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While COVID-19 is primarily considered a respiratory disease, it has been shown

to affect the central nervous system. Mounting evidence shows that COVID-19 is

associated with neurological complications as well as effects thought to be related to

neuroinflammatory processes. Due to the novelty of COVID-19, there is a need to better

understand the possible long-term effects it may have on patients, particularly linkage to

neuroinflammatory processes. Perivascular spaces (PVS) are small fluid-filled spaces in

the brain that appear on MRI scans near blood vessels and are believed to play a role

in modulation of the immune response, leukocyte trafficking, and glymphatic drainage.

Some studies have suggested that increased number or presence of PVS could be

considered a marker of increased blood-brain barrier permeability or dysfunction and

may be involved in or precede cascades leading to neuroinflammatory processes. Due

to their size, PVS are better detected on MRI at ultrahigh magnetic field strengths such

as 7 Tesla, with improved sensitivity and resolution to quantify both concentration and

size. As such, the objective of this prospective study was to leverage a semi-automated

detection tool to identify and quantify differences in perivascular spaces between a group

of 10 COVID-19 patients and a similar subset of controls to determine whether PVS

might be biomarkers of COVID-19-mediated neuroinflammation. Results demonstrate

a detectable difference in neuroinflammatory measures in the patient group compared

to controls. PVS count and white matter volume were significantly different in the patient

group compared to controls, yet there was no significant association between PVS count

and symptom measures. Our findings suggest that the PVS count may be a viable

marker for neuroinflammation in COVID-19, and other diseases which may be linked

to neuroinflammatory processes.
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INTRODUCTION

While COVID-19 is primarily considered a respiratory disease
caused by the SARS-CoV-2 virus (1), numerous studies have
demonstrated involvement of the central nervous system (CNS)
(2). While infection rates have risen since the inception of
the pandemic in 2020, there has been a secondary epidemic
among patients who have recovered from COVID-19 presenting
with persistent neurological manifestations. These patients suffer
from a diverse array of symptoms that persist long after viral
resolution of primary disease, frequently including neurological
manifestations such as fatigue, brain fog or other cognitive
dysfunction, headaches, encephalopathy, anosmia, and anxiety,
among others (2–6). The mounting evidence that long haul
COVID-19 is associated with chronic neurological complications
suggests that these neurological processes may be a byproduct
of or related to neuroinflammatory processes, possibly caused by
disruption to neuronal networks and metabolic homeostasis (7).
As of February of 2022, over 430million people had been infected
with SARS-CoV-2, and up to one-third of survivors are at risk
for long haul COVID with neurological sequelae (8). As the
number of COVID-19 survivors increases, there is a critical need
to better understand the pathologic neuroinflammatory effects
that COVID-19 has on the central nervous system.

Numerous case reports and emerging case series have linked
inflammatory processes and CNS complications to COVID-19
pathology and disease progression (9). Neurological impairments
in long haul COVID have been attributed to neuroinvasion,
hyper-neuroinflammation, blood brain barrier (BBB) disruption
and dysfunction, and possibly provoked by impairments caused
by maladaptive innate immunity (2, 6). The RAS-mediated
bradykinin storm has been explored, providing a possible
explanation for the appearance of neurological symptoms linked
to inflammatory responses (10). The overall mediation of
neuroinflammation in COVID-19 may be due to cytokine or
bradykinin storm. It has been postulated that blood brain
barrier disruption with concomitant increased permeability
results from pro-inflammatory cytokines such as IL-1β, IL-
6, IL-17, and TNFα, which in turn activate glial cells with
microglial proliferative changes. IL-17 upregulates the pro-
inflammatory cytokines IL-1β, IL-6, and TNFα, the chemokines
CCL2 and MIP-2/IL-8 and pro-inflammatory cyclooxygenase-
2, prostaglandin E2 and nitric oxide (6). The increase in IL-17
overwhelms T-cells, leading to their cell death through apoptosis
and a resulting lymphopenia, and leads to inflammation from
nuclear factor kappa-light enhanced activated B-cells (NKκB).
Both processes lead to increased neurotoxicity (6).

Magnetic resonance imaging (MRI) is a valuable tool in the
characterization of neuropsychiatric and neurological disorders,
with ultra-high field (UHF) imaging offering improved signal
to noise ratios and higher spatial and contrast resolution
over conventional high-field strengths (11–15). The detail and
increased resolution achieved at 7 Tesla (7 T) has enhanced
the in vivo study of neurodegenerative conditions through
improved detection of microstructural differences, including
perivascular spaces (PVS), above what is achievable at lower field
strengths (16–20).

Perivascular spaces are small fluid-containing spaces
surrounding blood vessels within the brain. While these may be
seen as a normal function of aging, they are also believed to play a
role inmodulation of the immune response, leukocyte trafficking,
and glymphatic drainage. Their presence is linked to a broad
range of neurological conditions such as dementia, multiple
sclerosis, epilepsy, pseudotumor cerebri, traumatic brain injury,
and cerebral small vessel disease (21–28). Prominence of PVS is
also strongly associated with the development and progression
of neurological disease (29, 30). Research has suggested that
increased quantity of PVS may be a potential biomarker of
increased blood brain barrier (BBB) permeability or dysfunction
and a marker for processes linked to cascades leading to
neuroinflammation (20, 31). Additionally, increased number
of PVS is linked to dysfunction of the glymphatic clearance
system causing a reduction in metabolic waste removal (32).
Accumulation of these cellular waste products could contribute
to the cascade of neuroinflammatory processes and ultimately
contribute to the development or exacerbation of neurological
symptoms or disorders.

Ultrahigh magnetic field strengths operating at >3T, offer
increased sensitivity and resolution to detect, quantify and
characterize minute PVS. Althoughmanual detection and tracing
of PVS is extremely time-consuming and subject to inter-
reader bias, it remains the current standard for detection and
quantification. User-assisted algorithms using Frangi filters have
been implemented and proven to reduce tracing time, improve
accuracy and detection of PVS in 3 T and 7T images (33–40).
Our aim was to employ Perivascular Space Semi-Automatic
Segmentation (PVSSAS) for PVS tracing, which uses a Frangi-
based detection algorithm with a user-friendly GUI to aid the
speed and ease with which PVS are identified and quantified
across the entire brain to better understand the potential
neuroinflammatory association with COVID-19. The use of
UHF MRI, detection of group differences and correlation of
PVS number, volumetric measures, and symptoms may provide
insight on how PVS contribute to glymphatic drainage and the
COVID-19 disease process.

METHODS

Subjects
Ten COVID-19 patients between the ages of 18–80 were
prospectively recruited at the Mount Sinai Health System
through database search and referrals from collaborating
physicians and were age and sex matched with nine healthy
control participants (Table 1). Institutional Review Board
approval was obtained prior to recruitment and written,
and informed consent was obtained from all subjects prior
to UHF scanning. Eligibility among the patient cohort was
confirmed by patients reporting a positive COVID-19 diagnosis
and at least one of the following: any neurological symptom
such as anosmia or altered taste/smell, brain fog, stroke,
encephalopathy, delirium, or memory impairment at the time
of COVID-19 diagnosis or following onset of the disease.
Patients with a history of agitation, Parkinson’s Disorder,
apathy, depression, anxiety, hallucinations, and personality
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TABLE 1 | Demographic information.

COVID-19 Control P-value

N 10 9

Age mean (SD) 53.6 (9.06) 51.2 (9.15) 0.577

Number of

females/males

5F/5M 5F/4M 0.809

BMI (kg/m2 ) mean (SD) 27.94 (5.69) 25.93 (4.34) 0.408

Number of days

hospitalized mean (SD)

13.3 (18.07) N/A

Number of symptoms

mean (SD)

5.8 (4.78) N/A

Diabetes (total # of

patients)

2 N/A

Hypertension (total # of

patients)

2 N/A

Smoker (total # of

patients)

2 N/A

Fever (total # of

patients)

3 N/A

Number of patients

with mild COVID-19

2 N/A

Number of patients

with moderate

COVID-19

4 N/A

Number of patients

with severe COVID-19

2 N/A

Number of patients

with critical COVID-19

2 N/A

Days between recovery

and 7T scan range

(median)

50–596 (580) N/A

Participant demographics and accompanying statistical measures. Group differences

were assessed for significance using a two-sided T-test. For days between recovery and

7T scan, we calculated 14 days post diagnosis date for non-hospitalized patients, and

for patients who were hospitalized, we calculated recovery at time of discharge from

the hospital. COVID-19 severity was assessed based on imaging findings, if available,

incidence of intubation, receival of supplemental oxygen, etc. along with NIH based clinical

spectrum of SARS-COV-2 infection.

disorder were excluded. All participants were screened to
assess eligibility for MRI, and subjects with a ferromagnetic
or otherwise non-MR compatible implant or device, extreme
claustrophobia, or pregnancy were excluded. Control subjects
were individuals with no history of COVID-19 and free of
any neurological conditions. COVID-19 patient’s disease severity
was assessed using NIH guidelines, National Institute of Health
(NIH) COVID-19 Treatment Guidelines Panel (41) under
clinical spectrum (https://www.covid19treatmentguidelines.nih.
gov/) along with imaging results, if available.

Image Acquisition
Data were acquired at the Icahn School of Medicine Biomedical
Engineering and Imaging Institute (BMEII). Structural
and functional MRI data were acquired on a Siemens 7 T
Magnetom system scanner (Siemens Healthcare GmbH,
Erlangen, Germany) equipped with a SC72CD gradient coil and
using a single channel transmitter and a 32-channel receive head

coil (Nova Medical, Wilmington, MA). Each subject underwent
a 7 T MRI scan which included a T1-weighted MP2RAGE
wip944 0.7mm isotropic sequence (42) with generation of
Uniform Denoise (“UNIDEN”) images (Acquisition time 8:08;
voxel size 0.7 × 0.7 × 0.7 mm3; field of view (FOV) 168 × 224
mm2; time repetition (TR) 6,000ms; echo time (TE) 3.62ms;
TI1/TI2 1,050/3,000ms; flip angle (FA) = 7◦; Matrix 320 × 240;
bandwidth (BW) 300 Hz/pixel); and an axial T2-weighted turbo
spin echo (T2TSE) sequence (minimum TR = 9,000.0ms, TE
= 59ms, flip angle = 158◦, FOV = 168 × 200 mm2, matrix =

512 × 432, in-plane resolution 0.2 × 0.2 mm2, slice thickness
= 2mm, slice gap = 0.6mm, slice number = 56, BW = 279
Hz/pixel, minimum time= 6:21 min).

Image Preprocessing
Following imaging acquisition, all T1-weighted MP2RAGE
images were processed using FreeSurfer 7.2 (43, 44) with motion
correction, intensity normalization, skull stripping and neck
removal, automatic segmentation, and parcellation processing
steps. Generated T1 weighted image and a white matter mask
were appropriately coregistered to the T2TSE image using
Statistical Parametric Mapping (SPM12, RRID:SCR_007037).
The T2TSE and co-registered white matter mask were used as
inputs into PVSSAS to identify PVS. This workflow is shown in
Figure 1.

PVSSAS, Validation, and Segmentation
Visualization and detection of PVS was performed using
PVSSAS, a semi-automated tool for segmenting, viewing, and
editing PVS in the brain. PVS are preliminarily segmented
using a 2D Frangi filter, a quick and powerful segmentation
technique which detects vessel-like structures and fibers in 2 and
3 dimensions, such as PVS (Figure 2). Frangi filters have been
previously implemented to perform segmentation of PVS at 7T,
however, each method may have limitations and with room for
improvement (35, 39, 40).

An external Frangi filter package made for Matlab (The
MathWorks Inc., Natick, MA) was used (45). Prior to application
of the Frangi filter, the PVSSAS program was used to pre-
process the T2-weighted structural images by applying a Gaussian
blurring function and normalization of the voxel intensity.
PVSSAS pre-processes the white matter mask by filling in small
holes, under 200 voxels in size and performing a morphological
erosion to remove potential false positives along the gray-white
matter boundary. The Frangi filter is then applied to the input
white matter mask region, using an adjustable setting sensitivity
parameter (set to 1 standard deviation for the presented data).
Additionally, PVS are filtered by size, excluding markings too
small or large to be reliably identified or present outside of the
white matter mask, such as regions of CSF like ventricles. A range
of 4–300 voxels was selected in consultation with radiologists
and researchers on the T2-weighted imaging dataset. This avoids
the detection of noise artifacts on the small end and portions
of the ventricles on the large end. Frangi parameters were
chosen among those that produced fair agreement with several
manual markings and made to resemble optimal parameters as
determined by Ballerini et al. (35).
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FIGURE 1 | Schematic example of the general preprocessing workflow displaying original structural images along with images processed through PVSSAS. Images

labeled PVSSAS segmentation display a T2TSE with PVS marked by PVSSAS along with an unmarked white matter mask of the original T2 image.

FIGURE 2 | The primary interface for the PVSSAS tool, with images rotated 90 degrees by convention. In the right view panel, the GUI displays white matter mask for

the selected slice. On the toolbar, options are available for segmenting the whole brain, the selected slice, saving tracing masks, or for altering the parameters for the

segmentation algorithm. In the left view panel, the completed segmentation can be viewed and edited—a trained reader can add or remove tracings.

PVSSAS was validated based on the evaluation of relative
speed, accuracy, and sensitivity of both manual and tool-
assisted methods. Manual PVS segmentation and marking was
originally performed in OsiriX software (Pixmeo SARL, Bernex,
Switzerland) by a trained and board-certified Neurologist with
over 20 years of experience. PVS were manually marked

throughout, requiring ∼6 h to mark all 54 brain slices. Manual
tracings marked cross-sections rather than boundaries and so
couldn’t be used to determine axis length or volume, An
additional rater was trained to identify PVS on 7T T2TSE
scans using PVSSAS, and was instructed to focus on removing
erroneous markings, not on adding additional ones. It took
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∼30min for the rater to completely mark the scan using PVSSAS.
Separately, the inter-rater reliability of the two raters was assessed
using PVSSAS, again with the focus on removing erroneous
markings, not adding additional ones.

Validation of the PVSSAS tool focused on the quantitative
sensitivity and specificity of both methods compared to each
other. This step was performed because manual tracings in
OsiriX identified each PVS with a cross-sectional point, rather
than as volumes. Therefore, it was not possible to reliably
compare other useful measures such as the relative length,
average volume or total volumes of each. Sensitivity measures
were determined by comparing the total number of PVS found
using each method. The technique included several inherent
constraints: (1) since the voxel thickness and slice gap preclude
detection of PVS traversing slices, these spaces were counted as
separate PVS in both the semi-automated and manually traced
methods; (2) all PVS above 300 voxels in size were unlikely to be
PVS, rather likely ventricles or a portion of a ventricle, which due
to slice position may be perceived as a PVS and henceforth not
marked; (3) PVS outside the white matter mask were excluded, as
the semi-automated method was calibrated for detection of white
matter PVS only.

Specificity measures were determined by performing a slice-
by-slice comparison between the semi-automated and manual
tracings. For each slice the centroid (center voxel) of every
tracing was determined using the regionprops 3 command
in Matlab, and all centroids within 0.7mm were considered
successful overlap between the manual and semi-automated
tracings. This number was determined based on an analysis of
the number of PVS overlapping relative to the distance to the
nearest match. Above∼0.7mm, the distance to the closest match
rapidly increases.

In this study, PVSSAS was implemented in all subjects and
automated PVSmarkings were generated following segmentation
with a standard deviation of 1. Each slice was manually inspected
for misclassified PVS (those outside the white matter, including
within a sulcus or ventricle, or hyperintense structure), and
mismarked PVS were removed. Following the inspection of all
slices, data were exported as a binary.mat file, with PVS voxels
labeled as 1 and all other voxels as 0. To assess inter-rater
reliability between readers using the PVSSAS, the Sorensen-
Dice coefficient was calculated in MatLab using Sørensen-Dice
similarity coefficient.

Statistical Methods
The PVS were characterized on a multi-slice 2D basis, due to
non-isotropic voxels, resulting in the following measures per
subject: PVS density (PVS voxel count / white matter volume),
PVS count, median PVS volume, total PVS volume, median
equivalent diameter, median long axis length, and median short
axis length. Statistical data were processed in RStudio (46).
Shapiro–Wilk testing was performed to assess for normality
due to its performance in small sample sizes (47). Group
differences for all PVS measures, total white matter volume,
total intracranial volume, and BMI were assessed using two-
tailed Student’s t-test in all cases in which data was normally
distributed. In instances where one or both measures were not

normally distributed, Wilcoxon Signed Rank was used to assess
differences. Statistically significant group differences, such as
count, and white matter were performed with correction for total
intracranial volume. Pairwise statistical correlations between PVS
count, total white matter volume, total intracranial volume, Body
Mass Index (BMI), cardiovascular risk factors such as diabetes,
smoking, and hypertension, and symptoms were evaluated first
using partial correlation or binomial linear regression, without
correction. In the COVID-19 patient group, correlations between
PVS count and hospital stay duration and number of symptoms
was assessed. For all statistically significant correlations, partial
correlations were performed with correction for age and gender
with binomial linear regression.

RESULTS

PVSSAS Validation
A total of 2,435 PVS were identified by the semi-automated
method, and 3,743 PVSweremanually identified within the white
matter mask. A tolerance of 0.7mmwas used, resulting in 83% of
all PVS detected by the semi-automated method which matched
with the manual dataset and 94% of the manual PVS matched
within the semi-automated dataset. As shown in Figure 3, there
was generally excellent agreement between the manual and semi-
automated markings in any given slice. The inter-rater reliability
between the two readers using the semi-automated method was
as follows: of the PVS identified by reader 1, 97.8% of the PVS
were in the identical location as reader 2, and 99.6% were within

FIGURE 3 | This figure shows manually marked PVS denoted by a white line

shown overlapping with gray markings, semi-automated marked PVS by

employing the use of PVSSAS.
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0.8 cm. Of the PVS identified by reader 2, 99.2% were in the same
location as reader 1, and 99.9% were within 0.8 cm. Reader 1
identified 1,680 PVSs, and reader 2 identified 1,656 PVS. TheDice
score between the two readers segmentations was 0.9914.

Group Differences
The PVS measures and volumetrics in the COVID-19 patients
and healthy controls are summarized in Table 2. This study
demonstrated that the PVS count was significantly higher in
COVID-19 patients compared to healthy controls (p = 0.0373)
and total white matter volume was significantly increased in
COVID-19 patients compared to healthy controls (p = 0.0435).
Figure 4 shows a 3D rendering to visualize differences in PVS
count in healthy controls compared to COVID-19 patients.
There was no statistically significant difference between other
PVS measures or intracranial volume metrics between groups
(Table 2).

Symptom Measures
Assessment for presence of COVID-19 symptoms in the 10
patients revealed 30 symptoms (Figure 5). In addition, three
patients reported being intubated or receiving supplemental
oxygen at home. This study, although limited in the number of
patients, demonstrated a significant association between white
matter volume and self-reported brain fog (p = 0.035). There
was no significant correlation between other neuropsychiatric
manifestations, such as personality changes, anxiety, depression,
and insomnia and PVS count, white matter volume, or with total
intracranial volume.

Relationship Between Other Disease
Severity Factors
An assessment was made between PVS count, total white matter
volume, and intracranial volume with markers of disease severity
(hospital admission duration and total number of symptoms)
and incidence of comorbidities such as obesity (i.e., BMI)
(Table 3). There was no correlation between PVS count, total
white matter volume, total intracranial volume, BMI, number
reported symptoms, or hospitalization duration. Additionally,
when looking at cardiovascular risk factors such as diabetes,
smoking, and hypertension, which may affect PVS count, we
found no correlation among any of the factors. There was a
significant correlation between PVS count and white matter
volume in COVID-19 patients (Correlation coefficient=+0.829,
p = 0.003), controls (Correlation coefficient = 0.769, p = 0.016)
and within all subjects (Correlation coefficient=+0.86, p= 2.38
× 10−6). Additionally, there was a significant correlation between
PVS count and BMI within the patient group (Correlation
coefficient = +0.849, p = 0.002) and within all subjects
(Correlation coefficient=+0.633, p= 0.005), however there was
no correlation within the control group. There was a correlation
between BMI and total white matter within the patient group
(Correlation coefficient = +0.702, p = 0.024), and within all
subjects (Correlation coefficient = +0.579, p = 0.012), and no
correlation within the control group. There were no correlations
between total intracranial volume and PVS count or BMI in
any group.

DISCUSSION

In the present study, a workflow was established for detection
of PVS at UHF, providing a feasible tool to extract a possible
non-invasive imaging marker in a preliminary investigation in
COVID-19 patients with documented neurologic impairment.
This study assessed the detection of PVS and association
with neurological symptoms and comorbid markers that affect
disease severity, such as BMI, in COVID-19 patients which
may be associated with a cascade associated with the process
neuroinflammation. The 7 T MRI neuroimaging data found
observable neuropathological differences between patients with
COVID-19 and healthy controls. Although there was no
significant association to report between the total number of
PVS and neurological symptoms, intubation, or hospitalization,
this is one of the first preliminary studies evaluating the role
of PVS in COVID-19 patients with neurologic impairment.
Analysis of group differences within PVS count and white
matter volume and correlation between these measures and
BMI resulted in interesting findings. This preliminary study
demonstrated a statistically significant difference between PVS
count and overall white matter volume between healthy controls
and COVID-19 patients. The data also demonstrated a significant
correlation between PVS count and BMI, and white matter
volume and BMI within the COVID-19 patient cohort and
within all subjects. Interestingly, in this study there was a
significant correlation between white matter volume and self-
reported brain fog, although a significant correlation was not
found between PVS and this symptom. Although a larger study
is needed to fully ascertain this relationship, this difference may
indicate that these two metrics serve as markers for separate
neuroinflammatory effects on the brain or possible involvement
in processes associated with neuroinflammation.

It is believed that COVID-19 patients may develop
neuroinflammation, and many of the diverse long-term
neurological symptoms in COVID-19 may also relate to
neuropathology occurring from neuroinflammatory responses,
which are distinct from ischemic events secondary to altered
coagulation (6). In this preliminary study comparing COVID-19
patients with neurologic symptoms with age and sex matched
controls using ultra-high field 7 T MRI, the COVID-19 patients
demonstrated increases in PVS count and white matter
volumes. These data suggest that PVS may serve as a potential
neuroimaging biomarker of neurological manifestations in
COVID-19 patients. Further, we found a strong positive
correlation between increased numbers of PVS and total white
matter volume. This may be related to white matter volume
changes expanding the apparent volume with the differences
related to the consequences of inflammatory cellular infiltration
and fluid, rather than increasing native cellular volume or
could point to a possible connection to a neuroinflammatory
response. In other areas of research, an increase in white matter
volume has also been linked to neuroinflammatory processes,
such as in aging and disorders such as Alzheimer’s disease (48).
Indeed, our data demonstrated a significant correlation between
white matter volume and self-reported post-COVID-19 brain
fog, suggesting that neuroinflammation may be contributory
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TABLE 2 | PVS Measures and volumetrics in COVID-19 compared to healthy controls.

Measure COVID-19 Healthy controls p-value

N 10 9

Median volume mean (SD), mm3 26.2 (2.49) 25.6 (1.74) 0.501

Count mean (SD) 3928 (866) 3,232 (350.5) 0.0373*

Total volume mean (SD), mm3 246458.1 (71696) 217960.33 (58,743) 0.296

Density mean (SD), PVS/mm3 2.30 (0.51) 2.34 (0.57) 0.746

Median Eq. distance [mean (SD)], mm 3.68 (0.11) 3.65 (0.083) 0.511

Median long axis mean (SD), mm 8.09 (0.53) 8.04 (0.36) 0.875

Median short axis mean (SD), mm 4.29 (0.12) 4.22 (0.07) 0.178

White matter volume mean (SD), mm3 477,065 (62,279) 411,236 (34,072) 0.0435*

Total intracranial volume mean (SD), mm3 1,263,358 (204,449) 1,345,119 (108,410) 0.107

Average PVS measures and volumetrics on a whole-brain basis for both healthy controls and COVID-19 patients. All PVS measures besides count are represented in voxels. Reported

corrected p-value is corrected for age and sex.

*Denotes statistically significant p-values.

Bold values indicates statistically significant finding.

FIGURE 4 | This figure is a 3D rendering of PVS in healthy controls compared to COVID-19 patients. Note that PVS are magnified in the 3D rendering for visualization

purposes. The bottom images reflect a single slice in the axial view displaying PVS.

to post-COVID-19 cognitive impairment. While we did not
find a relationship between brain fog and PVS, previous larger
studies have found associations between PVS and decreased
cognitive performance in older adults (49) suggesting an area for
future study.

In the present study, the increase in white matter
volume within the COVID-19 group compared to controls
further indicates that the COVID disease process may
have a neuroinflammatory component. Strong associations
between increased white matter volume and increased PVS
count may further enhance the link between PVS count
and neuroinflammation. This indicates that PVS count
may be a viable marker for neuroinflammation or may

precede neuroinflammatory processes in other diseases aside
from COVID-19.

Currently, published research demonstrates how
comorbidities, including diabetes and obesity, can lead to
increased COVID-19 severity (50–53). Correlation measures of
neuroinflammatory markers such as PVS count and white matter
volume with BMI and potentially glucose levels may be indicative
of increased likelihood of neurologic sequelae from COVID-19.
If neuroinflammatory coagulopathic events lead to disruption
of the glymphatic clearance in the central nervous system in
COVID-19, this in turn may lead to an increased size and
number of PVS, as demonstrated in this cohort of patients. More
specifically, glymphatic dysfunction may exacerbate or trigger
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FIGURE 5 | This figure displays the range of symptoms reported by patients, all numbers are reported in percentages. Some symptoms were grouped together, such

as neuropsychiatric symptoms* which includes personality changes, anxiety, depression, and insomnia Altered smell and/or taste includes loss of smell or taste,

dysgeusia, and anosmia, and vision changes included both loss of vision and double vision. Balance issues were defined by issues with balance as well as if a fall was

recorded, and confusion was grouped with encephalopathy.

TABLE 3 | Correlation measures.

COVID-19

Correlation

coefficient (p-value)

Control Correlation

coefficient (p-value)

All subjects

Correlation

coefficient (p-value)

PVS count: white matter volume +0.829 (0.003) +0.769 (0.016) +0.860 (2.38 × 10−6)

PVS count: total intracranial volume +0.470 (0.170) +0.288 (0.4529) +0.253 (0.296)

PVS count: BMI +0.849 (0.002) –0.204 (0.6278) +0.633 (0.005)

White matter volume: BMI +0.702 (0.024) +0.175 (0.6794) +0.579 (0.012)

Total Intracranial Volume: BMI +0.317 (0.371) +0.238 (0.5704) +0.210 (0.403)

PVS count: hospitalization duration (days) +0.190 (0.600) N/A N/A

PVS count: number of symptoms −0.334 (0.346) N/A N/A

Association between PVS count, total white matter volume, total intracranial volume, and BMI.

Bold values indicates statistically significant finding.

neuroinflammation (54), leading to cognitive dysfunction, a
growing phenomenon among COVID-19 survivors, who are at
high risk of developing cognitive impairments (55).

This study using ultra-high field 7 T MRI is one of the
first to also implement a semiautomated PVS detection tool
to quantify PVS in COVID-19 and establish a mechanism to
probe underlying neurological changes potentially involved in
neuroinflammatory processes linked to COVID-19. Importantly,
in this study all age and sex matched healthy control subjects

were scanned prior to the pandemic as part of a broader
UHF neuroimaging initiative, mitigating the possibility of
inadvertently including an asymptomatic COVID-19 patient in
the control group, and providing confidence in the validity of the
control group compared to the COVID-19 patient cohort.

This study has several limitations. First, given the preliminary
nature of this study, we were limited to a small sample size of
COVID-19 patients with neurologic symptoms. Although there
were no significant results at the a priori threshold level, the data
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suggest that correlations may trend toward significance with a
larger patient cohort. Thus, future studies with a more robust
sample size may have greater power to detect such differences
and to control for confounding factors that may provide an
improved understanding of how the size and number of PVS
correlate to neurological symptoms. A second limitation of the
present study is the lack of a symptom severity score, which
could assist with determining overall disease severity beyond
treatment, imaging, and hospital duration and limiting the ability
to associate possible inflammatory markers with incidence of
severe disease. Future studies with more granular classification
may provide better insight into disease progression and severity.
Another limitation of the present study is that the current patient
cohort scanned at 7 T did not have a baseline MRI prior to
having COVID-19, limiting the ability to compare volumetrics
and PVS count pre- and post-infection. We also had limited
access to medical records containing pertinent information (e.g.,
bloodwork to identify inflammatory markers at time of infection)
and did not collect blood at time of 7 T scan acquisition, limiting
our ability to determine a relationship between neuroimaging
findings and specific inflammatory markers. Future studies
should investigate the link between pro-inflammatory mediators
such as interleukin- (IL)-1β, tumor necrosis factor (TNF)-α,
and C-reactive protein to better understand the link between
PVS and inflammatory response. While PVSSAS is a strong
tool to reduce manual detection of PVS, it should be noted
that the T2 images used to identify PVS were acquired with
a 2D T2-weighted TSE sequence. Our 7 T scanner is equipped
with the SPACE sequence (Sampling Perfection with Application
optimized Contrasts using different flip angle Evolution), which
is a 3D T2-weighted sequence. However, we preferred to use the
2D TSE sequence for this application because in our experience,
the image contrast in the 2D TSE sequence is more uniform
over the imaged region than the SPACE sequence. Future studies
will focus on developing optimized contrast for 3D isotropic T2-
weighted sequences as well as tools to investigate morphological
changes of PVS using 3D acquisitions. Future studies with a larger
patient cohort should incorporate symptom severity measures
and, if possible, include patients with MRI scans pre- and
post-COVID-19 along with inclusion of inflammatory markers
through bloodwork. This may help to corroborate and elaborate
the current findings, and the efficacy of using PVS as a potential
neuroimaging biomarker.

CONCLUSION

This study on COVID-19 patients with neurologic sequelae
demonstrated an increase in size and number of PVS compared
to an age- and sex-matched cohort of patients. As the time course
for PVS development is not well-established, presence of some

PVS may predate COVID-19 infection, or be a consequence

of disease, indicating that PVS could be a risk factor for
symptomatic consequences of COVID-19. Potential hypotheses
that patients with more PVS are predisposed to the effects
of COVID-19 due to limitations in underlying responses to
inflammation, resulting in exacerbation of COVID-19 symptoms
and possible predisposition to development of long-haul
syndrome. These preliminary findings provide an indication that
symptomatic neurological manifestations of COVID-19 may be
related to alterations within the glymphatic clearance system
that may be caused by and contribute to a neuroinflammatory
response. The ability to rapidly and accurately evaluate size and
number of PVS on MRI, may be potentially applied to additional
neurologic disorders, and serve as a useful method for assessing
COVID-19 patients with neurologic symptoms as well help
elucidate the neuroinflammatory neuropathologic mechanisms
as more evidence emerges.
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