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Abstract

Increasing concentrations of greenhouse gases (GHGs) are causing global climate change

and decreasing the stability of the climate system. Long-term solutions to climate change

will require reduction in GHG emissions as well as the removal of large quantities of GHGs

from the atmosphere. Natural climate solutions (NCS), i.e., changes in land management,

ecosystem restoration, and avoided conversion of habitats, have substantial potential to

meet global and national greenhouse gas (GHG) reduction targets and contribute to the

global drawdown of GHGs. However, the relative role of NCS to contribute to GHG reduction

at subnational scales is not well known. We examined the potential for 12 NCS activities on

natural and working lands in Oregon, USA to reduce GHG emissions in the context of the

state’s climate mitigation goals. We evaluated three alternative scenarios wherein NCS

implementation increased across the applicable private or public land base, depending on

the activity, and estimated the annual GHG reduction in carbon dioxide equivalents (CO2e)

attributable to NCS from 2020 to 2050. We found that NCS within Oregon could contribute

annual GHG emission reductions of 2.7 to 8.3 MMT CO2e by 2035 and 2.9 to 9.8 MMT

CO2e by 2050. Changes in forest-based activities including deferred timber harvest, riparian

reforestation, and replanting after wildfires contributed most to potential GHG reductions (76

to 94% of the overall annual reductions), followed by changes to agricultural management

through no-till, cover crops, and nitrogen management (3 to 15% of overall annual reduc-

tions). GHG reduction benefits are relatively high per unit area for avoided conversion of for-

ests (125–400 MT CO2e ha-1). However, the existing land use policy in Oregon limits the

current geographic extent of active conversion of natural lands and thus, avoided conver-

sions results in modest overall potential GHG reduction benefits (i.e., less than 5% of the

overall annual reductions). Tidal wetland restoration, which has high per unit area carbon

sequestration benefits (8.8 MT CO2e ha-1 yr-1), also has limited possible geographic extent

resulting in low potential (< 1%) of state-level GHG reduction contributions. However, co-

benefits such as improved habitat and water quality delivered by restoration NCS pathways

are substantial. Ultimately, reducing GHG emissions and increasing carbon sequestration

to combat climate change will require actions across multiple sectors. We demonstrate that
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the adoption of alternative land management practices on working lands and avoided con-

version and restoration of native habitats can achieve meaningful state-level GHG

reductions.

Introduction

Limiting climate change and temperature increases to below 1.5 to 2˚C is critical to maintain-

ing stability in human and environmental systems [1]. Stabilizing global climate will require

rapid and targeted actions to reduce greenhouse gas (GHG) emissions. While fossil fuel miti-

gation and transitioning to clean energy systems will be required to combat climate change,

most scientists now agree that additional activities will be needed to rapidly reduce GHG emis-

sions and avoid the worst effects of climate change [1–4]. Natural climate solutions (NCS), or

changes in land management, ecosystem restoration, and conservation on natural and work-

ing lands as part of GHG reduction strategies, can provide valuable co-benefits for people and

nature while contributing to climate mitigation [5–8]. NCS provide climate benefits through

two major mechanisms: (1) avoiding emissions by limiting conversion or altering manage-

ment activities that lead to loss of stored carbon or increased GHG emissions; or (2) increasing

carbon sequestration and storage through ecosystem restoration or altered land management

regimes. Global- and national-scale NCS evaluations suggest that, if enacted rapidly (i.e. within

the next 10 to 15 years), these activities could contribute up to 30% of the needed global near-

term climate mitigation to limit warming to 2˚C [9] and offset the equivalent of 21% of current

net GHG emissions in the United States [8].

The role of subnational governance, policy, and actions is increasingly important for com-

batting climate change. Subnational commitments to reduce GHG emissions have become

more common in the past decade in response to faltering multinational agreements and lack

of comprehensive national climate policy [10–12]. Some states are able to implement policies

and facilitate GHG reductions where national governments have been unable to make progress

[13,14]. For example, nine states in the northeastern and mid-Atlantic U.S. formed the

Regional Greenhouse Gas Initiative (RGGI, www.rggi.org) to cap and reduce emissions from

the energy sector [15] while the state of California successfully passed first-of-its-kind legisla-

tion mandating a state-wide cap on emissions [16]. More recently, an increasing number of

states have pledged or legislated goals targeting net-zero emissions by 2050 [17]. Ambitious

goals of zero or negative emissions will only be achievable by including the NCS potential [2].

States are often able to be more nimble or experimental with their policies, illustrating possible

strategies which could be replicated at larger scales [14].

While global and national scale NCS evaluations provide a starting point for policy conver-

sations, subnational decision-makers require information at a corresponding scale. A bi-parti-

san coalition of Governors have joined the U.S. Climate Alliance, and committed to reduce

greenhouse gas emissions consistent with the goals of the Paris Agreement, including identify-

ing best practices for land conservation, management and restoration in carbon policies [18].

Recently, California recognized the potential for land management to contribute to emission

reductions [19], promoting assessments of the NCS potential on that state’s natural and agri-

cultural lands [20]. Using an approach that acknowledged uncertainty in the exact GHG

reductions attributable to each NCS activity, Cameron and colleagues [20] found that NCS

could contribute up to 17% of California’s GHG reduction goals by 2030. While California

consistently provides a leading example in state-level climate action [10], other states have
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been slow to follow its lead, citing concerns over economic costs and political uncertainty over

the need to limit GHGs [21]. As other member states within the US Climate Alliance grapple

with how to aggressively reduce GHGs, NCS evaluations from additional states can help to

refine the coarser scale global and national analyses and provide a range of options for state

and non-state actors to consider when developing programs and policies to address climate

change [11,22].

To address the need for applied NCS science at the subnational level, we adapted the frame-

work presented by Cameron and colleagues (2017) to evaluate the potential contribution from

NCS activities to GHG reduction goals in Oregon. Located in the U.S. Pacific Northwest, Ore-

gon has a long history of strong land use controls and environmental policy [23–25] and initi-

ated a task force on global warming over three decades ago in 1988 [26]. In 2007, the Oregon

Legislature established GHG reduction goals setting a target for statewide emissions to be lim-

ited to 75% below 1990 levels, or 14 MMT CO2e, by 2050 with an interim target of 33.9 MMT

CO2e by 2035 (HB 3543; www.keeporegoncool.org). In addition, Oregon recently joined the

U.S. Climate Alliance and has committed to including natural and working lands in GHG

emission reduction strategies. This study contributes to our evolving understanding of the

potential for the land sector to mitigate climate change.

Methods

General analytical framework

We simulated the potential GHG reduction attributable to each of 12 NCS activities (Table 1)

between the years 2020 and 2050 under three potential implementation scenarios. NCS activi-

ties were chosen based on applicability to natural and working lands within Oregon and their

ability to directly achieve co-benefits for the conservation of biodiversity. Current rates of each

activity were compiled from multiple data sources and served as the baseline for all scenarios

(Table 2). We used empirical values from peer reviewed or government gray literature to

develop estimates of the GHG emissions and/or carbon sequestration attributed to each activ-

ity (Fig 1). We then created three implementation scenarios wherein we modified the imple-

mentation rate of each activity in order to decrease emissions or increase carbon

sequestration, relative to the baseline.

For each implementation scenario, we used Monte Carlo simulation to account for the

uncertainty associated with carbon sequestration and GHG emission values. For each NCS

activity and each simulation year, we sampled 1000 iterations from a distribution created from

the uncertainty range for that activity. Specific distributions and details on the calculation of

the associated reductions and implementation scenarios are described below. We report the

range of possible GHG reductions in CO2e from each NCS activity and provide estimates of

the uncertainty surrounding each of those estimates. We then compare the reduction potential

of the activities against Oregon’s GHG reduction targets to highlight the contributions of these

activities. All simulations and analyses were conducted using R (version 3.4.1).

Avoided conversion NCS

Forests to development. We estimated the current rate of forest conversion on private

land in Oregon using published land use data and standardized statewide land use maps from

1994 to 2014 [27]. We calculated the annual conversion rate of forests to urban and to low-

density residential or agricultural (i.e., rural) land uses by county.

To quantify emissions from forest conversion, we estimated pre-conversion carbon stocks

using the USFS Forest Inventory Analysis (FIA) Evalidator application (https://apps.fs.usda.

gov/Evalidator/evalidator.jsp). We extracted forest carbon (t C ha-1) in each of the IPCC
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carbon pools (i.e., above-ground biomass AGB, belowground biomass BGB, litter L, woody

debris WD, and soil organic matter) for private lands in each county [28]. To quantify uncer-

tainty in pre-conversion carbon stocks, we grouped counties across the interior versus coastal

PNW productivity gradient simplified to east and west of the Cascade Mountains (S1 Table).

Using the estimates, sampling errors, and number of plots reported by Evalidator, we calcu-

lated the pooled mean and pooled standard deviation for the interior and coastal regions. For

Monte Carlo simulations, we randomly sampled from normal distributions constructed with

the pooled mean and standard deviations. We assume only partial emission of live above-

ground carbon stocks, using an emissions factor (EF) of 54% following Fargione et al. [8]

which reflects the fact that some harvested carbon will be retained in wood products and other

harvest processes. For conversion to urban development, we assume a complete conversion of

the belowground biomass, litter, and woody debris pools whereas we assume partial conver-

sion of these pools for rural development (50%). We do not include emissions from soil

Table 1. Descriptions of the activities included in the natural climate solutions pathway analysis for Oregon’s nat-

ural and working lands. NCS activities and their definitions are adapted from Cameron et al. [20], Griscom et al. [7],

and Fargione et al. [8].

Natural Climate Solution Activity Description

Avoided

Conversion

Avoided conversion of forests to

rural development

Emissions avoided by limiting anthropogenic conversion

of forests to low-density and agricultural development

Avoided conversion of forests to

urban development

Emissions avoided by limiting anthropogenic conversion

of forests to high-density, urban development

Avoided conversion of sagebrush-

steppe to invasive annual grasses

Emissions avoided by limiting the conversion, post-fire, of

sagebrush-steppe to invasive annual grasses; assumes

active management of sagebrush-steppe recovery

Avoided conversion of grasslands to

tilled cropland

Emissions avoided by limiting the anthropogenic

conversion (e.g., tilling) of existing grassland to intensive

agriculture.

Land

Management

Deferred timber harvest Avoided emissions and increased sequestration associated

with deferring harvest on a portion of Oregon’s forest. We

consider timber harvest across all forest ownerships in

Oregon, but limit deferred harvest to counties with lower

risk of wildfire (e.g., western Oregon).

Use of cover crops Increased carbon sequestration due to use of cover crops,

either to replace fallow periods between main crops or as

inter-row cover in specialty crops such as orchards,

berries, and hops.

No-till agriculture Increased carbon sequestration due to the use of no-till

agriculture on tilled cropland.

Nutrient management Avoided emissions by improving N fertilizer management

on croplands, through reducing whole-field application or

through variable rate application.

Restoration Replanting after wildfire on federal

land

Increased carbon sequestration from increased post-

wildfire reforestation on managed federal lands (e.g.,

wilderness areas are not included). This NCS assumes no

salvage harvest or site-prep before replanting.

Riparian forest restoration Increased carbon sequestration through active replanting

of forest along non-forested riparian areas.

Tidal wetland restoration Increased carbon sequestration due to restoring tidal

processes where tidal wetlands were the historical natural

ecosystem; limited to the most highly saline historical tidal

wetlands.

Invasive annual grasses to

sagebrush-steppe

Increased carbon sequestration due to restoring

sagebrush-steppe ecosystems in areas dominated by

invasive annual grasses.

https://doi.org/10.1371/journal.pone.0230424.t001
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organic matter, as the overall effects of conversion from forests to residential development on

soil carbon are unclear [29,30]. Finally, we converted from t C to CO2e using a conversion fac-

tor of 44/12 for CO2e to carbon. Thus, committed emissions are equal to:

Forests to Urban ¼ AGBx0:54þ BGBþ LþWDð Þ X
44

12

Forests to Rural ¼ AGBx0:54þ BGBþ LþWDð ÞX 0:5 X
44

12

In addition to the initial loss of carbon stocks, we estimated the ongoing carbon sequestra-

tion that would be lost due to forest conversion. Using the USFS FIA Evalidator, we extracted

the gross annual growth for private lands by county and then grouped counties into the inte-

rior or coastal region [31]. As above, we quantified uncertainty in pre-conversion sequestra-

tion by calculating the regional pooled mean and standard deviation from the county-level

estimates, sampling errors, and number of plots reported by Evalidator. For Monte Carlo sim-

ulations, we randomly sampled from a normal distribution constructed from the pooled mean

and standard deviation. We converted reported gross annual growth (ft3 acre-1) to MTCO2e

ha-1 using specific gravity estimates from Smith et al. [32]. We assumed that conversion of for-

ests to urban development resulted in a loss of 84% of forest carbon sequestration [33], while

forests to rural development resulted in 50% of loss of forest carbon sequestration [34].

Table 2. Current annual implementation rates for activities included in the natural climate solutions pathways

analysis for Oregon’s natural and working lands.

Activity Baseline (Current Annual Rate)

Conversion Forests to rural development 1930 ha a

Forests to urban development 148 ha a

Sagebrush-steppe to invasive annual

grasses

4000 ha b

Grassland to agriculture 930 ha c

Land

Management

Timber harvest 3.4 billion board feet d

Cover crops 48,740 ha e

No-till agriculture 403,280 ha e

Nutrient management 193,000 Mg N f

Restoration Replanting after wildfire on federal land 9–12% of moderate to high-severity burned

area g

Riparian forest restoration 2395 ha h

Tidal wetland restoration 49 ha h

Invasive annual grasses to sagebrush-

steppe

5590 ha b

Historical data range
a 1994–2014
b 2009–2014
c Land use change from 2008–2012
d Harvest data by ownership 2000–2017 for counties with less than 50% of forest area at high risk of wildfire (S2 Fig)
e 2012 and 2017
f 1997–2017
g 2000–2015
h 1998–2017

https://doi.org/10.1371/journal.pone.0230424.t002

PLOS ONE Potential greenhouse gas reductions from Natural climate solutions in Oregon, USA

PLOS ONE | https://doi.org/10.1371/journal.pone.0230424 April 10, 2020 5 / 30

https://doi.org/10.1371/journal.pone.0230424.t002
https://doi.org/10.1371/journal.pone.0230424


PLOS ONE Potential greenhouse gas reductions from Natural climate solutions in Oregon, USA

PLOS ONE | https://doi.org/10.1371/journal.pone.0230424 April 10, 2020 6 / 30

https://doi.org/10.1371/journal.pone.0230424


Sagebrush-steppe to invasive annual grasses. Conversion of sagebrush-steppe to invasive

annual grasses results in a one-time loss of stored carbon as well as an ongoing loss in carbon

sequestration [35]. Wildfire increases the likelihood of invasion by annual grasses, especially in

the relatively warm and xeric portions of the northern Great Basin [36]. To estimate current

rates of sagebrush-steppe conversion to invasive annual grasses, we combined data on areal

extent of fires in the region and annual grass dominance using the Burned Areas Boundaries

Dataset 1984–2014 [37] and the Estimated Ecological States dataset [38]. From 1984 to 2014,

the mean area burned was 40,000 ha yr-1. We calculated the background level of invasion by

annual grasses as the proportion of invasive annual grass dominated land outside of burned

areas (13%) and subtracted that from the proportion of burned areas dominated by invasive

annual grasses (23%) to estimate a conversion rate of 10% of burned areas, or 4000 ha yr-1.

We used published estimates of aboveground biomass loss and changes in carbon seques-

tration due to conversion of sagebrush-steppe to invasive annual grasses [39]. Estimates of

aboveground biomass carbon loss ranged from 4.03 to 23.83 MTCO2e ha-1, with a mean and

standard deviation of 16.13 ± 6.6 MTCO2e ha-1. We do not include belowground biomass loss,

because the effect of sagebrush conversion on belowground carbon storage is highly uncertain

[39–41]. Estimates of post-fire invasive annual grass carbon sequestration are significantly

lower than average sagebrush carbon sequestration [42] and are summarized as foregone car-

bon sequestration of 0.81 ± 0.44 MTCO2e ha-1 yr-1 [39]. For Monte Carlo simulations, we ran-

domly sampled from normal distributions constructed with the mean and standard deviations

noted above.

Grasslands to cropland. We used an analysis of grassland conversion to cropland to esti-

mate the loss of grassland to cropland from 2008 to 2012 [43]. Lark et al. [43] estimate grass-

land loss in Oregon to be 931 ha yr-1, using USDA Cropland Data Layer with additional

processing and bias correction.

We assume that all perennial root biomass is lost when grasslands are converted to crop-

lands. We used estimates of belowground root biomass from Oregon meadows which found

an average of 18.44 Mg C ha-1, or 67.6 ± 7.66 MTCO2e ha-1 [44]. This estimate is lower than

the average used for national-scale analysis of NCS [8]. For Monte Carlo simulations, we sam-

pled from a normal distribution.

Land management NCS

Timber harvest. Following the methodology of Fargione et al. [8], we modeled delayed

harvest through the deferment of a percentage of annual harvest in Oregon. In concept, areas

of deferred harvest, whether applied on the basis of large even-aged units or to smaller patches,

are allowed to grow past the current rotation age and closer to their “biological optimum”

(e.g., culmination of mean annual increment) [45,46]. To limit interactions with the risk of

wildfire to elevated forest carbon stocks, we did not apply the delayed harvest NCS pathway to

forests in counties where more than 50% of forestland was considered at high risk of wildfire

[47] (S1 Fig).

We used timber harvest data for each forest ownership class (i.e., private industrial, private

non-industrial, state, federal) in Oregon from 2000 to 2016 to estimate baseline harvest rates

(available at https://data.oregon.gov/Natural-Resources/Timber-Harvest-Data-1962-2017, S2

Table). We calculated emissions separately for timber harvested east of the Cascades and west

Fig 1. Values used to parameterize the Monte Carlo simulations for (A) increased sequestration and (B) avoided emissions.

Some activities have varying rates of sequestration or avoided emissions depending on their location relative to the interior

vs. coastal productivity gradient or based on forest age. Error bars represent the 90% confidence interval.

https://doi.org/10.1371/journal.pone.0230424.g001

PLOS ONE Potential greenhouse gas reductions from Natural climate solutions in Oregon, USA

PLOS ONE | https://doi.org/10.1371/journal.pone.0230424 April 10, 2020 7 / 30

https://data.oregon.gov/Natural-Resources/Timber-Harvest-Data-1962-2017
https://doi.org/10.1371/journal.pone.0230424.g001
https://doi.org/10.1371/journal.pone.0230424


of the Cascades to account for known productivity differences [48]. Harvest emissions were

defined as all carbon emitted in the first 20 years following harvest (e.g., committed emissions,

sensu [8]). Emissions occurring from mill residues used as commercial fuels or ‘not used’ as

well as from wood products that are retired within the first 20 years (i.e., not remaining in use

or in landfills after 20 years) were estimated as a percentage of harvest volume and were

assumed ‘committed emissions’ at the time of harvest. Transformed wood products stored

beyond 20 years were not included as harvest emissions. As we assume that harvests are

deferred for at least 30 years, the biomass included in the deferred harvest is not subsequently

harvested within the time period of our study. The climate benefit of deferred harvest is real-

ized during this period with reduced annual harvest. Eventually annual harvest levels are

assumed to return to business as usual (BAU), albeit with larger forest carbon stocks [8].

We used published conversion factors to convert harvest volumes from thousand board

feet (MBF) to cubic meters [49] and estimated logging residue volume using a residue:round-

wood volume ratio of 0.25 calculated from the U.S. Forest Service RPA Assessment [50,51].

Belowground biomass was estimated using the root:shoot ratio of 0.2 [52,53]. We estimated

committed emissions from logging residue and belowground biomass to be 56%, following

Fargione et al. [8]. Based on 2012 and 2017 USFS RPA Assessments, 15% of harvested biomass

becomes unused mill residues or commercial fuel [50,51]. A further 28% of harvested timber

volume becomes transformed wood products that are retired and oxidized in the first 20 years

[32]. Volumes (m3) were converted to Mg CO2e using specific gravity factors for interior

(0.397 g cm-1) and coastal (0.423 g cm-1) forests (PNW weighted averages for 96% softwood

and 4% hardwood harvests; [32]), a carbon fraction of 0.5, and a conversion factor of 44/12 for

CO2e to carbon.

For privately-owned, even-aged managed forests (e.g., clearcut harvest) which have a clear

difference in annual sequestration rates between recently harvested and a delayed harvest

stand [27], we also calculated gains in carbon sequestration associated with delayed harvest

scenarios. We estimated the annual area of clearcut harvest on private industrial timberland

using global forest change data from 2000–2016 [54] intersected with private industrial timber

ownership data. Fire perimeters from Monitoring Trends in Burn Severity (MTBS; mtbs.gov)

were used to filter out forest cover loss from wildfire [55]. We estimated the difference in car-

bon sequestration (MT CO2e ha-1) for even-aged managed forests using growth tables for

PNW interior and coastal forests after clearcuts [32]. Our estimate of carbon sequestration

includes changes in live tree biomass per year from stand ages 0–75, assuming that BAU har-

vest occurs around stand ages of 45 years [56,57] and harvest extensions increase stand age by

at least 30 years before harvest. Therefore, we can calculate the change in sequestration rate

(ΔCseq) for extended forest rotations as:

DCseq ¼ Forest Growthðstands 45� 75 years oldÞ � Forest Growthðstands 0� 30 years oldÞ

We calculated the ΔCseq for extending rotations in interior and coastal forests by across all

stand types in these productivity regions [32]. The ΔCseq for interior forests was estimated

30.04 ± 18.03 MT CO2e ha-1 while ΔCseq for coastal forests was estimated as 108.16 ± 21.17

MT CO2e ha-1.

Cover crops. We used data from the 2012 and 2017 Census of Agriculture to estimate cur-

rent areal extent of cover crop use (USDA-NASS; available at https://www.nass.usda.gov/

Quick_Stats/index.php). The 2012 Census was the first to include a question about cover crops

and reported cover crop use increased by 11,170 ha (29%) over the 5-year period, with 48,740

ha planted in cover crops in 2017. Despite the increase, baseline cover crop use represents only
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2% of cropland acres in Oregon. We set baseline cover crop use to the 2017 levels and esti-

mated historical variation at 6% per year.

Long-term studies in the inland PNW suggest that crop rotations which include a fallow

period have greater soil C loss than those that include a cover crop or diversified crop rotation

[58]. In a study of cover cropping achieved through mixed perennial-annual systems in the

inland PNW, soil organic carbon (SOC) was estimated to increase by 2.53 MTCO2e ha-1 yr-1;

however, the authors note a lack of soil organic carbon/cover crop datasets, suggesting uncer-

tainty in applying their estimate outside a narrow geographic region [59]. Nationally, the addi-

tion of cover crops is variably estimated to increase soil organic carbon at rates equivalent to

0.37–3.24 MTCO2e ha-1 yr-1 [60]. Globally, cover crops are estimated to increase carbon

sequestration rates on average 1.17 ± 0.29 MTCO2e ha-1 yr-1 [61]. We conservatively modeled

estimated SOC change using Monte Carlo simulations from a normal distribution following

the global meta-analysis with mean = 1.17 and sd = 0.29 MTCO2e ha-1 yr-1
.

No-till agriculture. We used data from the 2012 and 2017 Census of Agriculture to esti-

mate current areal extent of no-till use (USDA-NASS; available at https://www.nass.usda.gov/

Quick_Stats/index.php). The 2012 Census was the first to include a questions differentiating

no-till, conservation tillage, and conventional tillage and reported no-till use increased by

115,000 ha (40%) over the 5-year period, with 403,280 ha reported as no-till in 2017. In 2012,

no-till comprised 30% of ‘tilled’ cropland in Oregon, while in 2017, no-till comprised 41% of

‘tilled’ cropland. We set baseline no-till use to the 2017 levels and estimated historical variation

at 8% per year.

To estimate the carbon sequestration potential (MTCO2e ha-1 yr-1) of no-till agriculture, we

reviewed the available literature on tillage practices and soil organic carbon (SOC) with partic-

ular focus on the PNW. The majority of regionally relevant studies focused on the inland

PNW, east of the Cascades. No consensus exists on the effects of no-till on SOC in the PNW

with at least two studies finding no significant effect of tillage on SOC [62,63]. However, in

other studies, SOC was estimated to increase by 0.12 to 0.53 MTCO2e ha-1 yr-1 when switching

from conventional tillage to no-till [59,64,65] and no-till did not negatively affect wheat yield

[66]. PNW estimates are on the low end of average soil C sequestration rates, which tend to be

lowest in cold northern and arid western states [60,67,68]. We modeled the estimated SOC

change using Monte Carlo simulations drawing randomly from a uniform distribution rang-

ing between 0.12 and 0.53 MTCO2e ha-1 yr-1
.

Cropland nutrient management. State-level fertilizer use rates were calculated following

published methods [69,70] using annual sales of commercially produced fertilizer from 1997–

2015 [71]. Fertilizer sales data were converted from tons of product sold to kg of N, based on

the reported chemical composition of the fertilizer [71]. Where composition was not specified

for a product, default percentages based on the product’s reported fertilizer code were used.

From these data, we calculated current use of N fertilizer at 186,294 Mg N yr-1 with a historical

variation of 18%.

Ribaudo et al. [72] suggest that best management practices (BMPs) for nitrogen application

include limiting nitrogen application to no more than 40% more than that removed by crops

at harvest. We estimated the ratio of N removed by crops to N fertilizer used for each county

in Oregon using nutrient balance data calculated by the International Plant Nutrition Institute

[73]. IPNI publishes county level N ratio estimates from 1987 to 2014; we found that counties

comprising 40% of the cropland in Oregon exceed the recommended nutrient use efficiency.

Thus, we assume that nitrogen reductions could be applied to 40% of cropland in our

scenarios.

Emissions of nitrous oxide (N2O) are strongly correlated with fertilizer N rate [74,75]. The

Intergovernmental Panel on Climate Change (IPCC) Tier 1 methods for GHG inventories
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assume a total emissions factor (EF) for N2O to be 1.1 to 1.3% of the N inputs [76]. However,

studies suggest that the EF can be even higher at N input levels that exceed crop demand for N

[74,77,78] and a recent analysis of historical N-flux from agriculture estimated total EF to be

2.54% [75]. Here, we incorporated uncertainty in the N:N2O EF using Monte Carlo simula-

tions to draw the total EF from a uniform distribution ranging from 1–2.54%. For each simula-

tion, used the selected total EF to translate N fertilizer use to N2O emissions. Finally, we

multiplied the resulting N2O emissions by 298 to calculate CO2e.

Restoration NCS

Reforestation after wildfires. Reforestation after wildfires is defined as replanting with-

out salvage harvesting or site preparation after moderate (25% - 75% basal area mortality) to

severe (75% - 100% basal area mortality) wildfires. We limited the post-wildfire reforestation

pathway to federal lands because the Oregon Forest Practice Act (OFPA) has strong require-

ments mandating replanting on private lands after planned and post-wildfire harvests [79].

Furthermore, we assumed that private landowners of substantial forestland area would typi-

cally conduct salvage harvests post-wildfire and be required to replant forests under the OFPA

and/or would have preexisting financial incentives to replant. The US Forest Service (USFS)

and Bureau of Land Management (BLM) manage over 7 million ha of federal forestlands in

Oregon.

To estimate the current replanting effort on federal land, we first calculated the average

annual area available for replanting using wildfire severity data and management objectives on

USFS and BLM land (e.g., no active reforestation within wilderness area boundaries). Specifi-

cally, we considered areas that burned at moderate or high severity between 2000 and 2015

since these are likely to be replanted. Wildfire severity was based on data from Monitoring

Trends in Burn Severity (MTBS; mtbs.gov) and reclassified with consistent, ecologically

informed fire severity thresholds and to account for unburned areas [80]. We further limited

areas available for replanting to land managed as ‘active’, ‘multiple objective’, and ‘stand-age

dependent’ management on USFS land and ‘active’ and ‘multiple objective’ management on

BLM land [81,82]. We used publicly available datasets to calculate the average areal extent of

post-wildfire reforestation on USFS and BLM land [83,84]. Finally, we calculated the annual

rate of postfire reforestation as the proportion:

Preplanted ¼
mean annual area replanted

mean annual burned area available for replanting

We assumed that replanted vegetation on federal lands would be similar to the potential

vegetation type, which we extracted from LANDFIRE Biophysical Setting (BPS) data [85]. We

used USFS yield tables to estimate carbon sequestration rates for each BPS forest type using a

crosswalk based on spatial overlap and cover type name similarity [8,32]. We further classified

forest types into three broad productivity classes based on expected C storage in the first 35

years using Jenk’s natural break classification. For each of the three productivity classes, we

produced tables varying C sequestration by stand age based on published growth tables [32].

Natural regeneration after moderate and high severity wildfires in the PNW can be limited by

a lack of seed source [86] and regeneration can be delayed due to environmental conditions

following wildfire [87]. Forests in the PNW that experience wildfires are likely to naturally

regenerate, but with slower initial growth rates and uneven spatial coverage than replanting

after wildfire [88–90]. We assume that replanting occurs within the first 2 years post-wildfire,

while natural regeneration is delayed at least 10 years. Therefore, we calculate the annual C

sequestration rate for each reforestation using the following equation, where Cplanted is the
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carbon sequestration rate for replanted forests and Cnatural regeneration is the expected natural

regeneration sequestration for a particular stand age, which is set to zero for years 0–10 follow-

ing wildfire:

Reforestation DSequestration ¼ Cplanted � Cnatural regeneration

For each Monte Carlo simulation, we incorporated uncertainty in wildfire area and refores-

tation sequestration rates. We assumed that the distribution of burned area of moderate to

high severity on federal land for the period of our simulation (2020–2050) would not change

from observed (2000–2015). We modeled wildfire area available for replanting using Monte

Carlo simulations from a normal distribution based on historical means and standard devia-

tion of fire areas in low, medium, and high productivity forests. To quantify uncertainty of our

reforestation sequestration rate, we assumed a normal distribution with the mean equal to the

reforestation sequestration as calculated above and uncertainty of ± 20%.

Tidal wetland restoration. We defined tidal wetland restoration as restoring tidal pro-

cesses in areas where tidal wetlands were the historical natural ecosystem. We estimated the

current annual rate of tidal wetland restoration using data from the Oregon Watershed

Enhancement Board (OWEB) which compiles data on restoration project objectives and areas

including estuary restoration projects from 2000 to 2017 [91]. Between 2000 and 2017, 880 ha

of estuarine tidal wetlands have been restored resulting in a baseline implementation rate of

48.9 ha yr-1. In addition, we estimated the total area available for tidal wetland restoration by

combining data on tidal-influenced wetlands, tidal impairment, and historical tidal wetland

extant [92,93]. We limited tidal restoration opportunity to the areas with the highest salinity to

exclude freshwater and mesohaline wetlands with high rates of methane release [94–96]. The

resulting area included 5205 ha of tidal wetland restoration opportunity, which served as the

upper threshold for cumulative restoration area.

We modeled carbon benefit attributable to tidal wetland restoration by estimating the

increase in sequestration as well as the avoided GHG emissions from drained and degraded

marshes. Restored tidal wetlands carbon sequestration varies from 0.79 to 0.94 MT C ha-1 yr-1

on the west coast and PNW [97–99]. We estimated carbon sequestration to be the average of

reported values, 0.87 MT C ha-1 yr-1, or 3.17 ± 0.39 MTCO2e ha-1 yr-1. Altered water salinity

and water table elevation can influence the emissions of methane (CH4) [100,101]. We esti-

mated the avoided loss of CH4 to be 0.23 Mg CH4 ha-1 yr-1, or 5.66 ± 3.53 MTCO2e ha-1 yr-1

[101]. For Monte Carlo simulations, we drew samples from a normal distribution with a mean

and standard deviation of 8.84 ± 3.92 MTCO2e ha-1 yr-1 to characterize the carbon benefits

due to tidal wetland restoration.

Riparian reforestation. We define riparian forest restoration as conversion from non-for-

est to forest along riparian areas. We estimated the annual rates of riparian forest restoration

using data on reported riparian restoration tree plantings from 2001 to 2017 [91,102]. Data

included voluntarily reported data from projects that included funding from the Oregon

Watershed Enhancement Board (OWEB), which provides matching funds for riparian restora-

tion projects across a variety of ownerships statewide, as well as reported data from the Oregon

Conservation Reserve Enhancement Program (CREP), which provides funds for eligible con-

servation practices on agricultural lands. Because riparian tree plantings may occur outside of

those funded by OWEB and CREP, we consider our annual area estimate to be conservative

(i.e., likely underestimates the overall annual restoration area). We estimated the baseline

annual riparian reforestation to be 1713 ha yr-1 in interior Oregon and 683 ha yr-1 in coastal/

western Oregon.
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We estimated the maximum extent of riparian reforestation opportunity by combining

published floodplain maps [103] with recent mapped tree canopy cover data [104] and envi-

ronmental site potential [85]. We considered areas to have riparian reforestation potential if

they (1) occurred within a 100-year floodplain, (2) had less than 40% canopy cover, and (3)

had ecological site potential that included forest, woodland, or was undetermined based on

biophysical setting. Urban areas are outside the scope of this study and so we did not include

areas mapped as high or moderate density development [34] in our estimate of riparian refor-

estation potential. The resulting area included 202,415 ha of riparian reforestation opportu-

nity, 70% of which is located in coastal/western Oregon. These estimates served as the upper

threshold for cumulative restoration area in our implementation scenarios.

Carbon accounting methods for restored (i.e., planted) riparian forests and woodlands have

not been well-developed in the literature [105–107]. Thus, we estimated the difference in car-

bon sequestration for restored riparian forests using growth tables for afforestation in PNW

interior and coastal forests [8,32]. In Oregon riparian restoration projects, the species used in

tree plantings varies by geographic region [91]. The majority of planted conifers in western

Oregon is comprised of Douglas-fir (Pseudotsuga menziesii) mixed with western red cedar

(Thuja plicata), western hemlock (Tsuga heterophylla), and Sitka spruce (Picea sitchensis)
while eastern Oregon riparian conifer plantings include Ponderosa pine (Pinus ponderosa).

Hardwood riparian plantings include willow (Salix spp.), alder (Alnus spp.), maple (Acer spp.),

and cottonwoods (Populus spp.). We estimated sequestration rates separately for conifer only,

hardwood only, and mixed plantings. For each of the riparian planting types, we calculated

mean annual sequestration from stand ages 0 to 30 years, which is a time span relevant to cli-

mate mitigation needs and matches our simulation length. We calculated weighted averages

for interior and coastal plantings using the proportion of hardwood, conifer, and mixed plant-

ings reported in each region. We added an additional soil carbon accumulation rate of 0.09

MT C ha-1 yr-1, following Fargione et al. [8] and based on published soil carbon accumulation

rates in reforestation [108]. We estimate that riparian reforestation sequesters 12.17 ± 0.43

MTCO2e ha-1 yr-1 and 15.81 ± 0.45 MTCO2e ha-1 yr-1 in interior and coastal riparian plant-

ings, respectively. For Monte Carlo simulations, we sampled from normal distributions con-

structed with these estimates for the mean and standard deviation of riparian reforestation

sequestration.

Sagebrush-steppe restoration. To estimate the recent implementation rate of restoration

projects, we queried the Conservation Efforts Database for completed sagebrush-steppe resto-

ration projects in Oregon for the years 2009–2014 [109]. To further refine the estimate, we also

queried the Land Treatments Digital Library for ‘seeding’ treatments by the BLM, which man-

ages the majority of sagebrush-steppe habitat in Oregon [110]. Combined, these queries

resulted in an estimate of attempted sagebrush-steppe restoration actions on 55,900 ha yr-1.

Restoration of sagebrush-stepped ecosystems has proven to be very difficult and success varies

based on the elevation and moisture gradients as well as dominance of invasive species

[111,112]. There is no published rate of restoration success across SE Oregon, so we relied

upon expert opinion to estimate current restoration success rates as 10% (J. Kerby, personal
communication), thus setting our baseline to 5,590 ha yr-1. To set an upper limit on restoration

activities for our scenarios, we estimated the total area of invasive annual grass dominated

sagebrush-steppe ecosystems at 906,000 ha, using published datasets [38].

We estimated that restored sagebrush-steppe would increase carbon sequestration as com-

pared to invasive annual grass at 0.81 ± 0.44 MTCO2e ha-1 yr-1, the same rate as foregone car-

bon sequestration due to conversion from sagebrush-steppe to annual grasses [39]. For Monte

Carlo simulations, we sampled from a normal distribution with the mean and standard devia-

tion specified above.
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NCS implementation scenarios and uncertainty

We evaluated the potential for NCS to provide carbon benefits under multiple implementation

scenarios. We conducted three scenarios where we varied the implementation rate for each

NCS pathway (Table 3) and calculated the annual and cumulative GHG reductions possible

from NCS implementation as compared to the current baseline implementation. All three sce-

narios included a ramp up period rather than assuming that implementation of NCS increased

immediately to target levels in 2020. The Limited Implementation scenario allowed NCS imple-

mentation to ramp up for a ten-year period from 2020 to 2030 and then remain stable after

2030. Each NCS activity was implemented at a rate equal to the relative level of variation (i.e.,

coefficient of variation) in its implementation over the past 10 to 20 years. Where historical

implementation rates were not available, we assumed a 10% change from baseline implemen-

tation. The Moderate Implementation scenario constrains the implementation of NCS

activities to feasible yet aggressive levels based on stakeholder feedback. In this scenario, we

allowed NCS implementation to ramp up over a period of 10 to 30 years. The Ambitious

Table 3. Implementation scenarios for natural climate solution activities. All scenarios are expressed as percent change from the baseline rate of each activity.

Scenario Implementation Rates (% change from baseline)

Natural Climate

Solution Activity

Low Implementation Moderate Implementation Ambitious Implementation

Avoided

Conversion

Avoided conversion

of forests to rural

development

Reduced conversion by 10%, allows 10

years to reach target

Reduced conversion by 50% by 2030,

keeps 50% of baseline conversion rate

2030–2050

Reduced conversion by 100% (i.e., zero

hectares converted) by 2030 and

maintains zero conversion rate 2030–

2050

Avoided conversion

of forests to urban

development

Reduced conversion by 10%, allows 10

years to reach target

Reduced conversion by 50% by 2030,

keeps 50% of baseline conversion rate

2030–2050

Reduced conversion by 100% (i.e., zero

hectares converted) by 2030 and

maintains zero conversion rate 2030–

2050

Avoided conversion

of sagebrush-steppe

to invasive annual

grasses

Reduced conversion by 10%, allows 10

years to reach target

Reduced conversion by 10% by 2030,

and further reduced to 20% of baseline

in 2030–2050

Reduced conversion by 30% (i.e., zero

hectares converted) by 2030 and that

conversion rate 2030–2050

Avoided conversion

of grasslands to tilled

cropland

Reduced conversion by 10%, allows 10

years to reach target

Reduced conversion by 50% by 2030,

and further reduced to 100% of baseline

(i.e., zero hectares converted) by 2050

Reduced conversion by 100% (i.e., zero

hectares converted) by 2030 and

maintains zero conversion rate 2030–

2050

Land

Management

Deferred timber

harvest

Reduced timber harvest equivalent to

the historical variation in timber harvest

over the last 20 years on each forest

ownership; allows 10 years to reach

reduction levels. Reductions are 10–

100% of baseline depending on

ownership (see S2 Table).

Gradual reduction of timber harvest to

target reduction of 75% on most

ownerships and 15% on State and

Private Industrial ownerships by 2030.

Allows 73% of current harvest volume

(overall) from 2030–2050

Gradual reduction of timber harvest to

target reduction of 100% on most

ownerships and ~20% on State and

Private Industrial ownerships by 2030.

Retains 60% of current harvest volume

(overall) from 2030–2050

Use of cover crops Increased cover crop use by 40% over

the next 10 years and then steady after

2030

Increased cover crop use by 150% in

2030. Continued increase to quadruple

cover crop use by 2050

Continual increase in cover crop use to

reach 50% of all cropland in 2050 (equal

to a 25x increase in cover crop use)

Scenario Implementation Rates (% change from baseline)

Natural Climate

Solution Activity

Low Implementation Moderate Implementation Ambitious Implementation

Land

Management

No-till agriculture Increased no-till use by 30% over the

next 10 years and then steady after 2030

Increased no-till use by 100% in 2030.

Continued increase to 150% of baseline

by 2050

Continual increase in no-till use to reach

100% of ‘tilled’ cropland in 2050 (equal

to 3x increase in no-till use)

Nutrient

management

Reduced N-fertilizer use by 20% on half

of fertilized acres by 2030, steady after

2030

Reduced N-fertilizer use by 25%,

implementing on half of fertilized acres

by 2030 and the remaining half by 2050

(25% total reduction by 2050)

Reduced N-fertilizer use by 40% on all

acres by 2030 and maintained this

decrease through 2050

(Continued)
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Implementation scenario assumes aggressive implementation of NCS which allows NCS imple-

mentation to ramp up quickly for at least a ten-year period. Avoided conversion pathways

reached zero conversion after 10 years whereas restoration pathways increased rapidly toward

the maximum area available for restoration. In all scenarios, we assumed that the current

extent of cropland and grazing areas is maintained and that the maximum annual timber har-

vest deferment does not exceed 25% of baseline harvest levels on private industrial forestland

and does not decline below 40% of current overall harvest levels.

Results

Annual reductions by 2035 and 2050

We found that, under Ambitious Implementation, combined NCS pathways could achieve

median greenhouse gas (GHG) reductions up to 8.3 ± 1.3 MMTCO2e yr-1 by 2035 and further

contribute to reductions up to 9.8 ± 1.7 MMTCO2e per year by 2050 (Fig 2). Under the Lim-

ited and Moderate scenarios, combined NCS pathways were estimated to provide reductions

of 2.7 ± 0.3 and 4.5 ± 0.7 MMTCO2e yr-1 by 2035 and further reductions of 2.9 ± 0.4 and

5.5 ± 0.9 MMTCO2e yr-1 by 2050. Estimated reductions from each NCS activity ranged from

0.003 to 5.2 MMTCO2e yr-1, depending on the specific activity and scenario implementation

(Fig 3, S3 Table). Land management pathways achieved the greatest reductions in GHG (70 to

90% of overall reductions), with deferred timber harvest comprising the largest reduction. The

relative contribution of other NCS activities increased with increasing implementation rates in

the Moderate and Ambitious Scenarios. For example, cover crops comprise less than 1% of

CO2e reductions in the Limited scenario but contributed 11% of the overall CO2e reductions

under Ambitious implementation. Avoided conversion pathways provided 2 to 9% of potential

reductions, while restoration pathways comprised 6 to 21% of annual reductions depending

on the implementation scenario.

Table 3. (Continued)

Restoration Replanting after

wildfire on federal

land

Increased replanting rate by 100% over

the first 10 years, steady after 2030

Gradually increased replanting rate by

100% in 2030 and 150% baseline by 2050

Rapidly increased replanting rate by

100% in 2030, 300% in 2040, and 700%

of baseline in 2050. In 2050, 63 to 84%

of wildfire area replanted each year.

Riparian forest

restoration

Increased riparian reforestation by 72%

in eastern OR and 42% in western OR

(based on historical variation); allows 10

years to reach target rates

Doubling (100% increase) in riparian

reforestation rate by 2050, 250% increase

by 2040, and 300% increase by 2050.

Rapidly increased riparian reforestation

rates to reach the maximum area

available by 2050. Maximum area

estimated as 76,635 ha east of the

Cascades and 125,780 ha west of the

Cascades. East side riparian

reforestation increases to 500% by 2030

and reaches the maximum area

threshold in 2032. West side riparian

reforestation increases by 1000% (10x)

by 2030 and reaches maximum area

threshold by 2044.

Tidal wetland

restoration

Increased tidal wetland restoration by

100% in 2030 and maintain this increase

through 2050

Increased tidal wetland restoration by

200% in 2030 and maintain this increase

through 2050

Rapidly increased tidal wetland

restoration by 100% in 2030, 300%

baseline in 2040, and 700% in 2050;

reaches maximum area of cumulative

restoration of 5200 ha by 2048.

Invasive annual

grasses to sagebrush-

steppe

Increased sagebrush-steppe restoration

by 10% in 2030 and maintain this

increase through 2050

Increased sagebrush-steppe restoration

by 100% in 2030 and by 200% by 2050

Increased sagebrush-steppe restoration

by 200% in 2030 to 11,180 ha yr-1 and

maintained this increase through 2050.

Cumulative restoration is 251,000 ha.

https://doi.org/10.1371/journal.pone.0230424.t003
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Cumulative reduction by 2050

Cumulative GHG reductions over the 30-year period of our analysis, reported as the median

with 90% confidence interval lower and upper estimates in parenthesis, ranged from 72.2 (63–

81) to 222 (184–260) MMTCO2e in the Limited and Ambitious scenarios, respectively (Fig 4).

The Moderate scenario resulted in cumulative reductions of 123 (104–142) MMTCO2e by

2050. As with the annual reductions, deferred timber harvest comprised the largest cumulative

reduction by 2050 in all scenarios (85%, 73%, and 61% of the Limited, Moderate, and Ambi-

tious scenarios, respectively). Other forest pathways, i.e., avoided conversion, riparian refores-

tation, and replanting after wildfire, comprised 10 to 17% of cumulative reductions while

agricultural pathways, i.e., cover crops, nutrient management, and no-till, comprised 3% to

12% of cumulative reductions. Sagebrush-steppe, grassland, and tidal wetland pathways con-

tributed the least to cumulative reductions (1 to 4%).

The relative share of the GHG reductions due to timber deferment varied across property

ownership, and absolute reductions depended on the baseline annual timber harvest for each

ownership (S2 Table). Despite comprising 72% of the baseline timber harvest, private indus-

trial ownership comprised between 40 to 49% of avoided emissions from timber deferment

(S2 Fig). Private non-industrial ownerships, which accounted for 9.3% of baseline harvest and

were assumed to have zero harvest after 2030 in the most ambitious scenario, comprised 20 to

26% of the cumulative GHG reduction from avoided emissions due to timber deferment.

Fig 2. Annual greenhouse gas reductions in million metric tons of CO2e from all 12 NCS activities combined under three implementation scenarios

from 2020 to 2050. Dotted lines show the 90% confidence interval around the median estimated reduction for each scenario.

https://doi.org/10.1371/journal.pone.0230424.g002
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Similarly, Federal ownerships, which comprise 9.2% of baseline harvest rates, provided 23 to

26% of the GHG reductions from timber deferment. State, local, and tribal ownerships com-

prised the remainder of the cumulative GHG reductions associated with timber deferment.

Contribution to Oregon’s GHG emissions targets

In 2017, Oregon’s statewide emissions, which are calculated by accounting for emissions from

agriculture, industrial, residential/commercial, and transportation sectors, were estimated at

64 MMT CO2e [113]. In order to meet the State’s GHG reduction targets for 2035 and 2050,

GHG emissions need to be reduced by 30.1 and 50 MMT CO2e in the next 15 to 30 years. The

combined NCS activities could provide 9%, 15%, and 27% of the needed reductions in year

2035 and 6%, 11%, and 19% in 2050 under Low, Moderate, and Ambitious Scenarios, respec-

tively (S2 Table; Overall annual reductions). If emissions reductions and fossil fuel mitigation

in other sectors are used to reach the State’s 2050 emissions target of 14 MMT CO2e, NCS

could contribute 21 to 69% of the additional annual GHG reductions needed to reach zero

emissions (Fig 5).

Fig 3. Estimated annual reductions in MMT CO2e for each NCS activity under three different implementation scenarios in year 2050. Error bars represent the 90%

confidence interval around the median value from simulations. Activities are grouped: avoided conversion (beige), land management (dark green), and restoration

(orange).

https://doi.org/10.1371/journal.pone.0230424.g003
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Discussion

To limit the most serious of impacts from climate change, society needs to act quickly to

reduce GHG emissions and drawdown GHGs in the atmosphere [1]. Subnational commit-

ments to limit GHGs are increasingly common, including in Oregon and other states partici-

pating in the U.S. Climate Alliance. In this study, we found that Oregon could achieve

additional GHG reduction through NCS activities such as changing land management prac-

tices, restoring native ecosystems, and avoiding conversion of native habitats. Specifically, we

found that increased implementation of NCS activities could reduce GHG emissions by 2.9 to

9.8 MMT CO2e yr-1 and contribute 6 to 20% of the GHG emissions mitigation needed to reach

Oregon’s current emissions goal of 14 MMT CO2e by 2050.

Rising scientific consensus indicates that net emissions of CO2 must fall to zero for temper-

atures to stabilize and to avoid the most catastrophic climate change impacts [1,114–116]. Our

results suggest that increased investments in land management, restoration of ecosystems, and

avoided conversion of native habitats can enhance the land sector’s ability to act as a carbon

sink and achieve GHG reductions beyond fossil fuel mitigation alone. Assuming aggressive

Fig 4. Cumulative GHG emission reductions from NCS activities in Oregon under three implementation scenarios. Results illustrate the large contribution from

deferred timber harvest (dark green) as compared to other forest-based activities (light green), agricultural activities (orange), sagebrush-steppe and grassland (brown),

and tidal wetlands (grey).

https://doi.org/10.1371/journal.pone.0230424.g004
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fossil fuel mitigation and emissions reductions from other sectors can meet the target of 14

MMT CO2e by 2050, we found that NCS activities have the potential to provide 20% to 70% of

the additional GHG reduction needed to reach zero emissions in 2050.

The scenarios we explored in this study are consistent with increasing investments or other-

wise increasing the implementation of NCS at limited, moderate, and ambitious levels above

current practice. In all scenarios, improved land management strategies provided the greatest

combined potential GHG reductions, followed by restoration activities. In contrast to other

studies [7,8,20], avoided conversion activities contributed least (between 2 and 10%) to the

potential annual GHG reduction benefit for the state of Oregon. Oregon’s statewide land-use

planning program, instituted in 1973, limits development to areas within urban growth

boundaries resulting in lower conversion rates of forest and agricultural lands to urban and

suburban as compared to regional and national trends [25]. Avoided conversion of forests to

other land uses has been cited as one of the most important NCS pathways globally [7], one of

the lower-cost NCS opportunities nationally [8], and contributed 10–15% of the assessed

annual mitigation potential in California [20]. The pre-existing limits to conversion of natural

and working lands in Oregon provide estimated GHG benefits of 1.7 MMTCO2e per year

[117] and create important differences in the potential for additional GHG reduction benefits

from avoided conversion NCS at the state level, where the carbon storage benefits of avoided

conversion have already been realized.

We found that deferring timber harvest, i.e., delaying a portion of annual timber harvest

each year, has the single largest mitigation potential for any NCS activity in the state of Oregon

(2.3–5.2 MMT CO2e yr-1). Forests cover a large area of Oregon and trees store large amounts

of carbon per unit area. Oregon’s forests, particularly in the West Cascades and Coast Range

ecoregions, are some of the most naturally carbon-rich forests in the world but currently store

carbon volumes much less than their ecological potential [44]. In the PNW, older forests store

significantly more carbon than younger forests [118]. Moreover, much of the carbon removed

from forests during harvest is lost to the atmosphere shortly after harvesting [32], thus defer-

ring timber harvest results in substantial carbon benefits both by keeping stored carbon in the

forest and by allowing continued sequestration, which can be relatively low in the initial years

following clearcut or regeneration harvest [119]. Deferred timber harvest can be achieved

through multiple mechanisms ranging from lengthening harvest cycles or changing harvest

strategies to partial harvest and alternative management on forestlands [120,121]. In addition

Fig 5. Contributions of NCS activities to Oregon’s GHG reduction goals. Shown are the historic emissions before

2017 (solid gray line), the projected business-as-usual emissions trajectory (dotted black line, OR Global Warming

Commission 2018), and the pathway to reach Oregon’s GHG reduction goals for 2035 and 2050 (dashed black line).

The grey area shows the needed fossil fuel mitigation across other sectors while the colored dashed lines show the

potential contribution of NCS under low (orange), moderate (green), and ambitious (blue) implementation.

https://doi.org/10.1371/journal.pone.0230424.g005
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to reducing the near-term carbon emissions, managing for longer rotations and more diverse

forest structure would result in long-term increases to in-forest carbon stocks [121–128].

Our finding that timber harvest management provides that greatest potential greenhouse

gas reduction is consistent with recent published assessments focused on Oregon’s forests

[127,129]. Law and colleagues [127] simulated the effect of protecting existing forests, length-

ening harvest cycles, re- forestation, afforestation, and bioenergy production with product sub-

stitution on net ecosystem carbon balance (NECB) across the state of Oregon and found that

lengthening harvest cycles on private land and restricting harvest on public lands resulted in

the greatest increases in NECB. Importantly, forest management targeted at preserving high

carbon stores can also result in protection of biodiversity [130]. Our study provides additional

evidence that forest management in Oregon’s productive forests can lead to meaningful state-

level GHG emission reductions.

While we specifically model timber harvest deferral, altering other aspects of the timber

harvest and wood processing system could also result in emission reductions [131]. In our

study, we assume that 15% of the annual harvested wood volume results in unused mill residue

or mill residue burned on site [50,51]. The remainder is assumed to be the transformed wood

products pool, of which 72% is allocated to long-term storage (i.e., the carbon remains stored

in these products for 20 years or more) [sensu 8,51]. Increasing the proportion of transformed

wood products in the long-term storage pool, for instance through increasing the allocation of

current harvest to durable timber products like mass-timber building materials, may provide

one viable option for reducing overall harvest emissions. However, shifting wood product

pools is unlikely to result in GHG emission reductions at the same order of magnitude as

increasing rotation lengths and managing for older, more diverse forests [46,122,123]. Product

substitution, which assumes the use of wood products materials in place of more emission

intensive alternatives, has been treated variably in carbon accounting assessments [131]. While

product substitution may provide GHG emission reductions, it is not included in our study

due to the large and compounding uncertainty in assumptions related to estimating substitu-

tion [46,123].

In the counties we considered eligible for timber harvest deferment (i.e., less than 50% of

forest cover at high risk of wildfire), private industrial forest landowners supply over 70% of

the baseline harvested timber volume. Private industrial forestland owners include forest prod-

uct companies, Timber Investment Management Organizations (TIMOs) and Real Estate

Investment Trusts (REITs). State, federal, and non-industrial private forest landowners pro-

vide a further 30% of the harvest volume. Our scenarios limit overall timber harvest reduc-

tions, particularly on private industrial forests, to maintain harvests at no less than 80% of

current levels in the Limited Scenario and 60% of current levels in the Ambitious Scenario (S2

Fig). In our study, modeled changes to private industrial timber harvest provided 40 to 46% of

GHG emissions reductions from harvest deferment while changes in non-industrial private

forest timber harvest comprised over 20% of the GHG emissions reductions. Opportunity

costs of restricting harvest can be substantial for some forest landowners [121,132–134] and

in particular, TIMOS and REITS, which tend to prioritize revenue generation, may have less

flexibility than small non-industrial private forest landowners to change management

[134,135]. More research is needed to determine the incentive, policy, and market conditions

under which different landowners are able and willing to participate in timber deferment

programs.

Despite its high potential, timber harvest deferment may be a challenging NCS to imple-

ment given current socio-economic realities within the state [136–140]. Analyses have sug-

gested that timber deferment equivalent to these levels may be possible under increased

carbon pricing (e.g., $50 to $60 per tCO2e; [132,141,142]) but the price of carbon on the
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voluntary and compliance markets is well below economic returns available from harvest

[132]. In addition, Oregon is one of the largest suppliers of softwood timber in the United

States and the timber and forest related sector comprises an important part of the economy in

Oregon, particularly in rural communities. To be included as a successful NCS strategy, the

development of equitable and acceptable incentives for deferred harvest on private forest lands

will need to consider and mitigate potential impacts to rural communities and tradeoffs for

forest sector stakeholders [143–146].

Riparian reforestation provides the second largest mitigation potential by 2050 under mod-

erate and ambitious implementation and has the highest carbon sequestration per unit area.

The carbon sequestration estimates used in this study for riparian reforestation are lower than

the sequestration rates reported in literature on natural regeneration of riparian areas in parts

of the Pacific Northwest [147,148] but we lack published data from restored riparian forests

across a range of conditions in the PNW [106,107]. In a recent review, Dybala and colleagues

[107] found that planted riparian forests had faster initial rates of C sequestration than natu-

rally regenerating counterparts. Thus, our study may underestimate the GHG benefit of ripar-

ian reforestation. Riparian reforestation is often targeted with restoration goals aimed

improved fish habitat, floodplain connectivity, and water quality [106,149,150] and has wide-

ranging support through established incentive and granting structures [151–153]. The existing

programmatic structure in Oregon, along with the substantial co-benefits associated with

riparian reforestation and areal extent of the opportunity [154], suggest that realizing the car-

bon benefits from this NCS activity may be relatively easier than timber harvest deferment.

Under Ambitious implementation, changes in agricultural management could reduce 1.39

MMT CO2e of GHG emissions annually by 2050. These GHG emission reductions are primar-

ily attributed to increased cover crops. In many cases, cover crops bring additional benefits

including controlling nitrate leaching, providing nutrients especially through nitrogen fixa-

tion, conserving water, and improving soil quality [61,155–158]. Despite evidence that cover

crops can provide both environmental and yield benefits, less than 2% of Oregon’s total crop-

land is planted to cover crops under baseline conditions. Cover crops may provide an achiev-

able route to increasing carbon storage with ample opportunity for increased adoption

through cost-share assistance and highlighting successful local examples of cover crop use

[159]. Cover crops are typically grown in combination with main summer annuals (e.g., corn

and spring cereals) as a winter rotation or can be used to eliminate summer fallow in fall and

winter crops such as winter and spring wheat [157]. Cover crops can be used in Oregon as

either an additional crop to replace fallow periods between main crops or as inter-row cover in

specialty crops such as orchards, berries, and hops. In our most ambitious scenario, we

increased use of cover crops to 50% of cropland. With increased incentives and payment for

ecosystem services, cover crops may be possible over even larger areas and provide increased

GHG reductions.

For tidal wetland restoration in Oregon, relative contribution to GHG reductions is limited

by the applicable geographic extent. Conversion of tidal marshes to pastureland or agriculture,

primarily through construction of dikes, is the primary human-caused change to Oregon’s

tidal wetlands [160]. However, since the 1970s, state and federal policies have limited further

conversion of tidal marshes resulting in a negligible annual conversion rate [161]. Despite hav-

ing high carbon sequestration potential per unit area [162], the overall GHG reduction poten-

tial is relatively small for tidal wetlands because increased restoration will saturate the available

area (~5200 ha) of currently degraded area in Oregon. Despite the limited spatial extent, resto-

ration-based NCS activities also provide important co-benefits [8], which warrant their inclu-

sion in statewide conservation and climate strategies. Tidal wetland restoration provides a

range of ecosystem services, including providing raw materials and food, maintaining
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fisheries, and providing coastal protection and erosion control [163,164]. Similarly, restoration

of sagebrush steppe from invasive annual grasses and avoided further conversion, which simi-

larly contribute lower GHG reductions than other pathways, maintains habitat quality for a

number of sagebrush-dependent species, including the Greater sage grouse (Centrocercus uro-
phasianus), as well as limits the loss of other rangeland ecosystem services [111,165].

Other studies of climate mitigation on forest lands in the western United States have

included wildfire mitigation and management activities [8,129,166]. Forest health treatments

are critical for forest resilience and community safety. However, substantial uncertainties

remain with respect to fire emission estimates and the timeframe for accrual of climate benefits

from wildfire mitigation estimates. Climate benefits related to wildfire mitigation activities

depend on the probability of a silvicultural treatment experiencing wildfire within the effective

lifespan of the treatment, the difference in wildfire severity between treated and untreated

alternatives, the level of emissions from a wildfire, and the cumulative impact of landscape

scale interactions between forest fuels, treatment location, topography, climatic conditions

and fire dynamics [167–170]. Silvicultural treatments aimed at reducing wildfire scope and

severity result in immediate and short-term carbon emissions but can increase carbon storage

and stability, particularly over many-decade long timeframes and when treatments are imple-

mented across large spatial scales [171–173]. However, these benefits may not be realized

within the timeframe of our study and may not accrue on an individual per-unit-area of treat-

ment implementation basis.

In all of the scenarios used in this study, we assume that the implementation of NCS is

ramped up over the next decade. For some activities, implementation continues to increase

over the 30-year simulation period while other NCS implementation levels off after 2030. The

actual contribution of NCS to GHG reduction goals will depend on the rate at which NCS

increases across the landscape. Rather than predict the rates of NCS implementation based on

socio-economic constraints, the scenarios we explore here offer answers to hypothetical “what

if” questions about NCS implementation consistent with recommendations that climate miti-

gation efforts include engagement of the land sector in addition to fossil fuel mitigation [1].

Conclusions

NCS provide climate benefits by either increasing carbon sequestration or reducing GHG

emissions by changing land management activities. While the potential for Oregon’s carbon-

rich coastal and montane forests to contribute to climate mitigation has been discussed else-

where [121,127,174], our study considers the GHG reduction potential across multiple natural

and working land sectors, including forests, sagebrush-steppe, coastal wetlands, grasslands,

and agriculture, and multiple NCS strategies. Importantly, our study illustrates that NCS can

contribute meaningfully to state-level GHG reduction strategies. Our results suggest that

increased investments in carbon sequestration or avoided emissions from the land sector can

help states to their current GHG reduction goals and achieve GHG reductions nearer to near

zero emissions by 2050.
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