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Dynamics of cell fate decisions are commonly investigated by inferring temporal
sequences of gene expression states by assembling snapshots of individual cells
where each cell is measured once. Ordering cells according to minimal differences
in expression patterns and assuming that differentiation occurs by a sequence of
irreversible steps, yields unidirectional, eventually branching Markov chains with a
single source node. In an alternative approach, we used multi-nucleate cells to follow
gene expression taking true time series. Assembling state machines, each made from
single-cell trajectories, gives a network of highly structured Markov chains of states
with different source and sink nodes including cycles, revealing essential information
on the dynamics of regulatory events. We argue that the obtained networks depict
aspects of the Waddington landscape of cell differentiation and characterize them as
reachability graphs that provide the basis for the reconstruction of the underlying gene
regulatory network.

Keywords: single cell time series, gene regulatory network, Petri net, Markov chain, systems biology, Waddington
landscape

INTRODUCTION

Single-cell analyses revealed complex dynamics of gene regulation in differentiating cells (Spiller
et al., 2010; Junker and van Oudenaarden, 2014; Paul et al., 2015; Marr et al., 2016; Plass et al.,
2018). It is believed that dynamic effects possibly superimposed by stochastic fluctuations in gene
expression levels may play crucial roles in cell fate choice, commitment, and reprogramming (Graf
and Enver, 2009; Huang et al., 2009; Zhou and Huang, 2011; FerrellJr., 2012; Il Joo et al., 2018;
Bornholdt and Kauffman, 2019). Changes in gene expression over time have not been directly
measured in single mammalian cells as cells are - for technical reasons - sacrificed during the
analysis procedure and hence can be measured only once. Instead, algorithms have been developed
to infer the gene expression trajectory of a typical cell in pseudo-time from static snapshots of gene
expression states in a cell population, resulting in Markov chains of states (Bendall et al., 2014;
Cannoodt et al., 2016; Chen et al., 2019; Saelens et al., 2019; Setty et al., 2019). Most trajectory
inference algorithms are based on the assumption that differentiation is unidirectional (Bendall
et al., 2014; Haghverdi et al., 2016; Street et al., 2018; Saelens et al., 2019) and that the probability
of transiting from one state to the next similar state is independent of the individual history of
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a cell (Setty et al., 2019). The inference of trajectories has been
used to create pseudo-time series for differentiation (Marco
et al., 2014; Moignard et al., 2015; Shin et al., 2015; Macaulay
et al., 2016), cell cycle (Kafri et al., 2013), and the response
to perturbation (Gaublomme Jellert et al., 2015). As any given
distribution of expression patterns could result from multiple
dynamics, the reconstruction of trajectories from snapshots
faces fundamental limits (Weinreb et al., 2018). Even though
regulatory mechanisms cannot be directly and rigorously inferred
from snapshots (Weinreb et al., 2018), dynamic analyses may be
of immediate importance to resolve competing views on basic
mechanisms and the role of stochasticity in cell fate decisions
(Moris et al., 2016).

True single cell time series can be obtained in Physarum
polycephalum by taking multiple samples of one and the
same giant cell. Physarum belongs to the amoebozoa group of
organisms. It has a complex, prototypical eukaryote genome
(Schaap et al., 2016) and forms different cell types during its life
cycle (Alexopoulos and Mims, 1979).

Giant, multi-nucleate cells, so-called plasmodia provide a
source of macroscopic amounts of homogeneous protoplasm
with a naturally synchronous population of nuclei, which
is continually mixed by vigorous shuttle-streaming (Guttes
and Guttes, 1961, 1964; Rusch et al., 1966; Dove et al.,
1986). The differentiation of a plasmodium into fruiting
bodies involves extensive remodeling of signal transduction
and transcription factor networks with alterations at the
transcriptional, translational, and post-translational level
(Glöckner and Marwan, 2017).

In starving plasmodial cells, the formation of fruiting bodies
can be experimentally triggered by a brief pulse of far-red
light received by phytochrome as photoreceptor (Starostzik and
Marwan, 1995b; Lamparter and Marwan, 2001; Schaap et al.,
2016). Retrieving small samples of the same plasmodial cell before
and at different time points after an inductive light pulse allows
to follow how gene expression changes over real time. Because
cell cycle, cell fate choice, and development are synchronous
throughout the plasmodium (Rusch et al., 1966; Starostzik and
Marwan, 1995a; Hoffmann et al., 2012; Walter et al., 2013; Rätzel
and Marwan, 2015), single-cell gene expression trajectories can
indeed be constructed from time series. By assembling finite
state machines made from trajectories we have constructed Petri
net models for the state transitions that predict Markov chains
as variable developmental routes to differentiation (Werthmann
and Marwan, 2017; Rätzel et al., 2020) which may be considered
as trajectories through the Waddington landscape (Waddington,
1957; Huang et al., 2009). These Petri nets also predict reversible
and irreversible steps, commitment points, and meta-stable states
in cells responding to a differentiation stimulus. However, the
computational approach for the construction of Petri nets from
time series has been originally developed with data sets of
a coarse resolution in time and the structural resolution of
the nets was accordingly limited. Nevertheless, the approach
turned out to be useful for capturing the dynamics of the
process. For this paper, we developed a method for retrieving
smaller samples from even larger plasmodial cells and showed
that these cells provide a homogeneous source for samples to

be taken. This allowed us to considerably improve the time
resolution as compared to previous studies. Sampling cells at
higher time resolution, allowed the construction of Petri nets
with enhanced structural and dynamic resolution. Structural
complexity, highly connected nodes, parallel pathways, reversible
reactions, and Petri net places representing meta-stable states in
the developmental network, as revealed by the new data sets,
characterize the differentiation response as complex and dynamic
in contrast to a smooth, continuous process. We describe the
graph properties of the Waddington Petri nets and conclude that
the gene expression dynamics revealed by our analysis most likely
emerge from the non-linear dynamic behavior of the underlying
regulatory network rather than from stochastic fluctuations in the
concentration of regulatory molecules.

MATERIALS AND METHODS

Plasmodial Strain, Growth of Cells,
Sample Preparation, and Gene
Expression Analysis
Sporulation-competent plasmodial cells of wild type strain
LU897 × LU898 (Starostzik and Marwan, 1998) were obtained
as previously described (Starostzik and Marwan, 1998; Rätzel
et al., 2020). A total of 2.8 gram of plasmodial mass was applied
to a 14 cm Ø Petri dish that contained 90 ml of semi-rich
Golderer agar (Golderer et al., 2001), based on a salt solution of
0.01% (w/v) niacin, 0.01% (w/v) niacinamide, 0.1% (w/v) CaCO3,
and 0.14 mM CuCl2, supplemented with 5 g peptone from
meat (Sigma Aldrich), 0.75 g yeast extract (Becton, Dickinson
& Co.), and 3.9 mM glucose per liter, adjusted to pH 4.6 with
concentrated HCl. After starvation for 7 days at 22◦C in complete
darkness, sporulation was induced with a 15 min pulse of far-red
light (λ ≥ 700 nm, 13 W/m2) (Starostzik and Marwan, 1998).
Before and at 1-h time intervals after the start of the far-red pulse,
samples were taken in duplicate at arbitrarily chosen but distant
positions on the plate. Each sample was obtained by picking an
agar plug of 1.13 cm2 with the cut bulb of a disposable Pasteur
pipette (EA62.1; Carl Roth, Karlsruhe, Germany). The plasmodial
mass on the agar plug was scraped off with a pipet tip and, by
cutting the tip, transferred into a vial of glass beads immersed in
liquid nitrogen (Figure 1). After extraction of RNA and removal
of contaminating DNA (Marquardt et al., 2017), the relative
abundance of the mRNAs of 35 genes, differentiation marker and
reference genes (Hoffmann et al., 2012; Supplementary Table 2)
was analyzed by gene expression profiling (GeXP), a multiplex
RT-PCR method (Hayashi et al., 2007) as previously described
(Rätzel and Marwan, 2015; Marquardt et al., 2017).

Data Analysis Pipeline and Automated
Generation of Petri Nets
To correct for differences in the concentration of total RNA and
in the efficiency of the RT-PCR reaction, the gene expression
values were normalized to the median of the estimated relative
concentrations of mRNAs of the 35 genes in each RNA sample.
Each normalized expression value was subsequently normalized
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FIGURE 1 | Experimental protocol for taking time series by repeated sampling of individual plasmodial cells and time course of light-induced sporulation. (A) Each
Petri dish contained one individual plasmodial cell supported by an agar substratum. Before and at 1-h time intervals after stimulation of the cell with a pulse of
far-red light, samples were taken in duplicate by picking an agar plug at arbitrarily chosen but distant positions on the plate. The cell mass was scraped off from the
agar plug with a pipet tip and transferred into a vial containing glass beads and liquid nitrogen. After purification of RNA, the gene expression pattern was estimated
twice in each sample, each with two independent multiplex RT-PCR reactions (see section “Materials and Methods” for details). For dark controls, the far-red light
stimulus was omitted. (B) Time frame of light-induced sporulation of a plasmodial cell. At about four to 6 h after stimulation with a pulse of far-red light, the cell is
irreversibly committed to sporulation by crossing the point of no return (PNR) while there is no obvious change in the plasmodial morphology. Morphogenesis then
starts at about 11 h after the stimulus by the formation of nodules that subsequently culminate to form the fruiting bodies. Panel B was taken from Glöckner and
Marwan (2017).

to the geometric mean of all values obtained for a given gene, and
this was performed separately for each gene.

Data were analyzed and processed with a revised and extended
pipeline written in R (R Core Team., 2016), based on the
previously described script (Rätzel et al., 2020). The normalized
gene expression data were clustered and significant clusters were
determined with the help of the Simprof algorithm (Clarke
et al., 2008) as provided by the clustsig package (Whitaker and
Christman, 2014). Expression patterns were visualized in the
form of a heatmap generated by the heatmap.2 function, provided
as part of the gplots package (Warnes et al., 2016). Changes in
gene expression over time were visualized by multidimensional

scaling based on Euclidean distance (Gower, 1966) with the
help of the cmdscale function provided as part of the stats
package v3.5.1 (R Core Team., 2016). Petri nets were constructed
from single cell trajectories of gene expression as previously
described (Rätzel et al., 2020). Each trajectory is a temporal
sequence of gene expression states, where each state corresponds
to a Simprof significant cluster. Petri nets specified in ANDL
format (Abstract Net Description Language) (Heiner et al., 2013)
were imported into Snoopy (Rohr et al., 2010) and graphically
displayed by running the Sugiyama layout algorithm (Sugiyama
et al., 1981). Petri net places, each representing a gene expression
state, were colored according to the relative temporal stability
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of the expression state or according to the relative frequency
with which each gene expression state occurred. Petri net
transitions, corresponding to transits between states were colored
according to the frequency with which each transit occurred
or according to the data subset in which the transit occurred.
These parameters were computed and coloring was performed
by automatic editing of Snoopy files encoded in xml format,
again with the help of a R script. The raw data and the complete
computational pipeline used in this study is provided as part of
the Supplementary Material.

RESULTS

Even Large Plasmodia Provide a Source
of Homogeneous Cell Material for True
Time Series Analysis of Gene Expression
In previous studies we have shown that the gene expression
pattern in samples taken at the same time from different sites
of a plasmodium covering a standard Petri dish (9 cm Ø) did
not change within the limits of accuracy of the measurements.
Accordingly, repeated sampling of the same plasmodial cell yields
true time series (Rätzel, 2015; Werthmann and Marwan, 2017).
To allow more samples to be taken without consuming too much
of the plasmodial mass, we now prepared plasmodia on 14 cm Ø
Petri dishes, increasing the surface area covered by the plasmodial
mass by 2.4-fold, and took smaller samples by punching agar
plugs of 1.13 cm2 per sample, to harvest a small portion of the
initial total plasmodial mass. To test whether the homogeneity in
gene expression is impaired or even lost in the larger plasmodia,
we took 9 or 16 samples at the same time from approximately
evenly spread sites of a plasmodium, and estimated the gene
expression pattern twice in the RNA of each sample, to obtain
one technical replicate of each measurement (Aselmeyer, 2019;
Driesch, 2019). This allowed to estimate the biological variation
in gene expression within a plasmodium as compared to the
technical accuracy of the measurements. In order to correct for
potential differences in the efficiency of the RT-PCR between
reactions, the expression value for each gene was normalized to
the median of the expression values of all genes measured in the
sample (for details see Materials and Methods). To estimate the
technical accuracy of the measurements, the relative deviation
of first and second measurement from the mean of the two
measurements was estimated for each assayed gene in each of the
retrieved plasmodial samples. The frequency distribution of all
values was almost symmetrical with a tail consisting of a small
number of low values, obviously as a result of inefficient RT-
PCR reactions. To estimate the degree of homogeneity in gene
expression within a plasmodial cell, we asked to which extent
the expression values for the 9 or 16 samples taken from the
same plasmodium deviated from their median. To restrict the
influence of technical artifacts on the result, we considered the
subset of the data where first and the second measurement of the
same plasmodial sample deviated not more than two-fold from
the mean of the two values. In three of the total of 46 analyzed
plasmodia (30 far-red stimulated; 16 dark controls), individual

samples deviated from the rest of the samples of the same
plasmodium by more than a factor of two. As errors in sample
preparation could not be ruled out, these three plasmodia were
excluded and the remaining data set of 43 plasmodia (28 far-red
stimulated; 15 dark controls) was analyzed taking the mean of 1st
and 2nd measurement for each gene in each sample. Among the
total of 7160 values, 98% of the symmetric frequency distribution
(Supplementary Figure 1) were between 0.48- and 2.10-fold
deviation of the median of all values of the respective plasmodium
(Supplementary Table 1). There was no obvious difference
between dark controls and far-red stimulated plasmodia which
were measured at 6 h after the light pulse when genes were
already differentially regulated (Supplementary Figure 1 and
Supplementary Table 1), indicating that even during the period
where the mRNA abundance changed in time, the homogeneity
in gene expression levels is maintained. Visual inspection of
outliers within the distribution did not reveal any candidates for
specific genes that might be inhomogeneously expressed.

In summary, the gene expression values throughout a
plasmodium deviated not more than approximately two-fold
from the median of all samples from the same plasmodium
and were thus within the limits of the technical accuracy of
the measurements, even under conditions were genes were in
the process of being up- or down-regulated. These differences
measured between samples were minor as compared to the
differential regulation where the expression level of genes
changed in the order of ten to more than hundred-fold
(Supplementary Figure 2). These results are consistent with
the results of the time-series experiment, where for each time
point, two samples were retrieved and analyzed from the same
plasmodial cell (see below).

Sampling of Plasmodia at 1 h Time
Interval
As the assayed genes were evenly expressed and changed evenly
in time throughout the large plasmodia, at least within the limits
of accuracy of the measurements, we took time series at 1 h
time intervals. In order to assay, in each experiment, for the
homogeneity and synchrony in gene expression throughout the
plasmodium, we took two samples at each time point from
different, arbitrarily chosen but distant sites of the plasmodium
(Figure 1). In far-red stimulated plasmodia, the first samples
(referred to as the 0 h samples) were taken at the start of the
experiment, i.e., immediately before application of the 15 min
pulse of far-red light. All subsequent samples were taken at 1 h
time intervals until 10 h after the start of the experiment [At 5
to 6 h after the far-red pulse cells have passed the commitment
point, while visible morphogenesis starts several hours later by
entering the transient nodulation stage at about 11 h after the
pulse (Hoffmann et al., 2012)]. In the dark controls, the far-red
stimulus was omitted. Gene expression in each plasmodial sample
taken at a given time point was analyzed twice by GeXP-RT-
PCR, where the measurement and the corresponding technical
replicate are referred to as 1st and 2nd measurement for sample
#1, and 3rd and 4th measurement for sample #2, respectively.
Data were normalized as described above.
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The technical quality of the measurements was estimated
separately for the two data sets, each comprising the data of
the samples collected at the 11 time points of the time series.
For each plasmodial sample, the relative deviation of the two
measurements (1st and 2nd, or 3rd and 4th) from the mean of the
two measurements was estimated. The frequency distributions of
the deviations and corresponding quantil values indicated that
the technical qualities of 1st and 2nd, as well as 3rd and 4th
measurement were virtually identical with 95% of the values
differing less than a factor of two from each other (Figure 2 and
Table 1).

The degree of spatial variability of gene expression within a
plasmodium was estimated by combining the data sets for the first
and the second sample of a plasmodium taken at each time point
of the time series. The frequency distribution of the deviation
of each measurement from the mean of 1st, 2nd, 3rd, and 4th
measurement of the two samples taken from each plasmodium
at any time point was virtually identical to the frequency
distributions obtained for the technical replicates, indicating
that gene expression within the analyzed plasmodia varied at
maximum within the limits of accuracy of the measurements
(within a factor of 2 in 95% of the samples). This conclusion
is based on the comparison of the quantile distributions of
the data sets (Figure 2 and Table 1) considering a total of
36,540 data points.

Multi-Dimensional Scaling Analysis
With this data set, we investigated how expression changes as
a function of time in the individual plasmodial cells. The gene
expression pattern of a plasmodial cell at a given time point
was obtained as the mean of the four expression values of
each gene measured in the two plasmodial samples picked at
that time point.

For visual representation of the data set and of single-cell
trajectories of gene expression, we performed multidimensional
scaling (MDS) to obtain a data point for the expression pattern
of each cell at each time point. Single-cell trajectories of gene
expression are shown in Figure 3. Notably, the gene expression
patterns of un-stimulated cells (dark controls) changed as a
function of time with the highest variability along coordinate 2
of the MDS plot Figures 3A,B. Trajectories of far-red stimulated
cells (Figures 3C,D) moved from the left side to the right side
of the plot, while the shape of individual trajectories varied
to a certain extent, indicating that the response of the cells
was similar though not identical. Obviously, the trajectories of
six of the eight far-red-stimulated plasmodia of experiment #1
traversed a considerably larger area of the MDS plot (Figure 3C)
as compared to the other stimulated cells, indicating a larger
variation in gene expression during the response to the stimulus.
The extent of variation is accordingly obvious when the bulk of
data points is placed in the same plot (Figure 4A). To search
for genes that may account for the scattering along coordinate
2, we visually inspected the individual time series displayed in the
form of a heat map (Supplementary Figure 2). In addition to the
genes that were clearly up- or down-regulated in response to the
stimulus, the messages of four genes, hstA, nhpA, pcnA, and uchA,

FIGURE 2 | Technical accuracy of measurements and homogeneity of gene
expression within a plasmodial cell as determined by technical and biological
replicates, taken in experiments #1 and #2 (Table 2). (A,B) Technical
accuracy of measurements of gene expression. The concentration of the
mRNAs of the set of 35 genes (Supplementary Table 2) was determined
twice by RT-PCR for each RNA sample. The frequency distributions display
the Log2 of the x-fold deviation of each expression value of each gene from
the mean of the two values obtained by technical replication. Panels (A,B)
show the results obtained for each of the two biological samples [(A), sample
#1; (B), sample #2], that both were simultaneously taken from the same
plasmodial cell at any time point during the experiments. (C) Combination of
the data sets shown in panels (A,B). This frequency distribution shows the
deviation of each measurement from the mean of four values, obtained by
twice measuring each of the two biological samples simultaneously taken
from the same plasmodium at any time point of the experiments. The figure
represents the complete data set of 36,540 data points that was analyzed in
the present study.
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TABLE 1 | Quantil distributions of the x-fold deviation (x) of a value from the mean of two or four values, characterizing the reproducibility of measurements as estimated
through technical and biological replicates, respectively.

Measurements 1st and 2nd 3rd and 4th 1st to 4th

Percent of values Quantile (Log2 (x)) Quantile (x) Quantile (Log2 (x)) Quantile (x) Quantile (Log2 (x)) Quantile (x)

1% −1.308 0.404 −1.383 0.383 −1.349 0.392

5% −0.555 0.681 −0.592 0.663 −0.574 0.672

25% −0.169 0.890 −0.169 0.890 −0.169 0.890

50% −0.010 0.993 −0.008 0.995 −0.009 0.994

75% 0.137 1.100 0.142 1.103 0.139 1.101

95% 0.414 1.333 0.415 1.334 0.415 1.333

99% 0.750 1.682 0.746 1.677 0.747 1.679

The table quantitatively characterizes the frequency distributions shown in Figure 2.

in the following called pcnA-group genes, changed over time
in some of the plasmodia, but there was no obvious consistent
relationship to the time point of stimulus application. When
only genes were included in the analysis that were clearly up-
or down-regulated in response to the stimulus (Supplementary
Figure 2, see also Figure 8), the data points of the MDS plot were
indeed less scattered (Figure 4B). A qualitatively similar result
was obtained plotting the up-regulated and the down-regulated
genes separately (Figures 4C,D), with some more variation in
the expression of the down-regulated genes. However, expression
of the pcnA-group over time (Figure 4E) was clearly different
from the up- or down-regulated genes. Expression of the pcnA-
group genes was different between cells from experiments #1
and #2 as seen from the trajectories of the cells (Supplementary
Figure 3), suggesting that ongoing internal processes in cells of
experiment #1 might even influence their response to the light
stimulus. Indeed, according to the corresponding MDS plots of
the bulk data points (Supplementary Figure 4) the response of
the up- and down-regulated genes was less uniformly in cells of
experiment #1 (Supplementary Figure 4C) as compared to those
of experiment #2 (Supplementary Figure 4D).

Construction and Graph Properties of
Waddington Landscape Petri Nets
For a further analysis, we performed hierarchical clustering of the
expression data for all assayed 35 genes, differentiation marker
and reference genes (Supplementary Table 2), and identified
significantly different clusters of expression patterns with the help
of the Simprof algorithm (Clarke et al., 2008; Supplementary
Figure 5). The temporal sequences of gene expression patterns
classified as Simprof significant clusters defined a trajectory for
each individual cell and revealed significant differences between
cell trajectories (Table 2). To relate gene expression states and
trajectories we constructed a Petri net (bipartite graph) as
previously described (Werthmann and Marwan, 2017; Rätzel
et al., 2020), by representing each gene expression state by a
place and the temporal transit between two states by a transition
(Figure 5). A single token marking one place of the Petri net
indicates the current gene expression state of a cell. The token
moves from its place to a downstream place when the transition,
connecting the two places through directed arcs, fires. As each

transition is connected to exactly two places (one pre-place and
one post-place), tokens are neither formed nor destroyed when
moving through the net, so the gene expression state of the cell
remains unequivocally defined at any time. The coherent Petri net
obtained this way represents a state machine predicting possible
developmental trajectories in terms of Markov chains of gene
expression states (Rätzel et al., 2020).

The basic modeling principles are summarized in Table 3. We
observe the following structural properties of the model which we
call ‘Waddington landscape Petri net’:

• Each transition has exactly one pre-place and one post-
place.

• There are places having more than one post-transition.
These post-transitions are in conflict. But, because every
transition has exactly one preplace, each conflict is a free
choice conflict, meaning the token is free to choose which
route to take, predicting a corresponding free choice for the
cell (see Discussion).

• There are places having more than one pre-transition, i.e.,
alternative paths may re-join. Thus, the Petri net structure
does not form a tree.

• There are cycles: a cell may switch back to previous states
or oscillate between states as defined by the expression
patterns of the set of observed genes.

For technical reasons we add immediate transitions starting
alternative trajectories, in order to get a statistical distribution of
states in which the experiments have started or will start with a
given probability.

In contrast to most state-of-the-art pseudo-time series
approaches found in the literature (Saelens et al., 2019), the
structure of the Waddington landscape Petri net is not restricted
to a partial order, meaning it is neither restricted to a directed
acyclic graph nor to a tree. Instead we obtain what is known
in Petri net theory as ‘state machine,’ also called in other
communities ‘finite state machine’ or ‘finite automata,’ which
may involve cycles.

A state machine with one token and its reachability graph,
or Markov chain for stochastic Petri nets, are isomorph (i.e.,
have the same structure, there is a 1-to-1 correspondence);
to put it differently: our (stochastic) Petri net represents the
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FIGURE 3 | Single cell trajectories of gene expression displayed after multidimensional scaling (MDS) of the expression patterns. Panels (A,B) show the trajectories
of unstimulated cells of experiment #1 and experiment # 2, respectively. Panels (C,D) show the trajectories of far-red stimulated cells of the two experiments. Each
data point represents the gene expression pattern of a cell at a given time point at 1 h time intervals. The start position (0 h) of each trajectory is encoded in pink and
the endpoint (10 h) in red. The number displayed in each subpanel refers to the ID number of the plasmodial cell (P1 to P24) as listed in Table 2. All cells of the dark
controls did not sporulate while all far-red irradiated cells sporulated. All plots are displayed at the same scale.
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FIGURE 4 | Gene expression patterns of all analyzed cells displayed for
different sub sets of genes. Multidimensional scaling was performed for the
complete set of 35 genes (A), the subset of the up- and the down-regulated
genes (B), or exclusively for up-regulated (C), down-regulated (D) or the
pcnA-group of genes (E). Each data point represents the expression pattern

(Continued)

FIGURE 4 | Continued
of an individual cell at a given time point. Time is encoded by color (0 h, pink;
1 h, 2 h, black; 3 h, 4 h, blue; 5 h, 6 h, green; 7 h, 8 h, ocher; 9 h, 10 h, red).
Developmental destiny, cell number (as assigned in Table 2), and time is given
for each data point. The label + P12_1 h, for example, indicates that the data
point refers to the expression pattern of plasmodium number 12 as measured
at 1 h after the start of the experiment (corresponding to the onset of the
far-red light stimulus in light-stimulated cells) and that the plasmodium had
sporulated (+) in response to the stimulus (+, sporulated; -, not sporulated).
The percent of variance is given for each coordinate.

Markov chain of states the cells assume in the course of
their developmental trajectory and accordingly on their walk
through the Waddington landscape. We assume that the Petri
net represents the corresponding region of the Waddington
landscape predicting possible developmental paths a single cell
can follow, which of course yields a state machine.

Representing Markov chains as Petri nets comes with a
couple of advantages.

First, Petri nets are equipped with the concept of T-invariants,
which belong to the standard body of Petri net theory from
very early on (Lautenbach, 1973). We consider T-invariants as
crucial in terms of biological interpretation of the generated
net structures (Sackmann et al., 2006; Heiner, 2009). The
computation of T-invariants is rather straightforward for state
machines; due to their simple structure it holds:

• each cycle in a state machine defines a T-invariant, and
• each elementary cycle (no repetition of transitions) is a

minimal T-invariant.

Second, modeling the differentiation-inducing stimuli,
what we have not done so far, would turn some of the
free choice conflicts into non-free choice conflicts, which
involves, technically speaking, leaving the state machine net
class. To unequivocally identify transits that are stimulus-
dependent, we need a higher data density which we will
hopefully achieve in one of our next experiments. With
stimulus-dependent transitions, the constructed Petri nets
and their Markov chains do not coincide anymore, instead
the Markov chains as well as the reachability graph are
directly derived from the Petri nets and may be analyzed by
standard algorithms. Finally, our Petri net approach paves
the way for the actual ultimate goal of our future work -
reconstructing the underlying gene regulatory networks
based on the reachability graphs encoded by the Waddington
landscape Petri nets.

Characterization of Petri Nets
Constructed From Gene Expression Data
Figure 6 displays a Petri net assembled from cell trajectories
considering the set of 35 genes. The graphical representation laid
out using the Sugiyama algorithm emphasizes the directionality
of concurrent processes (Sugiyama et al., 1981). The net indicates
that cells started in different states (connected to C0; see Legend
to Figure 5 for details) and, after stimulation by far-red light,
proceeded to a small set of terminal states (places C71, C76,
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FIGURE 5 | Construction of Petri nets from single cell trajectories of gene
expression. Petri nets are directed, bipartite graphs with two types of nodes,
places and transitions, that are connected by arcs (see symbols, lower right).
Petri nets are used in this work to model state machines, as exemplified in the
following. Any gene expression state of a cell, as defined by its assignment to
a Simprof significant cluster of gene expression patterns, is represented by a
corresponding place (drawn as a circle). Any transit between two states is
mediated by a transition (drawn as a rectangle). The current gene expression
state of a cell is indicated by one token which marks the respective place.
When a place contains a token, one of its post-transitions can fire to move the
token into its post-place. (A post-transition of a place is a downstream
transition which is immediately connected to that place, as indicated by a
directed arc). Because each transition of the Petri nets as they are used here,
has exactly one pre-place (one incoming arc) and one post-place (one
outgoing arc), and because all arc weights are one, tokens can neither be
produced nor destroyed, and the state of gene expression remains
unequivocally defined. A transit cycle, i.e., the ensemble of reactions that
bring a subsystem back to the state from which it started, is called
transition-invariant (T-invariant) (Sackmann et al., 2006). The arcs that
contribute to the T-invariant of the Petri net displayed in the figure are
highlighted in blue. Petri nets, as they are used in this paper, contain one
additional place C0, which does not represent a gene expression state. For
simulation, C0 defines the initial gene expression state of the cell by randomly
delivering its token to one of the places that are connected to C0 through
so-called immediate transitions (filled in black) that fire immediately when the
simulation starts [for details see (Rätzel et al., 2020)]. Connection to C0 also
graphically highlights the places representing those gene expression states in
which cell trajectories started. In the example shown, the cell trajectory started
in a gene expression state assigned to Simprof cluster C1. The token can
move to C2 where it randomly moves to either C3 (a terminal state in this
example) or to C4, from which it may return to C1 and possibly continue.

C77, C78, C79, C95) via multiple, more or less highly connected
intermediate states. To facilitate the interpretation of the Petri
net, we have colored the places and transitions according to
different criteria. In Figure 6A, the transitions being specific
to cells of experiments #1 or #2 and for dark controls or
light-stimulated cells in the respective experiments, are colored

differently. Each place is colored according to the relative
frequency of its corresponding gene expression state, indicating
that some states occurred more frequently than others. From this
representation it is obvious that cells of experiments #1 and #2
form different branches, in part projecting onto different terminal
states, reflecting accordingly different developmental trajectories
to commitment and sporulation. Figure 6B displays the same
Petri net, but with a different color coding. Here, transitions are
colored according to how frequent the corresponding transits
occurred, indicating that some paths were more frequently taken
than others. Places are colored according to their relative stability,
defined as the average residence time of a cell in the respective
state (see Methods for details). Coloring indicates that cells
reached a terminal state through states of different stability, e.g.,
meta-stable intermediates.

Un-stimulated cells (Table 2, dark controls) spontaneously
switched between significantly different states of gene expression.
Their trajectories gave three disconnected Petri nets (Figure 7A;
the three nets were connected to C0 for technical reasons, see
legend to Figure 5).

Petri nets of Figures 6A,B, 7A indicate that the expression
pattern in both, stimulated and un-stimulated cells developed
predominantly in forward directions while there were some
transits back to previous states creating so-called transition-
invariants (T-Invariants; Figure 5). We asked whether stimulus-
independent temporal expression differences like those observed
in the subset of the pcnA-group of genes might have added to
this directedness. Therefore, we constructed a Petri net from
trajectories based on significant clusters, this time exclusively
clustering the subset of up- and down-regulated genes. Basic
features found in the Petri nets of up- and down-regulated
genes were similar to the ones found in the Petri nets for the
full set of 35 genes: Trajectories formed parallel main branches,
there were intermediate nodes of different stability, of different
connectedness, and hence states that occurred with different
frequency (Supplementary Figure 6). In contrast, there was
a high number of minimal T-invariants that heavily involved
places representing gene expression states that occurred in un-
stimulated cells. A Petri net built by considering only transits
that occurred in un-stimulated cells (Figure 7B) was nearly
covered with T-Invariants, indicating spontaneous, reversible
alterations in the expression of up- and/or down-regulated genes.
Again, states of gene expression displayed different stability.
Considerable variation in the expression level of the up-and
down-regulated genes is even most obvious from the heat map
of initial states from which trajectories emerged and of terminal
states that were observed during the experiment (Figure 8). The
high density of T-invariants in the un-stimulated cells suggests
that similarly, the T-invariants involving places corresponding to
light-stimulated cells are due to gene expression changes that do
spontaneously occur before cells are caught by a new attractor
formed in response to the far-red stimulus (see Discussion).

Figure 7 also shows that selecting sets or subsets of genes for
hierarchical clustering and subsequent Petri net construction may
yield Petri nets of different structure delivering accordingly non-
redundant information on corresponding subsets. This is also
shown in Table 4 for the set of 35 genes and for subsets, the
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down-regulated, up-regulated, down- and up-regulated, and the
pcnA-group of genes. Except for the pcnA-group, the number
of places per gene was approximately the same. The number
of transitions per gene however became less with more genes
considered. This suggests that up-regulation, down-regulation
and even expression of the pcnA-group of genes are at least partly
coordinated or co-regulated processes. The average number of
minimal T-invariants per gene compared for the different groups
of genes (Table 4) suggests that reversibility observed for the
subsets vanishes when more genes are considered, obviously due
to combinatorial effects.

Single Cell Trajectories Reveal
Qualitatively Different Patterns in
Differential Gene Regulation
We have argued that Petri net modeling disentangles the
complex response of cell reprogramming (Rätzel et al., 2020)
and predicts feasible developmental pathways through the
Waddington landscape, resulting in significantly distinct single
cell trajectories. To reveal similarities and differences of the
expression kinetics of individual genes, we plot the geometric
mean of the concentration values of the mRNA in a cluster

TABLE 2 | Single cell trajectories of gene expression.

Experiment Cell 0.0 h 1.0 h 2.0 h 3.0 h 4.0 h 5.0 h 6.0 h 7.0 h 8.0 h 9.0 h 10.0 h

Exp #1, Dark P1 60 56 59 26 35 34 34 28 28 32 31

Exp #1, Dark P2 57 57 60 63 35 35 35 14 32 32 32

Exp #1, Dark P3 59 56 26 36 34 34 28 13 31 32 32

Exp #1, Dark P4 37 37 37 33 28 28 28 15 29 30 30

Exp #2, Dark P5 24 52 52 52 49 52 52 52 48 47 48

Exp #2, Dark P6 25 45 45 44 44 43 43 21 7 5 1

Exp #2, Dark P7 3 3 3 11 12 63 63 60 60 26 61

Exp #2, Dark P8 46 45 45 42 42 42 43 21 7 6 1

Exp #1, Far-red P9 33 23 27 16 101 111 105 87 88 70 79

Exp #1, Far-red P10 36 23 27 16 88 111 105 89 80 75 78

Exp #1, Far-red P11 10 53 54 54 15 98 100 89 91 93 71

Exp #1, Far-red P12 53 55 54 54 15 100 100 89 91 92 71

Exp #1, Far-red P13 8 4 4 12 53 69 69 68 66 65 95

Exp #1, Far-red P14 22 4 2 9 53 69 69 68 66 65 95

Exp #1, Far-red P15 22 4 2 9 96 96 69 67 64 94 95

Exp #1, Far-red P16 62 55 58 54 97 99 89 90 93 75 78

Exp #2, Far-red P17 50 40 45 19 104 103 105 87 82 72 79

Exp #2, Far-red P18 51 41 25 19 104 102 110 85 81 72 77

Exp #2, Far-red P19 20 20 20 17 18 102 109 83 82 72 77

Exp #2, Far-red P20 44 40 45 19 103 108 110 84 82 73 77

Exp #2, Far-red P21 51 39 45 19 103 106 110 84 82 74 76

Exp #2, Far-red P22 52 39 45 19 103 107 110 86 81 73 76

Exp #2, Far-red P23 46 39 45 19 103 107 110 86 81 73 77

Exp #2, Far-red P24 24 38 45 19 104 108 110 84 81 74 77

Trajectories are displayed as temporal sequences of gene expression states. Each state is given by the cluster ID number to which it was assigned by the Simprof
algorithm. The two experiments, Exp #1 and Exp #2, were performed on two different days, respectively, with the same strain (LU897 × LU898) and under virtually
identical experimental conditions. All cells of the dark controls did not sporulate while all far-red irradiated cells sporulated.

TABLE 3 | Terminology, basic modeling principles, and Petri net elements.

Place Cellular state as defined by a significant cluster of gene expression patterns.

Transition Transit, i.e., reprogramming step as defined by a discrete change in the state of gene expression.

Source place (no
predecessor node)

The cellular state in which an experiment (recording of a time series) starts. There can be various source nodes, depending on the particular
state in which a cell is in the moment when the experiment starts.

Sink node (no
successor node)

Place with no outgoing arc, indicating a terminal state of gene expression reached at the end of the experiment. There can be multiple sink
nodes.

Conflict Forward branching places modeling bifurcation.

Token The token indicates the cell and its current gene expression state; there is always just a single token.

Path A single path from a source node to a sink node represents a possible developmental trajectory of a single cell. But a trajectory may not
necessarily involve a source node and/or a sink node.

Petri net The entire Petri net gives, for the genes analyzed, that part of the Waddington landscape through which cells passed and accordingly all
corresponding developmental trajectories a single cell may undergo.
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FIGURE 6 | Two copies of the same Petri net, automatically constructed from the single cell trajectories of gene expression as displayed in Table 2. Places and
transitions in the two nets were colored according to different criteria. Arcs as part of T-invariants are highlighted in blue. (A) As indicated by the rainbow color key,
places are colored according to the relative frequency with which respective gene expression states occurred in the data set. Transitions are colored according to
whether corresponding transits occurred in experiments #1 or #2, and whether cells were far-red stimulated or un-stimulated (dark controls), respectively, as
indicated by the panel lower right. (B) Places are color coded according to the relative stability of the states of gene expression they represent. This relative stability
indicates how long a cell on average resided in a certain state. The color of transitions indicates, in absolute numbers, how frequent a corresponding transit occurred
in the data set.

logarithmically, normalized to its concentration at the start of
the experiment (t = 0 h) as a function of time for any single
cell trajectory. In this kind of plot, the time course of the
mRNA of each gene starts at the same point, while the slope
of the curve indicates the x-fold change in mRNA abundance
over time. Plotting subsets of genes suggests that trajectories
through different regions of the Petri net of Figure 6 indeed
emerge from qualitatively different expression kinetics, and that
genes are also differently regulated relative to each other when
different trajectories are compared. In the example shown in
Figure 9, pldA is early up-regulated in quite a number of
trajectories, followed by pwiA and finally by ligA and rgsA

that appear strongly correlated at least in some of the plots.
Qualitatively different patterns of regulation relative to each other
are also evident for the three phospholipase D-encoding genes
(Supplementary Figure 7). The pldA gene is up-regulated while
pldB and pldC are down-regulated. In some of the trajectories,
the initial change in the concentration of the pldA and pldC
mRNAs is inverse as compared to the overall time course.
A more comprehensive representation with more genes displayed
makes similarities and differences between trajectories even
more obvious (Supplementary Figure 8). Here, we observe
a phenomenon, which is also seen in Table 2, namely that
cells remain in a certain state for some time. This occurs
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FIGURE 7 | Petri nets constructed for different sets of genes from the gene expression trajectories of un-stimulated cells. (A) Trajectories considering the complete
set of 35 genes yield three disconnected Petri nets containing a low number of T-invariants (as indicated by arcs highlighted in blue). (B) When only those genes are
considered that are up- or down-regulated in response to far-red stimulation (omitting the pcnA-group of genes), the trajectories of un-stimulated cells give one
coherent Petri net which is almost covered with T-invariants. Color coding of places indicates the relative frequencies of states of gene expression in un-stimulated
cells. Differences in gene expression patterns of un-stimulated cells between the cells of experiment #1 and #2 are indicated by the appearance of
experiment-specific transits and accordingly differently colored transitions.

predominantly in the unstimulated cells but is also seen in some
of the light stimulated cells, e.g., in those that proceed to state
C95 (Figures 6A,B). Cells seemingly are trapped in a meta-
stable state (e.g., C96, C69, C100, etc.; Figure 6B) for some time
until the developmental program proceeds. We presumably will
need more data to see whether this is an artifact which occurs
by the discretization of gene expression through clustering.
Conversely, discretization might help to identify tipping points
for the differential regulation of gene expression as the plots in
Supplementary Figure 8 suggest.

DISCUSSION

We have analyzed the gene expression dynamics in response to a
differentiation-inducing stimulus pulse in true time by repeatedly

taking samples of large, multinucleate plasmodial cells. Control
experiments have demonstrated that the gene expression patterns
in samples simultaneously retrieved from different sites of a
large plasmodial cell did not deviate within the range of the
technical accuracy of the measurements. This again confirms that
the plasmodial cytoplasm, at least at the level of macroscopic
sampling, can be considered as a homogeneous reaction volume.

The injuries caused by multiple sampling of a plasmodial
cell heal spontaneously and cutting the plasmodial mass neither
induces nor prevents sporulation (Starostzik and Marwan, 1994,
1995b, 1998; Rätzel and Marwan, 2015). This is also confirmed
for the large plasmodia used in this study through the dark
controls that did not sporulate (Table 2 and Supplementary
Figure 1), while the far-red light induced plasmodia sporulated.
The changes in gene expression patterns observed in the dark
controls seem to be spontaneous and not caused by repeated

Frontiers in Genetics | www.frontiersin.org 12 January 2021 | Volume 11 | Article 612256

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-612256 December 24, 2020 Time: 17:12 # 13

Pretschner et al. Regulatory Dynamics of Cell Differentiation

FIGURE 8 | Heat map visualizing the variability of initial and terminal states of gene expression. The initial states displayed in this panel are the start points of
trajectories of un-stimulated cells as listed in Table 2. The terminal states are endpoints of trajectories of far-red stimulated cells corresponding to terminal places of
the Petri net of Figure 6. Color-coded expression values correspond to the logarithm to the base 10 of the geometric mean of all expression values of a respective
cluster with its ID number indicated on the right side of the panel. For clarity, expression of the pcnA-group of genes is displayed as a separate block.

sampling for the following reasons. First, plasmodia are in
different states of gene expression already at the start of the
experiments (Figure 8 and Table 2), i.e., at the moment before
the first sample is taken, so sampling cannot be the reason
for this heterogeneity. Second, the trajectories of unstimulated
cells developed in different directions although the sampling
procedure was the same in all of these cells (Figures 3A,B),
indicating that the shift in gene expression was not directed
with respect to the start of the experiment. Third, the Petri
net considering the differential regulation of the subset of light-
regulated genes, the expression of which changed to some extent
even in unstimulated cells, is almost completely covered with
T-invariants (Figure 7B), indicating no directed change in the
expression of this set of light-regulated genes, neither with
respect to the start of the experiment nor with respect to the
initial states in which the cells resided before the first sample
was taken. We cannot exclude that certain genes might be
differentially regulated in response to injury, e.g., genes involved
in membrane biosynthesis, as leaks in the membrane readily heal.
However, there seems to be no systematic effect on the differential
expression of the genes analyzed in the present study.

In contrast to a typical mammalian cell, which has a relatively
small cytoplasmic volume, while many genes are present in

two copies only, the plasmodial cell contains many millions of
nuclei. These nuclei are suspended in a large cytoplasmic volume
which continually mixes by the vigorous shuttle streaming. The
T-invariants in the Petri nets of Figure 7B and Supplementary
Figure 6 indicating the up- and down-regulation of genes were
due to changes in the mRNA concentration that occurred at
distantly located sites of the plasmodium at the same time.
Hence, it seems unlikely that these changes are stochastic gene
expression noise. Instead, the T-invariants, presumably do reflect
the (non-linear) dynamics of the system. Non-linear, switch-like
behavior, bifurcations, multistability, or oscillations all certainly
do have fundamental biological and functional implications, and
the T-invariant analysis of true single cell time series can help
to identify them.

Gene expression states of the cells were defined by hierarchical
clustering and discretized by assigning each gene expression
pattern to a Simprof significant cluster (Clarke et al., 2008; Rätzel
et al., 2020). Trajectories of subsequent discrete states were then
assembled into a state machine implemented as a Petri net. In the
Petri net, each gene expression state is represented by a place and
each transit between two states is represented by a transition.

The Petri net, as it has been defined in this and previous studies
depends on the data pre-processing by clustering of the data
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(Clarke et al., 2008; Werthmann and Marwan, 2017; Rätzel et al.,
2020). It models gene expression trajectories as Markov chains
(Gagniuc, 2017), which assumes that each subsequent state only
depends on the current state of a cell and not on its previous
states, i.e., it does not depend on the individual history of a cell.
This assumption is commonly made by computing pseudo-time
series from snapshots of individual mammalian cells (Bendall
et al., 2014; Shin et al., 2015; Haghverdi et al., 2016; Marr et al.,
2016; Street et al., 2018; Weinreb et al., 2018; Chen et al., 2019;
Setty et al., 2019). It follows the principle of parsimony in making
not more assumptions than necessary and giving the simplest
possible explanation for an observed phenomenon. Practically
this means that any path which a token can take through the
Petri net, by stochastic firing of the transitions, translates into
a feasible trajectory of an individual cell. Hence, firing of a
transition does only depend on the marking of the pre-place of
this transition and not on the identity of any upstream places
from which the token originally came. Defining the cell’s state of
gene expression by measuring more genes might well diversify
places and hence change the structure of the Petri net. This has
been demonstrated by constructing nets from subsets of genes. In
the examples provided, the structure of the Petri net changed and
the number of T-invariants increased drastically upon reduction
of the number of considered genes (Table 4).

If the structure of the Petri net does depend on the set of genes
analyzed, what is its actual value? The actual value is that it reveals
the behavior of states defined by sets or subsets of genes. Limiting
the analysis to the chosen subset of up- and down-regulated
genes, as we have done here, revealed extensive on- and off-
switching of the genes in unstimulated cells that are differentially
regulated in response to a differentiation-inducing stimulus. This
became immediately obvious through structural analysis of the
Petri net by determining the number of minimal T-invariants.
Displaying the net in Sugiyama representation revealed another
phenomenon with respect to this subset of genes. The light
stimulus caused directed development toward a small number of
terminal states reducing the overall number of alternative states
in which the cells resided. This suggests that a cellular attractor
is formed in response to the stimulus causing the commitment to
differentiation.

Coloring the transitions of the Petri net according to the
frequency by which transits occurred, allows identification and
visualization of main paths, i.e., paths which the system preferably
took. Coloring places according to the relative stability of the
states they represent indicated metastable states that were not
necessarily identical to highly connected places. Places having
many pre-transitions (many incoming arcs) represent states,
the system is likely to assume, like a corrie in the metaphor
of the Waddington landscape, through which the system will
pass. Places having many post-transitions (many out-going arcs)
represent branching points from which the system has multiple
options to proceed.

Our analysis has confirmed former observations (Rätzel
et al., 2020), now at considerably larger resolution in time,
that unstimulated cells spontaneously and reversibly change
their expression pattern. These changes involved the expression
of genes that are differentially regulated in response to a

differentiation-inducing stimulus. Spontaneous switching of gene
expression patterns is at least one reason why stimulated cells
started their way to commitment and differentiation from
quite different states, indicating substantial heterogeneity in the
population of cells. In other words, cells can start differentiation
while being in various different states. The differentiation-
inducing stimulus then collects or focusses these cells onto a
narrow set of states like an attractor of a dynamic system would
do. This phenomenon is graphically revealed by the funnel- or
cone-like appearance of the Petri net in the Sugiyama layout
(Supplementary Figure 6).

The response of a cell to a differentiation-inducing stimulus
seems to depend on the cell’s current internal state. Figure 6A
revealed distinct main branches (visible through transitions of
different color) for cells from experiment #1 as compared to
experiment #2, suggesting that the response of the cell in terms
of its developmental pathway did indeed depend on the initial
physiological or gene expression state in which the cell resided
while receiving the stimulus. The cells proceeded to slightly
different terminal states that however might belong to the same
cellular attractor.

One might be tempted to suspect a certain structure in the
list of subsequently recorded trajectories (Table 2). Changes in
the initial state of the plasmodia until the time of stimulus
application might have occurred as the experiment proceeded.
Similarities in subsequently recorded trajectories may be by
chance and we cannot draw any final conclusion because
the number of analyzed plasmodia is by far too low. With
more plasmodia analyzed and more genes measured, we might
discover that the individual history of a cell indeed matters,
meaning that the Markov assumption is wrong. Even if this
should be the case, the Petri net representation would still be
valid, however with the firing probability of certain transitions
depending on which path the token came from. Technically,
this dependency could be implemented in the form of a colored
Petri net. In this context it is trivial and at the same time

TABLE 4 | Number and relative frequency of places, transitions, and T-invariants
of Petri nets constructed for different subsets of genes (see legend to
Supplementary Figure 4) from the data of cells listed in Table 2.

Gene set Down Up Up and down All 35 pcnA etc.

Genes 10 10 20 35 4

Places 35 44 69 111 24

Transitions 105 114 144 159 59

P/Gene 3.5 4.4 3.5 3.2 6.0

T/Gene 10.5 11.4 7.2 4.5 14.8

Time points 11 11 11 11 11

Cells 24 24 24 24 24

P/(Genes × tps × cells) 0.013 0.017 0.013 0.012 0.023

T/(Genes × tps × cells) 0.040 0.043 0.027 0.017 0.056

T/P 3.00 2.59 2.09 1.43 2.46

T-Inv 4,413 1,371 1,063 7 732

T-Inv/Gene 441 137 53 0.20 183

P, places; T, transitions; tps, time points; T-Inv, T-invariants.
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FIGURE 9 | Gene expression kinetics as derived from single cell trajectories. Each panel represents the trajectory of one single cell as characterized by subsequent
states of expression of the same, arbitrarily chosen set of genes. For each gene, the logarithm to the base 10 of the geometric mean of the expression values of
each cluster was plotted against time. Plotting the geometric mean instead of individual expression values results in discretization of the data while comparing
different trajectories.
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important to note that the identity of a place (i.e., state) is always
defined by the set of genes that have been measured. Measuring
more genes might split any place into more places or even into
a separate Petri net with an increased overall number of places.
This holds not only for states defined by gene expression but
also for cellular states defined by the covalent modification of
proteins, etc.

We have previously argued that the Petri net depicts aspects of
the topology of the Waddington landscape (Waddington, 1957;
Huang et al., 2009) with respect to and limited to the set of
observed genes (or measured molecular entities) (Werthmann
and Marwan, 2017; Rätzel et al., 2020). Then, the token in
the Petri net corresponds to the marble rolling down the
Waddington landscape as developmental processes unfold. Each
Petri net place represents, albeit implicitly, a significantly distinct
gene expression state. Despite this implicit representation, the
temporal information on each gene for each cell trajectory
is available and we have used this information to reveal
the temporal hierarchy of differentially regulated genes. The
Petri net representation disentangles accordingly the complex
gene expression response and identifies alternative regulatory
programs or routes. Using this information, the underlying
regulatory network can be inferred by applying appropriate
algorithms (Marwan et al., 2008; Durzinsky et al., 2011, 2013).
This is a possible next step to go.
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