.84), and copper (p = 0.34) 
concentrations were unaffected by iron supplementation at this age. 

3.5. Iron Regulation in the Hippocampus 
Iron must be tightly regulated in the CNS to sustain basic cellular functions, neuro-

transmitter synthesis, and myelination. The hippocampus—a CNS region known for its 
central role in learning and memory—is considered highly sensitive to changes in iron 
availability during early development and aging. Hippocampal iron deficiency (ID) can 
permanently disrupt cognitive development, while hippocampal overload is a key com-
ponent in Alzheimer’s Disease pathophysiology. We assessed iron loading and iron reg-
ulation in the hippocampus at PD 15 to observe whether the hippocampus had sustained 
iron loading following postnatal iron supplementation. Ferric iron deposits were unde-
tectable in hippocampal sections (representative slides shown in Figure 4a), and no effect 
on hippocampal ferritin heavy chain protein (Fth1) expression was observed (p = 0.07; 
Figure 4c). This suggests iron loading did not occur in the hippocampus following iron 
supplementation, because iron is stored in ferritin and its components are upregulated in 
response to increased iron [70–72]. In addition to storing iron as Ft, the CNS can prevent 
iron overload during increased iron status by downregulating transferrin-bound iron up-
take by transferrin receptor (Tfr1) or by increasing iron export via Slc40a1; transferrin is 
also upregulated in the CNS to quench free iron molecules during cellular iron overload 
or oxidative stress [54,73,74]. We found no differences in Tfr1 (p = 0.42; Figure 4b) or Tf (p 
= 0.27; Figure 4d) mRNA expression among groups, nor did we observe changes in Slc40a1 
protein (p = 0.24; Figure 4e). Taken together, these data do not indicate sustained iron 
loading had occurred in the hippocampus following postnatal iron supplementation. 

Figure 3. Changes in systemic iron regulation at PD 15. (a) Liver hepcidin (Hamp) mRNA expression was assessed by
real-time PCR (n = 7–8/group). Values with the mean ± SEM are plotted as fold change relative to CON means. (b) Relative
expression of the iron exporter protein, ferroportin (Slc40a1), was assessed in the proximal small intestine (n = 4/group).
Adjusted Slc40a1 band density was normalized to total protein with the Stain-Free™ method, and values are plotted relative
to mean CON expression (%) as the means ± SEM. p-value summary: ****, p < 0.0001.

3.4. Iron and Trace Minerals in the Central Nervous System

Next, we measured iron levels in the CNS at PD 15 to determine whether postnatal
iron supplementation led to sustained brain iron loading, but in spite of increased overall
iron status this was not the case. Indeed, no difference was found in whole brain iron
concentrations among groups (p = 0.91), suggesting that, in contrast to the liver, the CNS may
be protected from iron loading following postnatal supplementation at physiological doses.

We suspected that iron supplementation might reduce availability of other trace
minerals in the CNS, as iron can disrupt the metabolism of other essential trace minerals
through mineral-mineral interactions [15,20]. To test whether availability of these minerals
was altered in the CNS following postnatal iron supplementation, zinc (Zn), copper (Cu),
and manganese (Mn) concentrations were also quantified in whole brains. Congruent
with brain iron results, brain zinc (p = 0.28), manganese (p = 0.84), and copper (p = 0.34)
concentrations were unaffected by iron supplementation at this age.

3.5. Iron Regulation in the Hippocampus

Iron must be tightly regulated in the CNS to sustain basic cellular functions, neu-
rotransmitter synthesis, and myelination. The hippocampus—a CNS region known for
its central role in learning and memory—is considered highly sensitive to changes in
iron availability during early development and aging. Hippocampal iron deficiency (ID)
can permanently disrupt cognitive development, while hippocampal overload is a key
component in Alzheimer’s Disease pathophysiology. We assessed iron loading and iron
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regulation in the hippocampus at PD 15 to observe whether the hippocampus had sus-
tained iron loading following postnatal iron supplementation. Ferric iron deposits were
undetectable in hippocampal sections (representative slides shown in Figure 4a), and no
effect on hippocampal ferritin heavy chain protein (Fth1) expression was observed (p = 0.07;
Figure 4c). This suggests iron loading did not occur in the hippocampus following iron
supplementation, because iron is stored in ferritin and its components are upregulated in
response to increased iron [70–72]. In addition to storing iron as Ft, the CNS can prevent
iron overload during increased iron status by downregulating transferrin-bound iron up-
take by transferrin receptor (Tfr1) or by increasing iron export via Slc40a1; transferrin is
also upregulated in the CNS to quench free iron molecules during cellular iron overload
or oxidative stress [54,73,74]. We found no differences in Tfr1 (p = 0.42; Figure 4b) or Tf
(p = 0.27; Figure 4d) mRNA expression among groups, nor did we observe changes in
Slc40a1 protein (p = 0.24; Figure 4e). Taken together, these data do not indicate sustained
iron loading had occurred in the hippocampus following postnatal iron supplementation.
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3.6. Oxidative Stress in the Hippocampus

Iron induces oxidative damage in the CNS, including the hippocampus, and this may
cause neurodegeneration [32], so we reasoned that postnatal iron supplementation might
elevate oxidative stress in the hippocampus even in the absence of sustained iron loading
effects, as this may occur through transient increases in CNS iron undetected by our study
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design. Hippocampal oxidative stress was quantified by measuring 4-hydroxynonenal
(4HNE), a known product of lipid peroxidation [75]. The quantity of 4HNE modified
proteins, assessed by Western blot, did not differ among groups (p = 0.54; Figure 5a);
however, a slight effect on protein carbonyl content, a stable byproduct of protein oxidation,
was observed [76]. Less oxidized protein was detected in the hippocampus of FS pups
compared to the other groups, suggesting reduced hippocampal oxidative stress in this
group (p = 0.04; Figure 5b).
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3.7. Myelination in the Hippocampus

Myelination occurs mainly during postnatal development in rats and synthesis of
myelin peaks beginning PD 14 until PD 34 [77]. Iron accumulation causes oxidative stress
and cell death in oligodendrocytes, which myelinate neurons in the CNS [78]. In piglets,
iron supplementation reduced hippocampal myelination gene expression [38]. We sought
to determine if hippocampal myelination was impacted by daily postnatal iron supplemen-
tation in rats, so we measured expression of several major myelin genes in the hippocampus,
including Mag, Mbp, and Plp (Figure 6). Myelin associated glycoprotein (Mag) signals
myelin and axonal formation, while myelin basic protein (Mbp) and proteolipid protein
(Plp) play major structural roles in myelination [79]. We found no difference in expression
of Mag, Mbp, or Plp mRNA in the hippocampus at PD 15, suggesting that myelination was
not impacted by either iron supplement (p = 0.69; Figure 6).
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4. Discussion

Ferrous sulfate (FS) supplementation and formula fortification prevent postnatal iron
deficiency (ID) [4,6], but may be harmful to iron-replete infants [15,18,20]. Excess iron
intake through high-iron formula or iron drops can lead to growth delays, and adverse
cognitive and behavioral outcomes [9–11,19]. Infants may be especially susceptible to
these adverse effects, because under-regulation of iron in early life permits excessive
iron absorption and this may lead to iron loading in the developing central nervous
system (CNS) [8,25,31]. Adverse neurodevelopment outcomes [23–25] and oxidative stress
of the CNS [25,38] have been observed in animals supplemented with iron postnatally.
Research on the effects of postnatal iron supplementation in healthy subjects is limited and
existing animal studies have often not been designed to mimic routine iron administration.
We developed a translationally-optimized iron supplementation experiment in rat pups
(Table 1 and Equation (1)) to compare effects of ferrous bis-glycinate chelate (FC) or ferrous
sulfate (FS) on development, systemic iron regulation, CNS trace mineral content, and
hippocampus-specific markers of iron regulation, oxidative stress, and myelination.

First, we characterized iron status following supplementation with FS or FC. Hemoglobin,
hematocrit, and liver iron content were all substantially increased in iron-supplemented
pups at PD 15 (Figure 1). Liver iron concentration is more sensitive and specific to excess
body iron loading than blood indices for iron status. Excess body iron is taken up by the
liver for storage, and in turn, the liver controls body iron homeostasis to prevent overload.
Before being assigned to treatment groups on PD 2, litters were culled to age-matched
litters of 10, a normal litter size for Sprague Dawley rats. Therefore, it can be assumed
that CON pups received sufficient dietary iron via milk feeding and should not have
required additional iron. Yet, we observed large effects on hemoglobin, hematocrit, and
liver iron content when pups were supplemented with iron, and this is probably due to
under-regulation of iron absorption (Figure 3). When liver iron increases, the liver makes
hepcidin, the iron systemic iron regulator that downregulates intestinal iron absorption
by blocking the iron exporter, ferroportin (Slc40a1) [20–22]. Infant iron absorption was
previously reported to be unaffected by dose, mode of delivery, or infant iron status [27,80],
and in previous experiments in rodents [29–31] and piglets [25] intestinal ferroportin was
hypo-responsive to hepcidin following iron supplementation. One study investigating
this early life phenomenon in rats concluded that hypo-responsiveness of ferroportin
protein to hepcidin during suckling may be explained by elevated iron-regulatory element
(IRE+) Slc40a1 transcripts, which allow for upregulation of Slc40a1 in response to elevated
enterocyte iron levels [29]. That study demonstrated that weanling and adult rats mainly
express an Slc40a1 transcript variant lacking IRE (IRE−) in the duodenum. Expression
of IRE− Slc40a1 in weanling and adult rats allows enterocytes to avoid translational
regulation by iron regulatory proteins (IRPs); enterocyte Slc40a1 protein is primarily
controlled by hepcidin after weaning. However, in pre-weanling pups expressing higher
levels of IRE+ Slc40a1 transcripts, translation of Slc40a1 is upregulated in response to iron;
Slc40a1 remains elevated even in the presence of elevated hepcidin levels. The authors
concluded that elevated IRE+ Slc40a1 during suckling may help to maximize the supply
of iron during a critical period of increased iron demands [29]. In our study, liver iron
concentrations in FS and FC pups were 100x control (CON) levels (Figure 1c), and liver
hepcidin expression was 1000-fold CON expression, but we found no change in intestinal
ferroportin protein (Figure 3). Indeed, there was a trend toward increased ferroportin
expression (Figure 3b); however, our duodenal Western blot analysis may have been
underpowered to detect a significant increase. Therefore, our results are consistent with
previous findings that infants receiving iron through iron supplements or iron-fortified
formula absorb iron unmitigatedly and may be at increased risk for iron overload. Both
FS and FC supplementation comparably increased iron levels, hemoglobin, hematocrit
(Figure 1), and similar liver Hamp expression and duodenal ferroportin protein expression
was detected between FS and FC groups (Figure 3). Indeed, neither iron status nor iron
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homeostasis outcomes were affected by iron form; both forms elevated body iron stores to
levels far beyond that of CON pups.

Iron deficiency and iron toxicity are both harmful, and both inhibit growth and
proliferation of cells [81]. A limited number of studies have investigated whether postna-
tal iron supplementation benefits long-term growth and development [18,82–84]. Iron
supplementation of iron-sufficient infants might delay growth but this is not consis-
tent [9,12,14,82,83,85]. We observed no effect of iron supplementation on litter weight
gain (Figure 2a), suggesting that neither FS nor FC iron affects short-term weight gain in
early life when provided at routine levels. Similar findings have been reported in previous
animals studies, which have used both lower and higher daily doses of FS: in pre-weanling
pigs—where the same daily dose of FS was used (10 mg iron/kg BW) from PD2–21—weight
gain was not affected, nor was weight gain affected with 50 mg iron/kg BW [25], and BW
was not affected in pre-weaning rats following supplementation with either 30 or 150 µg
iron per day [30]. In these studies, increasing the dose of iron increased iron status but did
not change growth. Thus, our results are consistent with previous experiments in animals.
We also analyzed liver and brain weights following iron supplementation in rats, because
organ weight is often measured to detect neonatal toxicity in rodent models [61]. Liver size
typically decreases with exposure to environmental toxins [86]. We observed no difference
in liver weight following iron supplementation, indicating an absence of toxic effects in
the liver (Figure 2b,d). Nevertheless, brain weight was affected depending on iron form
(Figure 2c,e). Data are shown as brain weight and brain % BW because current research has
not determined which is more meaningful in terms of postnatal neurodevelopment [61]. In
both analyses (Figure 2c,e), FS brains were heavier than FC brains. Therefore, we conclude
that brain weight effects following postnatal iron supplementation are dependent upon the
form of iron. Additional studies with more specific indicators of neurodevelopment are
needed to determine whether functional differences may arise related to brain weight or
iron source.

Previous studies have observed iron loading in the CNS following iron supplementa-
tion [25,30] and this may also alter availability of other trace metals through iron–mineral
interactions [15,20]. We reasoned that differences in brain size between the iron forms
might be explained by differences in iron loading or trace metal availability between FS
and FC groups, but neither iron, zinc, copper, nor manganese levels were different between
these groups in our study. Regarding the negative cognitive and behavioral outcomes that
were observed in infants given iron-fortified formula, these results suggest dietary iron
intake from iron-fortified formula is unlikely to have caused sustained brain iron loading
or disruptions to zinc, copper, or manganese availability in the CNS. Furthermore, these
findings do not support the hypothesis that long-term cognitive outcomes of postnatal
iron supplementation are due to direct effects of iron loading or iron–mineral interactions
in the CNS. Neither does it appear likely that sustained iron loading nor changes in iron
regulation had occurred specifically in the hippocampus, as we had suspected it would
(Figure 4). Postnatal CNS iron loading might happen transiently, or after exceptionally
high oral doses are used as previously reported [25,30]. Considering that brain trace min-
erals were not altered and considering that overall iron status was similar between FS
and FC groups, it is unclear how FS brains became heavier than FC brains. These results
provide novel evidence that iron form might influence neurodevelopment outcomes of
iron supplementation.

Iron loading causes oxidative stress in the brain and this appears to be a central mech-
anism in neurodegenerative pathologies [32,33]. Oxidative stress has also been observed
in the CNS following neonatal iron exposure [87]. Iron loading initiates pro-oxidative
reactions in cells and this can be toxic to the CNS [78,88,89]. Recently in piglets, iron
supplementation at 50 mg iron/kg BW as FS from PD 2 to PD 21 increased hippocampal
lipid peroxidation compared to 10 mg iron/kg and control groups, but this was not statisti-
cally significant [25]. In the present experiment, we used 10 mg iron/kg BW. No change
in hippocampal lipid peroxidation was observed, and only borderline less hippocampal
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protein oxidation was seen in the FS group, suggesting that neither iron treatment induced
hippocampal oxidative stress (Figure 5). Protein oxidation was not different among the iron
groups in the hippocampus, so we further conclude that differences in brain size cannot
be explained by differences in oxidative stress outcomes between iron forms. Congruent
to both these and the CNS mineral loading results, we also did not detect changes in
myelination gene expression (Figure 6).

There are inherent limitations to extending the findings of this study to all healthy,
iron-sufficient infants in spite of our optimization efforts. We believe that 10 mg iron/kg
BW is representative of the iron intake of iron-fortified formula-fed infants, but dietary
iron intake may vary widely in healthy infants. It is possible that many infants may be
exposed to significantly more iron (e.g., preterm infants) or less iron (mixed-fed infants)
than the average formula-fed infant. It is likely that significantly increasing or decreasing
the dose used in our study would lead to different iron status and development outcomes.
Future studies should define the dose–response relationship between postnatal iron intake,
iron status, growth, and neurodevelopment at this stage of life.

In conclusion, specific development effects of postnatal iron supplementation at
routine levels may not be clearly related to iron status effects and instead dependent upon
indirect mechanisms related to iron form. The long-term functional consequences of these
effects remain to be elucidated. The differential effects on brain growth between FS- and
FC-supplemented pups provides evidence that iron impacts postnatal development in a
form dependent manner. Additional studies in this area are warranted to optimize dose,
timing, and form of iron for infants such that any negative health outcomes are identified
and prevented without compromising risk for iron deficiency.
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