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Health risk assessment of  PM2.5 
on walking trips
Caihua Zhu, Zekun Fu, Linjian Liu, Xuan Shi & Yan Li*

PM2.5 has an impact on residents’ physical health during travelling, especially walking completely 
exposed to the environment. In order to obtain the specific impact of  PM2.5 on walking, 368 healthy 
volunteers were selected and they were grouped according to gender and age. In the experiment, the 
heart rate change rate (HR%) is taken as test variable. According to receiver operating characteristic 
(ROC) curve, the travel is divided into two states: safety and risk. Based on this, a binary logit model 
considering Body Mass Index (BMI) is established to determine the contribution of  PM2.5 concentration 
and body characteristics to travel risk. The experiment was conducted on Chang’an Middle Road in 
Xi’an City. The analysis results show that the threshold of HR% for safety and risk ranges from 31.1 
to 40.1%, and that of  PM2.5 concentration ranges from 81 to 168 μg/m3. The probability of risk rises 
5.8% and 11.4%, respectively, for every unit increase in  PM2.5 concentration and HR%. Under same 
conditions, the probability of risk for male is 76.8% of that for female. The probability of risk for youth 
is 67.5% of that for middle-aged people, and the probability of risk for people with BMI in healthy 
range is 72.1% of that for non-healthy range. The research evaluates risk characteristics of walking 
in particular polluted weather, which can improve residents’ health level and provide suggestions for 
travel decision while walking.

The health risks in residents’ travel are mainly related to the concentration of particulate matter (PM)1. PM is 
the primary cause of many adverse health effects, including but not limited to cardiovascular and respiratory 
 diseases2,3. As the main PM exposure environment for residents, traffic environment involves a large number 
of people. PM has a more significant impact on commuters with intensive travel time and high travel  demand4. 
Walking as the final transfer mode in a trip is an indispensable part to complete the travel. Since walking is fully 
exposed to the external environment, it is very sensitive to the change of PM concentration. In order to assess the 
health risk of walking trips, we need to address two aspects: (1) The human body has its own regulatory capacity. 
How to determine the boundary between the safe state and the risk state? (2) The quantitative description of the 
factors that influence the health risk of travel is not clear. If the health risk degree at certain PM concentration 
could be obtained, the health risk degree, i.e., the probability of health risks when residents travel in specific 
polluted weather. For commuters, it will be possible to alter residents’ willingness to travel or their travel modes, 
and improve the health conditions in travelling. For managers, it will provide risk assessment basis for health 
control, and make commuters’ travel reach the overall optimal level.

The health risks during commuting are not only closely relevant to the concentration of pollutants in the 
external environment, but also connected to residents’ personal physical conditions. Due to people’s different 
physical qualities, their resistance to pollution is not always the  same5. Individual characteristics (age, gender, 
figure and so on) have an effect on physical  quality6,7. When estimating the critical value of pollutant concentra-
tion corresponding to safety and risk, individual situations of each volunteer should be analyzed. The health risk 
of walking trips in polluted weather can be reflected by a variety of factors. Among them, real-time physiological 
data during travel is the most active reflection to the disturbance of external environment. Heart rate as the most 
intuitive sample data has high reliability since it is less influenced by commuters’ subjective  consciousness8. Thus, 
the impact of pollutant concentration on residents’ health can be measured by the changes of heart rate. The 
health status is affected by a combination of the external environment and physical condition. So, it is necessary to 
study the specific contribution of each influencing factor to health risk. Because the experiments were conducted 
simultaneously, the analysis was carried out from the perspective of PM concentration. The novelty of this study 
lies in obtaining health risk thresholds for volunteers in terms of heart rate and quantitatively describing the 
relationship between each influencing factor and health risk degree.

The sources of PM include natural and anthropogenic sources. Natural sources mainly include dust storms, 
volcanic eruptions, forest and grassland fires; anthropogenic sources mainly include traffic trips, home heating, 
power plants and various industrial  processes5. Due to the numerous natural and anthropogenic sources, PM may 
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have different physicochemical characteristics in different areas and it is diffuse in  nature5,9. PM concentrations 
show seasonality, with higher average PM concentrations in the warm season than in the cool season, and higher 
PM concentrations from June to  September7,10. Meanwhile, factors such as distance from dust source, frequency 
and duration of dust storms, vegetation cover, and soil type also have a greater influence on PM  concentrations7. 
In areas of human activity, PM concentrations are accompanied by spatial shifts that are related to the frequency 
of human  activity11. The increased concentration of PM to which individuals are exposed may alter metabolic 
activity and lead to serious diseases such as asthma, rhinitis, and  tuberculosis12. The number of hospitalizations 
for respiratory problems shows a positive correlation with PM  concentrations13.

PM concentrations are generally collected with the help of sampling instruments to monitor individual 
exposure  levels14. There are three main methods in the research of PM concentration. The first method is to 
estimate the impact by measuring PM concentration in the environment. It is a kind of intuitive statistics with 
single environmental variable data, which is often used to compare PM concentrations in different  regions15. 
The second method is to establish a dose model through breathing frequency to estimate the suction volume 
of pollutant. Then the size of suction volume is adopted to determine the degree of risk. This type of method is 
often used in the comparison of different travel  modes16,17. The last method is to evaluate the impact on human 
health by combining PM concentrations with physiological indicators. Most of collected statistics are time series 
data, which can illustrate the variation tendency of physiological data with PM concentration  changes18,19. Com-
monly used physiological indicators are electrocardiogram (ECG) and electroencephalogram (EEG)20. ECG is 
more widely used due to its simple and accurate  measurement21. Heart rate and heartbeat  interval22 are highly 
stable and they could visualize changes in the external environment. So, these two indexes are usually applied 
to describe health effects caused by PM concentrations.

In the statistics of travel health risk, PM concentrations are main considerations in the degree of risk. The 
higher the PM concentrations, the greater the risk. Common approaches in identifying risks include intui-
tive  statistics23, Markov  model24, Strengths Weaknesses Opportunities Threats (SWOT)25, Receiver Operating 
Characteristic (ROC)  curves26 and so on. Judging health risk actually lies in the determination of threshold 
for safety and risk in the travel. ROC curves as a series of different binary classification methods are able to 
calculate critical value of risk. High classification accuracy of ROC curves leads to their widespread application 
in the field of medical image recognition and disease  recognition27. Intuitive analysis models for PM focus on 
linear probability models and discrete probability models. The former is mainly used to connect PM to health 
 indicators28. The latter is adopted to calculate the probability of a specific event, among which Logit model and 
Probit model are representative models. Logit model has a faster solution speed as a derivative of discrete choice 
 models4. This research is based on the analysis of binary classification for safety and risk, so binary logit model 
can be selected to model and analyze influencing factors of health during travelling. Previous studies (Table 1) 
have shown that PM has an impact on human health, and this impact is related to exposure to the environment 
and physical conditions.

PM concentrations have an impact on the health of residents who travel walking. However, PM concentration 
thresholds that create risk and the quantitative description of associated influencing factors remain unknown. 
The objective of this study is to obtain the probability of health risk caused by walking in polluted weather based 
on actual experimental investigations. Major contributions of the research include: (1) the health risk threshold 
of each volunteer is determined with heart rate indicators as input variables; (2) binary logit model of health 
risk is established with safety and risk as defined interval, and the relationship between influencing factors and 
health risk is quantitated, the factors that contributed most to health risk are determined. The paper adds to the 
current literature by quantitatively describing the effects of PM on human health. This study adds a health risk 
threshold jointly determined by PM concentration and heart rate indicator, and a quantitative description of 
the relationship between influencing factors and health risk with the help of a dichotomous approach, providing 
basic theoretical knowledge for the detection of health risks in other travel modes.

Table 1.  Summary of relevant past the characteristics of PM concentration distribution and the relationship 
between PM concentration and health risk.

Study area (place) Pollutant types Key observations Author (year)

Chile PM2.5
Personal PM exposure concentration and its influencing factors of commuters with different transportation 
modes Suárez, L. et al. (2014)

Iran PM2.5/PM10
Concentrations of annual PM exceeding the WHO air quality guideline, and an unacceptably high risk for 
human health Yunesian, M. et al. (2019)

China PM2.5
Short-term exposure to ambient PM2.5 was significantly associated with an increased risk of daily outpatient 
visits for ulcerative colitis, and related to gender and age Duan, R. et al. (2021)

Iran PM10 The average PM10 concentration was higher in summer. Higher exposure levels in female Ahmadi, S. et al. (2021)

Iran PM Most of particles were inorganic in nature, and PM may have different physicochemical characteristics in 
different areas Sajjadi, S. A. et al. (2018)

Iran PM2.5/PM10
The PM concentration was higher in the warm season than in the cool season, and the number of colonies 
increased with the increase in PM concentration Amarloei, A. et al. (2020)

India PM1/PM2.5/PM10 PM concentrations are accompanied by spatial shifts that are related to the frequency of human activity Sahu, V. et al. (2018)

India PM2.5/PM10
The number of hospitalizations for respiratory problems shows a positive correlation with PM concentrations, 
and PM10 has 2 times more impact on human health than PM2.5 Gupta, A. et al. (2019)

China PM2.5 The spatial distribution of PM2.5 concentration in Xi’an and the building distribution does not match Sun, X. et al. (2020)
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Methods
Framework. Commuters’ physical functions vary from person to person, and the same environmental fac-
tors have different effects on human health. So, it is necessary to make a concrete analysis considering com-
muters’ own situations. PM concentration will not impact health extensively in a certain range due to the self-
adjustment function of human body. Only if it is higher than a fixed value can this impact be reflected. Therefore, 
it is required to find out this critical value in the analysis of health risk.

Identifying safe and risk state belongs to binary classification problem. ROC curve as a binary classification 
machine learning algorithm can intuitively reflect measurement accuracy of the model at different thresholds 
and effectively solve binary classification problem. Note that the process of determining thresholds between safe 
and risk state is conducted for each volunteer independently. While studying the effect of PM concentration on 
travel health, relying solely on qualitative descriptions has no actual meaning. This raises the need for a relation-
ship model between PM concentration and health risk. According to health risk thresholds, safe state and risk 
state could be defined during travelling. Then binary logit model can be applied in establishing the relationship 
model to quantitatively obtain residents’ travel health risk under different PM concentrations.

ROC curve. ROC curve is applicable in binary classification cases, that is, to judge two kinds of results "yes" 
or "no". ROC curve is a kind of curve that describes the relationship between sensitivity (or True Positive Rate, 
TPR) and specificity (or False Positive Rate, FPR) with a conformational method in the  test29. AUC (Area Under 
ROC Curve) reflects the accuracy of threshold and its value ranges from 0.5 to 1.0. When AUC is greater than 
0.9, the accuracy is high. Each point on ROC curve is obtained by changing the classification thresholds in the 
same model. Thus, the process of determining the best point on the same ROC curve is exactly the process of 
determining the best classification threshold. If the point is near to the upper left, it has better discriminative 
 effect30. In the application, the point with the largest Youden index (Youden index = sensitivity + specificity—1) 
can be selected as the discriminative threshold on the curve.

In this study, the experimental process is organized as follows:

(1) According to the subjective judgment by volunteers after the experiment, PM concentrations are divided 
into initial safe concentration and risk concentration as the state variable of the model.

(2) With HR% as the test variable, basic data points are selected. Then the threshold interval in each calculation 
is estimated according to the input HR%, and the initial value vector is constructed.

(3) Based on discrimination results,  ZTP (risk samples and judged as risk samples; number of correctly affirmed 
matches),  ZFN (risk samples but judged as safe samples; number of misses, not correctly found matches),  ZFP 
(safe samples but judged as risk samples; false positives, number of incorrect matches),  ZTN (safe samples 
and judged as safe samples; number of correctly rejected non-matches) corresponding to each threshold 
are calculated.

(4) The values of sensitivity (TPR) and specificity (FPR) are calculated, where T = ZTP
/

(ZTP + ZFN )
,F = ZFP

/

(ZFP + ZTN ).
(5) Connect the points (F, T) of each threshold. Then plot ROC curve and calculate Youden index. The feature 

point with the largest Youden index on the upper left can be distinguished. HR% corresponding to this 
feature point is the discriminative threshold of health risk.

Model construction considering BMI. As a probabilistic model, logit model can predict the probability 
of an  event31. This research is related to a binary-state variable reflecting safe and risk state during travelling, so 
it can be analyzed by binary logit model. In binary logit model, the dependent variable can only take two values 
1 and 0 (virtual dependent variable). In this study, the model can not only estimate whether a volunteer is in a 
risk state, but also calculate the degree of risk at that time. The model are formulated as:

where, Ŷ  is the virtual dependent variable and its value is 0 or 1; p is the probability of risk and its value ranges 
from 0 to 1; β0 is the undetermined coefficient; βi is the coefficient corresponding to the i-th explanatory vari-
able; Xi is the i-th explanatory variable.

The operation of model consists of two parts. The first part is to solve the coefficient of explanatory variable 
according to virtual dependent variable Ŷ  . The second part is to deduce the probability of risk p based on the 
variable coefficient and the value of explanatory variable. The probability of risk is calculated as:

Commuters will eventually turn to different risk states due to their different physical conditions even in the 
same environment. Body Mass Index (BMI) is a commonly used standard to measure the degree of obesity 
and health. For comparing and analyzing the health effects of weight on people with different heights, BMI is a 
neutral and reliable index.

In the process of experiment, BMI index is introduced as one of explanatory variables to measure volunteers’ 
health information. This approach aims to avoid the impact of health disparities on model accuracy. The calcula-
tion formula of BMI is shown as:

(1)Ŷ = ln
p

1− p
= β0 +

n
∑

i=1

βiXi , i ∈ N

(2)p = exp

(

β0 +

n
∑

i=1

βiXi

)/[

1+ exp

(

β0 +

n
∑

i=1

βiXi

)]
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where: BW is the weight with unit of kg; H is the height with unit of m. For healthy people, their BMI should be 
in the range of 18.5 to 24.

Experiments
Experimental design and path selection. In all procedures, we adhered to the declaration of Helsinki, 
and the study was received ethics approval from the Ethics Committee of Chang’an University. All participants 
are over 18 years old. We obtained informed consent from all study participants who were enrolled in the study, 
and participants were free to leave the experiment at any stage if they felt uncomfortable.

All experiments in this research were conducted during peak hours (7:30 to 8:30 and 17:30 to 18:30) from 
September to December (fall and winter) in 2019. The research objects were travel processes of volunteers. Since 
weather had a great influence on the assessment of air pollution concentrations, no tests were arranged in rainy 
and snowy days. In the selection of volunteers, they were required to be physically and mentally healthy without 
history of cardiovascular disease, pulmonary disease, nervous system disease and some others. Taking medicines 
was also not allowed. Then all candidates had a full medical examination to prevent data error caused by physi-
cal diseases. Finally, 368 healthy volunteers were selected for the test. All volunteers were grouped according 
to age and gender. On the basis of classification criteria proposed by World Health  Organization32, volunteers 
were divided into 112 young men, 97 young women, 85 middle-aged men and 74 middle-aged women. All 
participants should rest well in the night before the experiment. Tobacco, wine, tea, coffee, any other food or 
drugs that might affect volunteer physical status were forbidden in the previous day. Walking is assigned as their 
travel mode. Before the experiment, the heart rate under relaxed state was measured for 10 min in an air-purified 
space, which is considered as a healthy heart rate in a pollution-free environment. At the end of experiment, 
volunteers were asked to complete a subjective questionnaire to determine whether they stayed in risk state at 
a certain PM concentration.

Middle Chang’an Road in Xi’an, China, was chosen as a typical experimental path where motor and non-
motor vehicles are separated and exclusive sidewalks are set (Fig. 1). The experiment was conducted on the 
sidewalk. Located in the southern part of Xi’an, this arterial road passes through Xiaozhai business district, 
high-density residential areas and educational areas. The total length of experimental path is 2 km. The widths of 
sidewalks range from 3 to 6 m. During the test, average motor vehicle volume on this section was 2662 vehicles/h, 
consisting of 79% private cars, 12% taxis, 7% buses and less than 2% trucks. The volume of non-motor vehicles 
was 3008 vehicles/h, containing 42% electric vehicles and 58% bicycles. Pedestrian flow was 1127 people/h.

Equipment. CEM-DT96 portable particle detector, which supports dual mode of collecting particle con-
centration and mass concentration, is adopted to detect PM concentration. The sampling interval is set to 1 min 
considering that walking speed is relatively slow. Each volunteer wears a GARMIN heart rate band with an exter-
nal GPS module. The equipment continuously records heart rate data and time data in seconds. GARMIN heart 

(3)BMI =
BW

H2

Figure 1.  Location of experimental path and its details. And figure was plotted by Microsoft Office Visio 2013, 
which can be downloaded on https:// www. micro soft. com.

https://www.microsoft.com
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rate band is composed of thin film electrode and fabric band, which is worn under the chest line and stick to the 
skin. Compared with electronic bracelet, GARMIN heart rate band has higher accuracy. In order to guarantee 
the accuracy and effectiveness of data, the equipment needs to be calibrated synchronously in the same environ-
ment before each experiment. All time points take GARMIN detector as reference to ensure the consistency of 
data and facilitate subsequent data processing.

In the experiment, all volunteers wore GARMIN heart rate band tuned to uniformity and held a qualified 
CEM-DT96 portable particle detector in their hands to measure heart rate and PM concentration during the 
walking condition. Heart rate data can be directly exported from the heart rate band, and PM concentration is 
obtained by directly recording data on the portable particle detector.

Data processing. Collected PM concentrations, including  PM2.5 concentration and  PM10 concentration, 
were derived from the particulate matter detector. Note that sampling time is supposed to correspond to that 
of GARMIN heart rate band.  PM2.5 and  PM10 data represents pollutant concentrations in the external environ-
ment.  PM2.5 and  PM10 retain a highly positive correlation, as illustrated in Fig. 2. The particle diameter of  PM2.5 
is smaller, so it is easy to be affected by air buoyancy and difficult to  sink33. As a result, its impact on the atmos-
pheric transparency lasts longer. At the same time,  PM2.5 can enter the lungs and lead to the reaction of body 
function, which is more harmful to human than  PM10

34. Therefore,  PM2.5 is analyzed in the modeling of health 
risk.

The changes of heart rate reflect subtle changes of people in different conditions, which is the basic per-
formance of external environment acting on human. Consequently, it is essential to analyze the relationship 
between the changes of heart rate and  PM2.5 concentration. In data statistics, indicators related to heart rate are 
calculated in seconds.

Results
Data statistics. In statistical analysis of data, data set interval has an impact on the accuracy of results and 
determines the workloads of data processing. If the time interval is too small, the heart rate data will have greater 
randomness, which tends to highlight some random fluctuations. On the contrary, large intervals may bring 
about inadequate display of the overall trend and lower accuracy of heart rate changes. As shown in Table 2, 
significance F (sig. F) and F value reflected in the changes of heart rate data among different samples can be used 
to find out the appropriate time interval. In statistics, sig. F is the probability that the null hypothesis cannot be 
rejected in proposed model. F value is a ratio computed via dividing average regression sum of squares by aver-
age error sum of squares. The smaller the sig. F (should be less than 0.05) and F value are, the better performance 
will be. Through integrated into account, the time interval is determined to be 60 s in data processing.

For each group of volunteers, the relationship between heart rate and  PM2.5 concentration is exhibited in 
Fig. 3. With the increase of  PM2.5 concentration, the heart rate has an overall upward trend despite some fluctua-
tions. For male youth group, the heart rate is significantly lower than other groups and increases linearly. The 
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Figure 2.  Scatter diagram of relationship between  PM2.5 and  PM10.

Table 2.  Sig. F and F values at different time intervals.

Time interval 30 s 60 s 120 s 180 s 240 s 300 s

Sig. F 0.009 0.011 0.027 0.062 0.115 0.136

F 126.3 62.1 58.3 52.0 47.5 38.2
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heart rate in female middle-aged group is the highest. Its growth trend is similar to that of female youth group 
and male middle-aged group with an "S" curve. Two inflection points on the curve represents  PM2.5 concentra-
tions of 100ug/m2 and 180 ug/m2, respectively. The regression curves for male middle-aged group and female 
youth group have an intersection point. The heart rate of male middle-aged group is higher than that of female 
youth group when  PM2.5 concentration is below 220 ug/m2. While  PM2.5 concentration is above 220 ug/m2, the 
reverse applies. On the whole, youths are better at regulating the pollutant effects on body function. The physical 
performance of males are more stable than females as  PM2.5 concentrations increase.

Table 3 shows the heart rate statistics of volunteers in each group. The average heart rate in female middle-
aged group is about 5% higher than that of female youth group and about 9% higher than male youth group. 
The average heart rate is approximately equally represented in female youth group and male middle-aged group 
with 1% gap. Middle-aged volunteers maintain a higher heart rate and smaller room to adjust in the polluted 
environment. In contrast, youths appear better adaptability which is represented by higher standard deviations, 
i.e., larger adjustment room.

Determination of health risk thresholds. In the experiment, the heart rate varied from person to per-
son due to differences in basic physical conditions and their status on that day. To avoid this kind of influ-
ence, HR% is adopted to characterize heart rate changes for different volunteers and different experiment dates. 
10 min before the experiment, the heart rate was measured in a room with air purification and its mean value 
was taken as the heart rate in healthy state. HR% is expressed by the formula (4):

where: ri is the average change of heart rate during time interval i; t is the average heart rate measured 10 min 
before the experiment; ti is the average heart rate during time interval i.

In this research, ROC curve is applied in order to calculate the threshold of health risk. The input state variable 
is HR% and the test variable is subjective judgment of safety and risk for volunteers. Safe state takes 0 as the value 
and 1 represents risk state. Possible thresholds should be selected at first, then the sensitivity and specificity of 
each threshold are calculated. Based on the value range of HR%, 0.005 is determined as the discriminant interval 
of threshold. For 337 out of 368 volunteers, the area under ROC curve is larger than 0.9, indicating high accuracy 
of the experiment. With the increase of  PM2.5 concentration, HR% gradually rises. The existing of fluctuations 
leads to the situation that HR% at the optimal critical point may correspond to multiple  PM2.5 concentration 

(4)ri =
ti − t

t
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Figure 3.  Variation tendency of heart rate.

Table 3.  Statistics of heart rate indexes.

Group Mean Standard deviation Maximum Minimum

Male youth group 80.69 10.86 112 58

Female youth group 84.14 10.29 125 59

Male middle-aged group 85.29 9.78 124 60

Female middle-aged group 88.25 9.18 126 59
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values. The solution is to take the average of these values as the threshold for safe and risk state. The thresholds 
for volunteers under different physical conditions are shown in Fig. 4.

HR% at the optimal threshold of health risk ranges from 31.1% to 40.1%, corresponding to a PM concentra-
tion range of 81 to 168 ug/m2. For male volunteers, the average concentration at which risk occurs is 136 ug/
m2. It is higher than that for females (127 ug/m2), indicating that males show greater resistance to air pollution. 
The risky concentration for youth is 145 ug/m2, significantly higher than 114 ug/m2 for middle aged people. As 
people age, the hypofunction results in lower receptivity to the external environment. If a volunteer’s BMI stays 
in the normal (healthy) section, his (her) risky PM concentration is 132 ug/m2, which is higher than 107 ug/
m2 in abnormal (non-healthy) section. It proves that physical condition will affect the reaction to the external 
environment. Good physical quality would increase the adaptability and improve pollution resistance.

Health risk characteristics. The occurrence of health risks is correlated with HR%, pollution exposure 
concentration, gender, age and BMI. In order to avoid the error caused by high correlation of these explanatory 
variables, a correlation test should be undertaken before modeling. Pearson correlation coefficient was utilized 
in this research. Pearson correlation coefficient takes values between 0 and 1. It can be divided into five intervals 
with an interval step of 0.2. The correlation coefficient (from large to small) indicates the correlations are very 
strong, strong, moderate, weak and very weak. Correlations between different explanatory variables are listed 
in Table 4.

As illustrated in Table 4, there is no significant correlation between explanatory variables. Thus, five variables 
 (PM2.5 concentration, gender, age, BMI and HR%) can be selected as explanatory variables. The occurrence of 
health risks is correlated with HR%, pollution exposure concentration, gender, age and BMI. According to the 
threshold of health risk, the status of volunteers is classified into two categories: safe state and risk state. Then 
binary logit model is established.

where: p is the health risk level; γ1 is the concentration of  PM2.5; γ2 , γ3 , and γ4 are 0–1 dummy variables ( γ2 : 
1-male, 0-other; γ3 : 1-youth, 0-other; γ4:1-BMI in healthy section, 0-other); γ5 is HR% with an interval of 60 s; 
β0 is the undetermined coefficient; β1 ~ β5 are the coefficients of γ1 ~ γ5 variables, respectively.

(5)ln

(

p

1− p

)

= β0 + β1γ1 + β2γ2 + β3γ3 + β4γ4 + β5γ5
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Figure 4.  Distribution of health risk thresholds among volunteers.

Table 4.  Correlation of explanatory variables. **The correlation was significant at the 0.01 level (two-tailed).

HR% PM2.5 Gender Age BMI

HR% 1 0.386 0.337 0.261 0.355

PM2.5 0.386 1 0.053 0.021 0.102

Gender 0.337 0.053 1 0.034 0.064

Age 0.261 0.021 0.034 1 0.217

BMI 0.355 0.102 0.064 0.217 1
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The comprehensive analysis results for each parameter are shown in Table 5. The significance levels of all vari-
ables are less than 0.05, which proved the validity of the model. Among all coefficients of variables, β1 and β5 are 
positive and the remaining are negative. It indicates that the higher the  PM2.5 concentration and HR%, the higher 
the probability of generating health risks. Males, youth and those with BMI in normal section are more adapt-
able to polluted weather. The analysis results from model are consistent with statistical results from experiment.

The coefficient of  PM2.5 concentration is 0.056 and Exp ( β1 ) is 1.058, indicating that for each unit increase 
in concentration, the probability of risk will be 1.058 times higher. The coefficient for males is − 0.264 and Exp 
( β2 ) is 0.768, proving that the probability of risk for males is 76.8% of that for females. The coefficient for youth 
is − 0.393 and Exp ( β3 ) is 0.675, indicating that the probability of risk for youth is 67.5% of that for middle aged 
people. The coefficient for people whose BMI falls in normal interval is − 0.327 and Exp ( β4 ) is 0.721. It shows 
that the probability of risk for healthy volunteers is 72.1% of that for non-healthy ones. The coefficient of HR% 
is 0.108 and Exp ( β5 ) is 1.114. It means that for each unit increase in HR%, the probability of risk will be 1.114 
times greater.

Wald test is a method to estimate the significance of a given explanatory variable in a statistical  model35. Its 
value takes the ratio between the regression coefficient and the standard error. A higher Wald value means a more 
essential explanatory variable. In this research,  PM2.5 concentration and age have the largest Wald test values and 
both significance levels are less than 0.05. The explanation is that these two variables have a significant effect on 
the health risk degree. The Wald test value of  PM2.5 concentration is significantly higher than other variables, 
demonstrating that it has the greatest impact.

According to the analysis results, the health risk model is calibrated as:

Based on formula (6), the health risk degree p can be calculated:

The health risk degree is calculated respectively for each group of volunteers. Final results and health risk 
curves are shown in Fig. 5. As  PM2.5 concentrations increase, the probability of health risk gradually comes up. 
Striking differences are exhibited between males and females, youth and middle-aged people. It is apparent 
that males and youth have better resistance to pollution. At the same  PM2.5 concentration, the probability of 
health risk from high to low in order is: female middle-aged group > male middle-aged group > female youth 
group > male youth group.

Discussion
Epidemiological and toxicologic studies have shown that  PM2.5 can induce cardiovascular and respiratory dis-
eases. Moreover, it has many other adverse effects on human health, such as Type 2 Diabetes, birth defects and 
premature deaths. The underlying mechanisms of the relationship between  PM2.5 and poor health include the 
oxidation reactions in induced cells, mutagenicity and  inflammation36. Research results demonstrate that exposed 
environment with high  PM2.5 concentration will lead to increasing probability of commuters’ health risks, which 
is consistent with former  conclusions37–39. When the sudden change in heart rate reaches 35% or more, it means 
that there is a large external environmental disturbance and the body’s regulatory function starts to  feedback21. 
When the concentration of pollutants in the air is higher than 150 μg/m3, the body’s blood oxygen saturation 
is below the normal range and health risks  occur40. The above findings lie within the health risk threshold of 
this paper.

The youth and the commuters with BMI index in normal section have better resistance to pollution. The 
probability of risk for youth is 67.5% of that for middle-aged people, and the probability of risk for people with 
BMI in healthy range is 72.1% of that for people with BMI in non-healthy range. Compared with middle-aged 
people, the youth have greater capacity to adapt to the external environment. This phenomenon is mainly related 
to the sensitivity of body functions to external reactions. Existing researches have shown that pollutants can 
activate the youth’s cardiorespiratory  functions41,42, and youths have 1.3 times more space for cardiorespiratory 
conditioning than middle-aged43. Both obesity and thinness have an impact on body resistance to the external 

(6)ln

(

p

1− p

)

= −6.323+ 0.056γ1 − 0.264γ2 − 0.393γ3 − 0.327γ4 + 0.108γ5

(7)p =
exp(−6.323+ 0.056γ1 − 0.264γ2 − 0.393γ3 − 0.327γ4 + 0.108γ5)

1+ exp(−6.323+ 0.056γ1 − 0.264γ2 − 0.393γ3 − 0.327γ4 + 0.108γ4)

Table 5.  The value of model parameters (HR%,  PM2.5 concentration, gender, age and BMI). The statistical 
value is the mean value of the parameters.

Variables βj Standard Error Wald test Degree Freedom P value Exp ( βj)

γ1 0.056 0.578 68.578 1 0.000 1.058

γ2  − 0.264 0.275 6.235 1 0.023 0.768

γ3  − 0.393 0.069 29.189 1 0.008 0.675

γ4  − 0.327 0.322 12.624 1 0.011 0.721

γ5 0.108 0.396 17.591 1 0.016 1.114

β0  − 6.323 0.821 39.467 1 0.005 0.002
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environment. In epidemiological studies, BMI index is highly correlated with anti-pollution ability. For obese 
people, long-term exposure to pollutants will increase their insulin production and then rise blood sugar  levels44. 
People with lower BMI index tend to have poor immunity. So, their risks of coronary heart disease and hyper-
tension caused by air pollution is 1.2 times higher than that for people with normal BMI index. As a result, the 
death rate is about 1.1 times higher than normal  value45,46.

An unexpected but interesting finding is the sex-specific difference of health risks under air pollution environ-
ment, which is reflected in better resistance to pollution for males. In the same travel environment, the probability 
of risk for male is 76.8% of that for female. This conclusion indicates that some unknown factors associated with 
sex or gender affect the body’s response to pollutants. People are becoming more and more interested in the role 
of sex and gender played in the epidemiology relevant to air pollution. Several recent studies have reported that 
pollutants have a greater impact on female’s respiratory health than  male47,48. A comprehensive analysis of the 
relationship between pollutants and death rate found that in a highly polluted environment, the risk for females 
increased by 1.12% and that for males increased by 0.73%49. However, in epidemiological research, it is compli-
cated to draw a distinction between sex (e.g., physiology, toxicokinetics) and gender (e.g., the nature of work, 
disease-related behavior, activities in males and females). It is still not clear whether the biology or behavioral/
social differences drive the discrepancy found in this study.

The change of sensitivity to  PM2.5 may be related to physiological differences caused by hormonal, structural 
and morphological differences between males and females. Specifically, it is known that males and females differ 
in lung size, airway diameter, air absorption and cardiovascular response. These differences may be a significant 
mechanism that directly affects commuter’s inhalation dose of  PM2.5, which eventually leads to different health 
 risks50,51. Toxicokinetic differences in the absorption and metabolism of  PM2.5 components can affect the accept-
able pollutant-related dose for males and females. Males and females have different air absorption capabilities, 
and the permeability of the gas-blood barrier differs by  sex52. The inflammatory response is another important 
mechanism that is considered as an intermediate step in the link between air pollution and  health53. Sexual dif-
ferences in antioxidant status may have different effects on inflammatory and oxidative stress processes in males 
and females. However, it is not clear whether these responses biologically favor males or females.

Researches on air pollution emphasize sex-based differences when analyzing various health effects. But it 
is not clear whether these effects are from sex-based differences, gender-based differences, or both. The above 
review provides several explanations for different commuting health risks based on  PM2.5 exposure, but the direc-
tion of these effects is not always clear. Although a large number of studies have shown that females are more 
susceptible to outdoor air pollution, some toxicological studies suggest that males may be more susceptible due to 
higher doses of inhaled pollutants. Future researches should continue to investigate the sex-based differences in 
air pollution exposure. Collecting data on variables (activity pattern, occupations, income, socioeconomic status 
and etc.) that can be used to replace gender differences should be also focused. This study was able to evaluate 
sex-based differences but lacked information on gender or gender substitution variables.

Conclusion
Based on ECG data and PM concentration data, this study applies ROC curve to calculate the threshold of 
health risk during walking trips. Then a binary logit model that integrates pollutant concentration, gender, age 
and BMI is established. The probability of risk during trips can be effectively obtained by the proposed method. 
When  PM2.5 concentration is in the interval of 0–300ug/m2, HR% gradually increases along with the rising of 
PM concentration. Males, youth and those with healthy BMI have better pollution resistance, as evidenced by 
having a higher risk threshold. Each unit increase in  PM2.5 concentration, the probability of risk will be 1.058 
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Figure 5.  The probability of health risks in each group of volunteers as  PM2.5 concentration increases.
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times higher; each unit increase in HR%, the probability of risk will be 1.114 times greater; the probability of risk 
for males is 76.8% of that for females; the probability of risk for youth is 67.5% of that for middle aged people; 
the probability of risk for normal BMI volunteers is 72.1% of that for abnormal ones. Among all indicators,  PM2.5 
concentration and age impact the health risk degree more significantly. The greatest one is  PM2.5 concentration. 
The research is limited to the health risk of walking. While residents’ travelling can be accomplished through a 
variety of other transportation modes, which requires further study.
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