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Abstract: IgE sensitisation has increased significantly over the last decades and is a crucial factor in the
development of allergic diseases. IgE antibodies are produced by B cells through the process of antigen
presentation by dendritic cells, subsequent differentiation of CD4+ Th2 cells, and class switching in B
cells. However, many of the factors regulating these processes remain unclear. These processes affect
males and females differently, resulting in a significantly higher prevalence of IgE sensitisation in
males compared to females from an early age. Before the onset of puberty, this increased prevalence
of IgE sensitisation is also associated with a higher prevalence of clinical symptoms in males; however,
after puberty, females experience a surge in the incidence of allergic symptoms. This is particularly
apparent in allergic asthma, but also in other allergic diseases such as food and contact allergies. This
has been partly attributed to the pro- versus anti-allergic effects of female versus male sex hormones;
however, it remains unclear how the expression of sex hormones translates IgE sensitisation into
clinical symptoms. In this review, we describe the recent epidemiological findings on IgE sensitisation
in male and females and discuss recent mechanistic studies casting further light on how the expression
of sex hormones may influence the innate and adaptive immune system at mucosal surfaces and how
sex hormones may be involved in translating IgE sensitisation into clinical manifestations.

Keywords: IgE sensitisation; respiratory sensitisation; sex hormones; allergic asthma; innate immunity;
adaptive immunity

1. Introduction

It has been known for some time that sex hormones influence the function and activity of
the immune system and likely contribute to the sex-based differences in immune-mediated disease
responses. These effects are presumably a result of the different evolutionary needs of males and
females. In general, these effects have resulted in adult females inducing a more efficient humoral-based
immune response upon pathogen challenge, whereas males tend to mount a less efficient immune
response [1,2]. The main female sex hormones include estrogen and progesterone, whereas the main
male sex hormone is testosterone. These hormones mediate their effects through binding to receptors
expressed on the surface of a wide array of cell types, to either directly induce gene expression or
activate signalling cascades from the cell surface. Estrogen mediates its effects through three receptors,
i.e., estrogen receptors α and β and G-protein-coupled receptor 1 [3]. Progesterone mediates its effects
through two isoforms (A and B) of the progesterone receptor [4], and testosterone operates through
the androgen receptor NR3C4 [5]. Different receptors may have different downstream effects and
may also exists in several isoforms. These receptors are expressed by several types of immune cells,
including innate antigen-presenting and adaptive immune cells [6,7].
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The generalised effects of male and female sex hormones are such that estrogen and progesterone
tend to enhance, whereas testosterone acts to inhibit immune responses [1,2]. This differential effect
has been linked to comparative differences in the prevalence of several diseases in male and females,
including parasite infections and a range of non-communicable diseases [8]. Parasitic infections are
mainly prevented through humoral immunity and thus appear less common in females because of
their enhanced humoral immune response. The immune-enhancing effects of female sex hormones
also increase the susceptibility of females to several autoimmune diseases, such as multiple sclerosis,
systemic lupus erythematosus, and rheumatoid arthritis, which are all significantly more common
in females than in males [9]. A differential prevalence amongst men and women is also evident for
allergic diseases such as allergic asthma, atopic dermatitis, and food allergies, which in general appear
to initially affect young males more than females; however, in post-pubertal females, allergic disease
incidence rates increase to become equivalent to or exceed those in post-pubertal males [10–15].

Our group’s research interests have primarily focussed on respiratory sensitisation to airborne
allergens and subsequent development of allergic asthma. Thus, for the purposes of this review,
we will focus on IgE sensitisation and progression to symptomatic disease within the respiratory tract
and review the current knowledge of how sex hormones influence this process.

2. Atopy and IgE Sensitisation

The inception of the pathological processes that lead to the development of allergic disease(s)
usually occurs much earlier than the initial display of the clinical symptoms. Patients often develop
a condition known as atopy, which is defined by elevated levels of allergen-specific IgE production.
However, while IgE sensitisation is a necessary precursor to the development of allergy, it does not
necessarily dictate that clinical allergic disease will develop in an individual. Approximately 50% of
the population in western countries is positive for allergen-specific IgE antibodies as determined
by specific serum IgE measurements or skin prick test (SPT) reactivity [16,17]. However, only
approximately 50% of IgE-sensitised individuals (or 20–25% of the population) suffer from an allergic
disease [18]. This suggests that there are specific mechanisms that can potentially drive or provide
protection against the translation of atopic sensitisation to clinical symptomatic disease. Although
the mechanisms underlying the transition from IgE sensitisation into allergic disease are poorly
understood, the genetic background together with allergen and environmental exposures play a large
role in both IgE sensitisation and its translation to symptomatic disease [19]. Further, the risk of clinical
disease also increases with the level of sensitisation determined by IgE serum levels and SPT wheel
size [20,21]. In addition, several studies have shown that growing up in a farming environment or
other microbially rich environments such as with indoor pets appears protective, even in genetically
similar populations [22–24]. IgE sensitisation is usually not specific for a single allergen but, instead,
sensitisation in each individual occurs to a range of allergens encountered through various routes over
time [25]. Consequently, it is common that an allergic individual suffers from multiple allergic diseases,
often in a sequential pattern of development termed the “atopic march”, where IgE-sensitisation and
development of allergic disease follow a defined pattern, initially affecting the skin and gut, and later
the airways [26,27].

IgE Sensitisation in Male and Females

Allergen-specific IgE sensitisation can occur as early as during the first year of life, and some
reports propose that sensitisation already occurs in utero, although this is controversial [28,29]. Several
studies suggest that, as both children and adults, males have higher total and allergen-specific IgE
levels than females [16,30]. In high-risk cohort studies, differences in circulating IgE levels and
development of a positive skin prick test (SPT+) first appear at a very young age [31]. Before the
age of one, the rates of sensitisation are significantly higher in males (33% SPT+) than in females
(22% SPT+, [31]), with higher levels of total IgE in SPT+ boys compared to SPT+ girls [31–33]. At this
age, total IgE levels appear to be under a strong genetic influence and may not predict total IgE levels
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in the same individual later in childhood [34,35]. Although the rates of IgE sensitisation increase
with age in females, the increased levels of IgE and the prevalence of sensitisation in males remain
into early adolescence [32,35–37]. At this age, 60% of the population is sensitised to an allergen [38].
Although not all studies on IgE levels in children observe a male predominance [33,39], the data do
suggest that very young males are more prone than females to develop IgE sensitisation following
allergen exposure [31]. The mechanism for these differences are not clear but could be attributed to
genetic differences (described in more detail below) or to differential sex hormone exposures in utero
or postnatally. It has been proposed that the surge in the rates of sensitisation among girls following
puberty is most likely due to changes in sex hormone levels at this time [40,41]. The prevalence of
IgE sensitisation in males and females, as well as hormone exposures throughout life, is illustrated in
Figure 1.
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Figure 1. Illustration of the prevalence of IgE sensitisation and levels of male and female sex hormones
throughout life in male and females.

After puberty, the total IgE and specific allergen IgE levels appear to remain higher or comparable
in men compared to women [16,30,42–44]. In later adulthood, the IgE levels appear in general to
decrease in both sexes [45,46]. In addition to changes in the IgE levels throughout life, the levels of IgE
also vary with environmental exposures during the pollen season and are influenced by the menstrual
cycle in females, suggesting a role for female sex hormones in regulating IgE levels [46,47].

3. Respiratory Allergic Sensitisation: The Mechanisms in Rodents and Human

Given the change in the prevalence and rates of IgE sensitisation in young versus adolescent males
and females, it has been suggested that sex hormones play an important part in the immunological
mechanisms of IgE sensitisation. In the sections below, we will describe what is currently known of
the immunological processes involved in respiratory sensitisation, with a focus on antigen uptake
and presentation followed by cellular and humoral adaptive responses and on how these processes
are influenced by sex hormones. A simplified overview of the immunological processes involved in
sensitisation is illustrated in Figure 2, and the effects of sex hormones on the sensitisation process are
summarised in Figure 3.
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induces Th2 differentiation and formation of Th2 effector cells that migrate back to the airways. In 
addition, the Th2 response also leads to the production of allergen-specific IgE by B cells that bind to 
mast cells and DCs in the airways. Upon allergen re-exposure (right), the allergen-induced IgE 
crosslinking on mast cells leads to histamine release and infiltration of innate immune cells such as 
eosinophils and neutrophils. In addition, antigen uptake and local presentation by DCs also result in 
Th2 cell activation, which further fuels the infiltration of immune cells, leading to symptomatic 
allergic airway disease. 
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inhibiting effects depending on the study (triangle up and down), as discussed in this review. Figure 
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Figure 2. The process of respiratory IgE sensitisation is initiated by allergen inhalation in naïve airways
(left) followed by antigen uptake by dendritic cells (DCs) lining the airway epithelium. Depending on
the local microenvironment, pro/anti-inflammatory factors are released by the airway epithelium or
innate lymphoid cells (ILC) that activate allergen-carrying DCs that migrate to the airway draining
lymph nodes. Here, allergen-carrying DCs present the allergen to the adaptive immune system.
In the case of IgE sensitisation, the presentation of an allergen to naïve CD4+ T cells induces Th2
differentiation and formation of Th2 effector cells that migrate back to the airways. In addition, the Th2
response also leads to the production of allergen-specific IgE by B cells that bind to mast cells and DCs
in the airways. Upon allergen re-exposure (right), the allergen-induced IgE crosslinking on mast cells
leads to histamine release and infiltration of innate immune cells such as eosinophils and neutrophils.
In addition, antigen uptake and local presentation by DCs also result in Th2 cell activation, which
further fuels the infiltration of immune cells, leading to symptomatic allergic airway disease.
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Figure 3. Schematic illustration of the processes involved in IgE sensitisation and a summary of
how male (blue) and female (red) sex hormones influence each process. Exaggerating effects (triagle
upward pointing symbol), inhibiting effects (downward pointing symbol) or both exaggerating and
inhibiting effects depending on the study (triangle up and down), as discussed in this review. Figure
specific abbreviations; PRR: pathogen recognition receptor, ILC: innate lymphoid cells, AEC airway
epithelial cells:
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3.1. Aeroallergen Uptake and Presentation by Airway Dendritic Cells

Respiratory IgE sensitisation is initiated through the exposure, inhalation, and uptake of allergens
by specialised antigen-capture and -presenting cells termed dendritic cells (DCs) that reside in the
airway mucosa and lung parenchyma [48–50]. These DCs are distributed in a network through the
airway epithelial layer where they monitor the inhaled substances [51]. In the airways, there are three
types of resident DCs which have most recently been defined as conventional DC1 (cDC1), cDC2, and
plasmacytoid DC (pDC). The cDC1 subset expresses BATF3 and includes what were historically named
CD103+ cDC in mouse, and BDCA3+ or, alternatively, CD141+ cDC in humans [52]. The cDC2 subset
expresses IRF4 and includes what were previously termed CD11b+ cDC in mice and BDCA1+ cDC
or, alternatively, CD1c+ cDC in humans [52]. Within the cDC1 subset, there are both CD103-positive
and -negative subsets, and, within the cDC2 subset, not all cells express CD11b [52]. There is also a
population of monocyte-derived DC (moDC) in mouse airways, although this population appears
transient and mainly infiltrates the airways in response to inflammatory stimuli [53]. This subset is
mainly involved in the execution of Th2 effector functions and in the production of pro-inflammatory
cytokines in sensitised individuals [54,55]. Despite years of intense research, it is still unclear if a specific
DC subset is involved in inducing the underlying Th2-biased immunity that leads to IgE sensitisation
or if, instead, the airway microenvironment influences the DC activation status and capacity to induce
different T cell response types [56,57]. The antigen load and relative cell numbers and ratios of DC
subsets also play a central role in balancing between sensitisation and tolerance induction [56,58–60].
This is exemplified by observations suggesting that immature DCs preferentially induce tolerance,
and a high-dose allergen may also favour a non-Th2-dominated response, as reviewed [61,62].

Several studies on the development of Th2-mediated IgE sensitisation in mice, however, point
towards a major role of IRF4+ cDC2 cells [54,63,64], although Th2 sensitisation may also be induced
through deficient allergen presentation by cDC1 [65,66] or pDCs [67,68]. BATF3+ cDC1 are central in
inducing and maintaining tolerance to self-antigens through the presentation of apoptotic material and
are also involved in inducing CD8+ T cells [69]. Plasmacytoid DCs are mainly involved in inducing
type-1 interferon responses upon viral infections [70]; however, in the context of Th2 sensitisation, they
have also been shown to reduce allergen-specific T cell responses [67,68].

3.2. The Influence of Sex Hormones on DC Function

Several studies have shown that DCs are highly influenced by sex hormones (as reviewed
recently [71]). The effects of sex hormones on DCs range from those from early observations
showing that DCs from females appears more efficient in inducing T cell proliferation [72], to those
of more recent observations showing that, during DC development, early CD11c+/CD11bin/Ly-6C−

DC precursors are dependent on estrogen signalling through estrogen receptor alpha (ERα) and
GM-CSF to develop into IRF4+ cDC2 [73–75]. Estrogen also influences MHC-II expression in
DCs and their capacity to produce cytokines such as IL-6 and IL-12 [73], stimulation of CD4+ T
cells [75,76], and DC migration [77,78]. If DCs mature in the absence of estrogen or ERα, a pre-DC-like
CD11bhi/Ly-6Chi/MHC-IIlo subset, similar to what was recently described [79], become the dominant
subset [76]. Some reports suggest that progesterone inhibits DC activation through reduction of MHC-II
and CD86 expression and reduces the ability of DCs to activate CD4+ T cell proliferation. [80,81].
Of note is that the hormone dose appears crucial, given that high progesterone doses may also be
able to enhance the differentiation of DCs from the decidua in vitro [82]. Similar effects have also
been ascribed to testosterone, including the inhibition of pro-inflammatory cytokines by DCs [83].
Hence, the removal of testosterone through castration results in the upregulation of MHC-II expression
in DCs as well as in the induction of a stronger immune response to immunisation compared to
untreated male mice [84]. In pDCs, estrogen may influence the ability to produce IFN-α in response to
toll-like receptors (TLR) ligands [85], and there are reports suggesting that estrogen may also impact
the development of pDCs by influencing IRF5 expression [86,87]. Plasmacytoid DCs from infant
males also appear less able to induce an immune response to TLR stimulation compared to female
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pDCs [88]. Given that DCs have a central role in orchestrating the immune responses, the influence of
sex hormones on DC activation may have large implications into the subsequent immune responses,
such as increased IgE sensitisation.

3.3. The Influence of Sex Hormones on Innate Immune Sensing in the Airways

In the airways, the mucosal microenvironment is constantly monitored by the interactions between
resident airway epithelial cells and migrating allergen-sampling cDCs [89,90]. Innate immune receptors
and enzyme cascades such as TLR and the complement system help the airway epithelial cells detect
danger signals in the mucosal microenvironment and facilitate the interpretation of the allergen
exposure context. Low rates of complement activation appear to be crucial in induction of immune
tolerance [91]; however, complement activation in sensitised individuals may contribute to airway
inflammation [92]. The expression of TLR4 in the airway epithelial cells has been shown to be essential
for the induction of Th2 immunity in response to house dust mite exposure in mice [93] and may
also be involved in the sensitisation to other allergens such as cockroach and ovalbumin [94,95].
Allergen exposure induces the airway epithelial cells to release the cytokines TSLP, IL-33, and IL-25.
TSLP induces DC maturation and activation, plays a central role in Th2 immunity [96–98], and acts
together with IL-33 to activate other innate immune cells, such as ILC2 that initiates and amplifies the
production of Th2 cytokines such as IL-13 in the airways [99,100]. These further facilitate DC migration
towards the airway draining lymph nodes [101]. Curiously, a continuous activation of TLR4 may also
be involved in the protection against sensitisation mediated through endotoxin exposure [102] and
may be a central pathway of the hygiene hypothesis [103,104]. Recent findings also suggest that IL-33
is involved in the induction of Th1 responses in mice and human [105,106], hinting that these processes
may be more complex than currently depicted.

There are several reports suggesting that TLRs are differently expressed in male and females,
particularly TLR7 which is expressed by genes on the X chromosome and in some cases has been
described as able to avoid chromosome silencing [107]. TLR7 is stimulated by viral ssRNA, which
appears to induce a stronger anti-viral response in females than in males [108]. In particular, ssRNA
stimulation results in IFN-α production by pDCs, which may be related to elevated levels of IRF5 in
females compared to males [86]. In contrast, TLR4 expression appears to be inhibited by testosterone
in mouse macrophages [109]. However, this effect is most likely more complex, given that in vivo
TLR4 expression is slightly elevated in male mice, resulting in a stronger cytokine (IL-6) response
upon LPS stimulation of male compared to female macrophages [110]. In addition, TLR4 expression
in macrophages also appears to be dependent on estrogen, and elevated estrogen levels increase
TLR4 expression [111]. Complement proteins and complement receptors are also under the influence
of sex hormones in some tissues such as the liver, where the majority of complement proteins are
produced [112–114]. Whether this also holds true in the airways and if this further relates to clinical
outcomes remains to be elucidated. Together, the interpretation of these findings is that sex hormones
may influence our genetic predisposition to how a potential danger signal is sensed and translated
into immunological responses.

3.4. Sex Hormone Influences on the Induction of CD4+ T Cell-Mediated Immune Responses

CD4+ T helper (Th) cells are the major T cell subset driving allergic sensitisation and are generally
further subdivided into Th1, Th2, Th17, Th9, and T regulatory (Treg) subsets. The Th1 subset
primarily produces IFN-γ and is involved in antimicrobial defences through IgG sensitisation and
macrophage-mediated cytotoxicity. The Th2 subset is characterised by the production of IL-4 and
drives humoral responses and class switching to IgE, which makes them the dominant Th cell subset in
allergic sensitisation. Th17 cells play an important role in chronic inflammation through the production
of IL17A and IL-21 [115], while Th9 cells produce IL-9 and are involved in a range of inflammatory
diseases including allergic diseases [116]. In contrast to the above subsets that promote inflammation,
the Treg subset plays a pivotal role in regulating immune responses, including the ability to inhibit the
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clinical symptoms of allergic airways disease in animal models [117] and humans, as reviewed [118].
The role of DCs in the primary activation of Th2 cells in allergic disease has received much attention in
the literature; however, many aspects still remain unclear. Once aeroallergen-loaded DCs migrate to
the airway draining lymph nodes, they interact with and activate allergen-specific naïve CD4+ cells
which, in the case of IgE sensitization, initiate the production of IL-4, IL-5, and IL-9 and differentiate
into Th2 cells [54]. This process is dependent on several factors, including DC cytokine production,
antigen and DC load, microenvironmental influence, as well as DC subset. Although the exact timing
and order of formation remains unclear [119,120], the ensuing Th2 response results in the activation
of IL-4- and IL-21-producing T follicular helper (TFH) cells that initiate and support IgE production
by B cells in germinal centres [121,122]. This effect appears to be reciprocal, with B cells also playing
an important role in priming T follicular helper (TFH) cells [119]. Once activated, allergen-specific
Th2 cells express homing receptors that guide migration from the lymph nodes back to the airways,
where they then receive additional local microenvironmental signals to produce pro-allergic cytokines
such as IL-5 in response to allergen re-challenge, resulting in the recruitment of eosinophils and other
inflammatory cells into the airways.

3.5. T Cell Development and Activation Are Influenced by Sex Hormones

From birth, females display a higher proportion of CD4+ T cells than boys, and this difference
also remains throughout adulthood [123–125]. This may in part be due to the inhibitory effects that
testosterone has on T cell output from the thymus [126]. Estrogen is also known to be involved in T
cell development, acting mainly through ERα [127,128], potentially reducing IL-2 expression [129]
which is crucial for T cell activation and Treg development [130]. Both estrogen and testosterone
influence T cell activation and the Th1/Th2 balance [131–134]. This appears to be dependent on
estrogen concentrations, with a low dose supporting induction of Th1 and luteal/pregnancy-equivalent
levels promoting Th2 induction by upregulating IL-4 and GATA-3 expression in CD4+ T cells after
CD3/28 stimulation [135]. Testosterone also appears to dampen both Th1 activation, through the
inhibition of IL-12-activated STAT4 [136], and Th2 activation, leading to a reduced ability to clear
parasite infections [137]. IL-4 producing TFH cells are also influenced by sex hormones, and their
proportions correlate with estrogen levels during pregnancy [138]. The exposure to estrogen also
increases IL-21 expression in CD4+ T cells and may enhance B cell proliferation and induction of Th17
cells [139]. One possible mechanism for how estrogen influences TFH cells is through blockage of
PPARγ signalling, which is a master regulator of TFH and other effector T cells [140]. Activation of
PPARγ appears to prevent TFH, as PPARγ−/− mice have more TFH cells compared to wild-type (WT)
mice [141], suggesting that PPARγ is necessary in females to prevent and control TFH induction and
the production of antibodies.

As described above, Treg play a central role in preventing the expression of allergic symptoms and
have been shown to be present in reduced numbers in the airways of allergic individuals compared to
healthy controls [118]. In humans, Tregs are central for maintaining immunological tolerance in the
foetus, and Treg levels also increase during the course of pregnancy [142]. This is largely controlled
by female sex hormones levels, which result in increased proportions of Tregs in females compared
to males [143] and to fluctuations of the levels of Tregs and other T cell subsets during the menstrual
cycle [144]. In mice, however, ovariectomy curiously increased the proportion of Tregs in the CD4+

population in the spleen and lymph nodes as well as reduced the levels of IL-4, IL-5, and IL-13 in
response to ovalbumin challenge [145]. However, whether this was an actual decrease in Treg numbers
or simply a contraction of FoxP3−/CD4+ cells remains unclear. In another study, estrogen treatment
increased, instead, CD4+ Treg numbers and FoxP3 gene expression in vivo and enhanced FoxP3
protein expression after activation of CD25−/CD4+ T cells in vitro [146]. Notably, the Treg-defining
transcription factor FoxP3 is also expressed on the X chromosome [147].
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3.6. Sex Hormone Influences on B Cell Responses and IgE Sensitisation

B cells are mainly found in lymphoid tissues and form germinal centres together with CD4+ TFH

cells and follicular dendritic cells. Germinal centres support B cell survival, class switching, B cell
receptor maturation, and induction of B cell memory. B cells are activated and differentiate into
antibody-producing plasma cells through the help of CD4+ TFH in a CD40L- and IL-21-dependent
manner. Expression of IL-4 by TFH induces B cell class switching into IgE; however, IgE-expressing
B cells are extremely rare and appear to quickly differentiate into plasma cells and disappear out
of the germinal centres [148,149]. However, long-lived IgE-positive B cells likely reside in the bone
marrow and spleen [150], and IgE-based allergies can be transferred by bone marrow transplants [151].
Recently, B and T cell interactions outside lymphoid tissues, such as in the lung, have been observed;
however, these interactions do not appear dependent on classical TFH cells [152]. Given the potency of
IgE, some studies suggest that IgE-producing B cells may be generated de novo from IgG+ memory B
cells upon appropriate stimulation and context [153]. Interestingly, IL-21 appears to induce apoptosis
in IgE-producing B cells [154], possibly providing a regulatory mechanism ensuring transient IgE
responses in most individuals. Some reports in mice suggest that, once memory B cells are established,
CD4+ cells are no longer required for secondary allergen recall responses and IgE maturation [155].
This also appears consistent with findings in allergic patients with HIV and depleted CD4+ T cells [156].

It has been known for some time in humans that males and females differ in the serum
concentrations of circulating antibodies, particularly IgM [157], while estrogen and estrogenic
compounds are able to increase IgE production in mouse spleen [158], possibly through ERβ
signalling [127]. In humans, females display higher numbers of several B cell subsets compared
to males [159,160], and these B cells also differ in their gene expression profiles between males
and females [161]. Estrogen has been shown to negatively impact the ability to induce B cell
tolerance [162] and promote B cell expansion and a lower threshold of B cell activation [163–165].
In contrast, estrogen induced IL-10-producing regulatory B cells in an experimental autoimmune
encephalitis model [166]. These differential effects may be due to estrogen dose or model-specific
effects in the respective studies. Progesterone also influences B cell function [167] and interestingly
increases the proportion of IL-10-producing B regulatory cells [168] which are able to prevent allergic
IgE-mediated mast cell responses in the airways [169]. Testosterone has been shown to directly inhibit
antibody production [170] and prevent B cell maturation [171,172]. These effects and an early surge
in testosterone in males following birth may provide an explanation why young boys display lower
proportions of mature B cells [173], which has also been associated with an increased risk of developing
allergic disease and IgE sensitization, compared to pre-puberty girls [174].

4. After Sensitisation—Translation into Clinical Allergic Disease

As mentioned above, the majority of epidemiological data suggest that males have higher IgE
levels and prevalence of IgE-sensitisation at young and adult ages than females [16,37,43,175,176].
This can be linked to the increased risk of young males to develop IgE-associated clinical manifestations,
such as asthma and wheeze [32]. Interestingly, the risk associated with clinical manifestations changes
with age and at the age around puberty, and the risk of clinical manifestations associated with IgE
levels appears equal for boys and girls [177]. After puberty, and although males still display higher
prevalence of SPT+ as well as higher IgE levels compared to females [178], females are either at equal or
at an increased risk of developing allergic diseases [18,175,179]. Indeed, a UK study that surveyed the
presentations to medical clinics after puberty reported that females presented more often with asthma-,
rhinitis-, and eczema-associated symptoms compared to boys [180]. Similarly, a US study showed that
females appear to have higher rates of physician-diagnosed, although not self-reported, respiratory
allergy than males [181]. Together, this suggests that, after puberty, females may be less efficient in
preventing the translation of IgE sensitisation into clinical allergic diseases such as allergic asthma.
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Sex Differences in Asthma Pathology

Before puberty, asthma mainly affects males, whereas, after puberty, asthma transforms into a
disease that affects more females, particularly in the presence of other allergic comorbidities such as
rhinitis [182]. In children, the male gender is an independent risk factor for developing wheeze at the
age of six [183], whereas, in adolescence, testosterone may instead protect against asthma. At the same
time, female sex hormones instead contribute to airway hyper-responsiveness (AHR) [184]. In adults,
asthma generally results in more hospitalisations for females compared to males, and females also
appear more asthma-prone at particular stages of the menstrual cycle and during pregnancy [185],
potentially in relation to the sex of the foetus [186]. Some of this skewed prevalence can be explained by
female physiology. Estrogen signalling is involved in airway development [187], resulting in smaller
airways in females, which possibly also makes obese females more prone to develop asthma than
obese boys [188]. Female sex hormones also induce airway mucus production [189] and influence cilia
movements [190], which may both contribute to asthma pathology in females.

In addition to these physiological factors, the influence of sex hormones on the immune system
likely plays a large role in the skewed asthma susceptibility in male and females, as reviewed [185].
Female sex hormones also appear to be involved in aspects of the sensitisation process that are
independent of IgE production, given that ovariectomy prior to sensitisation subsequently reduced the
recall response in female mice, whilst the IgE levels remained unchanged [191]. Several experimental
studies have also reported that female rodents in general develop stronger immune responses to
sensitization, with higher allergen-specific IgE titres [192–194]. However, this does not appear to
be reflected in human epidemiological data, as discussed above. Along these findings, several
experimental studies have shown that either ovariectomy [195] or the use of tamoxifen [196] as
an estrogen antagonist reduced eosinophil airway infiltration in response to ovalbumin challenge
in mice and rats as well as an altered, less Th2-dominated, cytokine response in the airways [197].
These alterations could usually be restored by supplementation of estrogen or progesterone [195,197].
Mice treated with the estrogen antagonist tamoxifen also displayed a reduced ability of CD4+ T cell
to produce Th2 cytokines in response to ovalbumin stimulation, further supporting a role for female
sex hormones in promoting Th2 responses in vivo [196]. Female sex hormones also appear to have
fast-acting effects on the airways, and, when progesterone was applied to the trachea of sensitised
mice just prior to allergen challenge, an increased eosinophil infiltration and AHR were observed [198].
However, not all experimental studies support the existence of asthma-prone effects of estrogen and
have instead shown estrogen administration to decrease ovalbumin-induced AHR, production of
IL-5 and IL-13, as well as eosinophil recruitment. This was further associated with an increase in
CD4+/FoxP3+ cells in an IL-10- and estrogen receptor GPR1-dependent manner [199]. Estrogen also
reduced carbachol-induced and IgE-enhanced airway constriction of mice airways in vitro [200] and
also reduced methacholine-induced AHR in male mice repeatedly exposed to ovalbumin [201]. In the
context of asthma, testosterone has been associated with a reduction of the allergic responses in
mice [202] and has also been suggested as a potential asthma treatment in humans [203]. Recently,
a novel mechanism for how testosterone reduced asthma symptoms in an experimental model was
described to operate through the inhibition of the development and migration of innate lymphoid cells
into the airways [204].

In conclusion, it remains unclear how sex hormones directly influence the process of sensitisation
in young, adolescent, and adults, as apparent from the discrepancy between experimental and
epidemiological studies. There is, however, a clear role for sex hormones in modifying the
symptomatic allergic recall responses following sensitization, as supported by both experimental
and epidemiological studies. Together, these studies suggest that female sex hormones in general
appear to enhance the immunological recall responses, likely leading to exaggerated disease, whereas
testosterone dampens the same responses. These effects increase the risk of allergic diseases in adult
females, although, paradoxically, females in general appear to display both lower levels of IgE and
prevalence of sensitisation compared to males.
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5. Sex Hormones and Impact on Therapies for Allergic Sensitisation

Although sex differences clearly modulate the risk of translating IgE sensitisation into clinical
manifestations in the form of eczema or allergic asthma, relatively little is understood of how sex
hormones contribute to the process of sensitisation. The majority of experimental research has instead
focused on the effector phase and recall responses following sensitisation. This is unfortunate, given
that these natural differences in the risk of sensitisation provide a unique opportunity to study and
better understand the immunological processes involved. Further, the realisation that fluctuations in
sex hormones may impact disease pathology is central to the administration of successful treatments
by modifying the treatments during high-risk periods.

The mechanisms by which the sex hormones influence IgE sensitisation and allergic recall
responses create opportunities to improve disease control by stabilizing hormone levels through
the use of oral contraceptives, and studies support the intake of oral contraceptives in order to
modulate asthma responses [205]. However, such strategies will need refinement, since an increased
risk of asthma or wheeze in non-asthmatics was also observed [206]. Furthermore, hormonal
replacement in older women has also been associated with an increased risk of asthma [207]. Estrogen
modulators such as tamoxifen also have the potential to reduce asthma symptoms, as demonstrated in
preclinical models of neutrophilic asthma [208]. Other potential therapies involve the ERα antagonist
fulvestrant (ICI182.780), which has demonstrated some clinical effects in female lupus patients by
preventing estrogen–ERα signalling in pDCs [209] and may also be beneficial in a subset of asthma
patients. The development of specific estrogen analogues [210] targeting specific immunological effects
without interfering with the reproductive effects will likely be possible in the future and warrants
further investigation.
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