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Abstract 

Metabolic remodeling is a key phenomenon in the occurrence and development of tumors. It not 
only offers materials and energy for the survival and proliferation of tumor cells, but also protects 
tumor cells so that they may survive, proliferate and transfer in the harsh microenvironment. This 
paper attempts to reveal the role of abnormal metabolism in the development of lung cancer by 
considering the processes of glycolysis and lipid metabolism, Identification of the molecules that are 
specifically used in the processes of glycolysis and lipid metabolism, and their underlying molecular 
mechanisms, is of great clinical and theoretical significance. We will focus on the recent progress in 
elucidating the molecular mechanism of metabolic remodeling in lung cancer. 
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Introduction 
Lung cancer (LC) is one of the most prevalent 

cancers and is the leading cause of cancer-related 
death worldwide. LC patients have low survival rates 
[1-2] with 56.2% of patients at stage III-IV at initial 
diagnosis; the five-year survival rate of LC is only 15% 
[3]. The poor prognosis of LC is due to the difficulty in 
early diagnosis and the current poor understanding of 
the mechanisms underlying LC. Metabolic 
remodeling has been widely accepted as the basis for 
novel tumor biomarkers [4]. Tumor cells, including 
LC cells, exhibit abnormal energy metabolism and 
significantly upregulated endogenous fatty acid 
metabolism. This upregulated metabolism, which is 
significantly different from the metabolism of normal 
cells, is called metabolic remodeling or reprograming. 
Metabolic remodeling takes place from the outset and 
throughout the development of LC, playing an 
important role in the evolution of LC [5].In this 
following sections we will explain metabolic 
remodeling and its importances from glycolysis 
metabolism and endogenous fatty acids metabolism 

in LC.  

Active glucose metabolism in lung cancer 
The significance of glycolysis 

One century ago, Otto Warburg postulated that 
tumor cells still depend on glycolysis to produce 
adenosine triphosphate (ATP) when there is sufficient 
oxygen supply [6]. Warburg speculated that this 
apparent aerobic glycolysis (termed the Warburg 
effect) might be related to impairment in the 
mitochondrial function of tumor cells [7]. Generally, 
glycolysis is inferior to aerobic oxidation in terms of 
energy efficiency, the end product of aerobic 
glycolysisis lactic acid, which is fatal to cells. 
Therefore, some scholars regard aerobic glycolysis as 
a biological characteristic of tumor cells [8-9]. 
However, glycolysis not only offers energy quickly in 
the case of mitochondrial damage and anoxic 
conditions [10], but can also force tumor cells to 
absorb abundant glucose to provide materials for 
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lipid metabolism, nucleic acid metabolism and amino 
acid metabolism [11]. The abundant intake of glucose 
by tumor cells, including LC cells, hinders nutrient 
supply to adjacent normal cells. Glycolysis can also 
induce deoxyribonucleic acid (DNA) mutation and 
the production of peroxide, both of which are 
beneficial for the proliferation and transfer of tumor 
cells [12].  

There is still dispute over the mechanism 
underlying the Warburg effect. Warburg believed that 
the occurrence of a tumor is accompanied by 
mitochondrial damage; glycolysis plays an important 
role in energy metabolism [13]. However, other 
studies have demonstrated that aerobic oxidation is 
normal and even activated in some tumor cells [14], 
and most ATPs needed by tumor cells come from 
aerobic oxidation [15]. ATPs produced by glycolysis 
can account for 10-70% of ATP production in different 
tumors [16]. Even more intriguing is that most tumor 
cells can maintain growth by adjusting metabolism 
according to the microenvironment. For example, in 
hematological malignancy, primary and superficial 
tumor cells of solid tumors primarily utilize aerobic 
oxidation, while deep cells of solid tumors utilize 
glycolysis to gain energy due to the anoxic 
environment. The reliance of these cell subsets on 
different metabolisms can form a metabolic symbiont 
through the metabolic cooperation of the shuttle 
mechanism of lactic acids [17-18]. In a sense, the real 
significance of glycolysis is to provide intermediate 
products for other metabolisms [19].  

Normal lungs contain the highest oxygen 
content, while nearly 50% of oxygen is used to make 
lactate; however, oxygen is rarely used to make 
proteins and fatty acids [20]. Relative to other tissues, 
lungs consume more glucose and are the highest 
producers of glutamine. LC tissue exhibits increased 
glucose contribution to tricarboxylic acid cycle (TCA) 
cycle relative to normal lung tissue, while LC cells 
have different glycolysis rates and mitochondrial 
capacities. The metabolic phenotypes of LC cells can 
self-regulate based on the tissue environment [21]. 
The proportion of hypoxic cells is consistently low in 
non small cell lung cancer (NSCLC), and there is no 
significant correlation between hypoxia and glucose 
metabolism in NSCLC [22-23]. Recently, metabolic 
remodeling has also been found in fresh LC surgical 
tissues using Stable Isotope Resolved Metabolomics 
(SIRM) technology. These LC tissues showed 
increased levels of glucose-derived TCA cycle 
intermediates (e.g., lactic acid, alanine, succinic acid, 
glutamic acid) relative to normal lung tissue [24]. 
Further, overexpression of pyruvate carboxylase 
(PC) and pyruvate was found in LC cells compared to 
normal lung tissues [25]. In short, an increasing 

evidence that metabolic remodeling is profoundly 
activated during carcinogenesis and malignant 
progression in LC [26]. 

 Truncated TCA cycle and key molecules of 
glucose metabolism  

Aside from ATP, TCA provides abundant 
intermediate products for the proliferation of tumor 
cells. Several studies have reported that TCA meets 
the needs of cell proliferation and invasion rather than 
providing ATP [27]. Warburg speculated that 
impairment of mitochondrial function was related to 
abnormal expression of key enzymes on the 
respiratory chain, dysfunction of the electron 
transmission chain and abnormal expression of 
mitochondrial genes [28-29]. In some tumors, damage 
of the respiratory chain induces a rise of reactive 
oxygen species (ROS) content. ROS can inhibit the key 
enzyme aconitase in TCA and thereby cause 
accumulation of citric acid in mitochondria. Citric 
acid can be decomposed into acetyl-CoA and 
acetoacetic acid. Acetyl-CoA is the raw material for 
synthesis of cholesterol and fat, which is called the 
truncated TCA cycle [30]. The synthesized 
macromolecular substances are carried to the 
cytoplasm to participate in synthesis of lipids and 
proteins. Active glycolysis offers sufficient energies to 
NSCLC cells. Different NSCLCcells have different 
glycolysis levels.The key enzyme hexokinase 2 (HK2), 
phosphofructokinase (PFK), pyruvate kinase (PKM) 
and lactate dehydrogenase (LDH) have been reported 
to be overexpressed LC [31]. Inhibiting expression of 
glycolysis metabolic enzymes obviously suppressed 
LC cells proliferation via by the AKT signaling 
pathway [32]. 

The glycolysis level is related to apoptosis signal 
transduction. Disturbing glycolysis can significantly 
inhibit the malignant biological behavior of NSCLC 
cells [33]. Metabolic remodeling of LC is related to 
drug resistance of epidermal growth factor receptor 
tyrosine kinase inhibitor (EGFR-TKI) [34]. LC-driver 
genes (e.g. Kras and EGFR) can also lead to increased 
glucose metabolism in different modelling systems. 
Key drive gene mutant of LC cells exhibit increased 
glucose uptake [35]. The mutant Kras; p53fl/fl murine 
lung adenocarcinomas has similarities metabolic 
characteristics with human LC [36-37].KRAS 
mutations at codon-12 also had different metabolic 
remodeling and associated with different 
metabolomic profiles [38]. recent researches display 
increased glucose uptake and aerobic glycolysis of 
KRAS-induced LC, Enhanced aerobic glycolysis lead 
to LC cells extracellular matrix microenvironment 
changes, and the microenvironment can facilitate the 
occurrence and development of KRAS-induced LC 
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[39-41].Similar results were found in EGFR-driven LC, 
and tissue environment is an important determinant 
of tumor metabolic phenotypes [42]. 

Active pentose phosphate pathway 
To maintain their capacity for fast proliferation, 

tumor cells require not only ATP, but also genetic 
substances, a cytoskeleton, and functional proteins 
[43]. During culture of tumor cells without glucose, 
alternative pathways of phosphopentose still 
synthesize the necessary substances for proliferation. 
Intermediate products produced by glycolysis 
activate the pentose phosphate pathway (PPP) 
through glucose-6-phosphate dehydrogenase 
(G6PDH) or transketolase TKT [44-45]. The PPP that 
involves the catalyst, G6PDH, is the oxidative branch 
of PPP, while the PPP that involves the catalyst, TKT, 
is the non-oxidative branch of PPP. Products of 
glycolysis produce ribose 5-phosphate (R5P) through 
non-oxidative PPP, which is used in the synthesis of 
genetic substances. Meanwhile, PPP activation can 
induce abundant nicotinamide adenine dinucleotide 
phosphate (NADPH) and glutathione. NADPH can 
provide metabolic substrates and reducing 
equivalents for lipid metabolism and nucleic acid 
metablishm [46]. An increasing number of studies 
have confirmed NADPH oxidase activity and 
expression related to malignant biological behavior of 

LC, and inhibition of NADPH oxidase function 
downregulates the proliferative and invasion of LC 
[47-48]. NADPH oxidase can also supports glycolysis 
and promotes glutamine metabolism of LC [49].The 
glutathione metabolic system is directly participated 
in the metabolism of platinum drugs [50].NADPH 
and glutathione can both enhance anti-apoptosis in 
tumor cells and the PPP pathways of tumor cells in 
activated state. The activation of alternative pathways 
of phosphopentose plays an important role in the 
evolution of tumors (Fig. 1). 

Accelerated endogenous fatty acid 
metabolism in LC 
The regulation of endogenous fatty acids 
metabolism 

Fatty acids gained by normal cells from blood 
circulation are called exogenous fatty acids. 
Generally, exogenous fatty acids can meet the 
metabolic demands of normal cells, so normal cells 
(except liver, fatty tissue and breast tissue during 
lactation) rarely make de novo synthesis of fatty acids 
[51]. Researchers discovered more than 50 years ago 
that the fatty acids required for the proliferation of 
tumor cells come mainly from de novo synthesis [52]. 
Such fatty acids are also called endogenous fatty 
acids. Due to demands of tumor cells for malignant 

 

 
Figure 1. Metabolic Remodeling in lung cancer. Lung cancer cells consume large amounts of glucose via GLUTs and convert glucose to G6P, which involves in PPP 
metabolism and produced genetic substances, cytoskeleton and functional proteins. Pyruvate, a production by glucose, offers lactate for microenvironment and citrate for 
glycolsis. Lactate is excreted and absorbed through MCTs, and this phenomenon is known as lactic acid shuttle system. Citrate cannot participate in metabolism smoothly due 
to ROS inhibits a key enzyme (aconitase) activity in TCA. However, citrate participates in endogenous fatty acids metabolism. Some citrate is converted to malate and continues 
to participate in TCA. As a result, endogenous fatty acids metabolism offers lung cancer cells the energy for proliferation and invasion, and is regulated by three key regulatory 
enzyme, which are negatively regulated by SREBPs. G6P Glucose-6-Phosphate), MCTs (Monocarboxylate transporters), ROS (Reactive oxygen species), 
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proliferation, exogenous fatty acid cannot meet cell 
proliferation requirements and so tumor cells activate 
the metabolism of endogenous fatty acids. Therefore, 
most key enzymes involved in the metabolism of 
endogenous fatty acids in tumor cells, such as ATP 
citrate lyase (ACLY), fatty acid synthase (FASN) and 
acetyl-CoA carboxylase (ACC), become highly 
activated [53]. Fatty acids metabolic abnormalities 
could result in lung cancer. A meta-analysis included 
31 studies found that inverse correlation between 
excess body weight (BMI>25 kg/m2) and lung cancer 
incidence [54-55]. Another study has shown an 
association between total serum cholesterol (cut-off 
value; 5,3 mmol/L) and resectable NSCLC [56]. 
Cholesterol via releasing EGFR from lipid rafts 
increases EGFR signaling activity [57]. Endogenous 
fatty acids metabolisms were negatively correlation 
with EGFR expression and the fatty acids pathways 
may be valuable as a potential therapeutic target for 
lung adenocarcinoma [58].  

Metabolic substrates (e.g. Ac-CoA) of 
endogenous fatty acids are acquired from the 
decomposition of citric acids by ACLY, while citric 
acid is produced by a truncated TCA cycle. Ac-CoA 
produces malonyl-CoA (Mal-CoA) under the catalysis 
of ACC while 9 Mal-CoAs aggregates into 16-C 
palmitic acids under the catalysis of FASN. Palmitic 
acids form essential lipids of cells under the catalysis 
effect of other specificity enzymes [59]. ACLY is the 
bridge between glucose metabolism and lipid 
metabolism. In vivo and in vitro studies all prove the 
key role of ACLY in the evolution of tumor. High 
ACLY expression patients exhibited shorter life span 
than negative ACLY expression patients [60]. 
Inhibiting ACLY disturbs NSCLC proliferation and 
ACLY can mediate occurrence of LC by participating 
in the metabolism of endogenous fatty acids. ACLY 
might be a new target for LC treatment [61-62]. FASN 
is a key enzyme that catalyzes lipid synthesis and it 
has high expression in LC tissues [63-64].  

High expression of FASN is closely related to 
proliferation and anti-apoptosis capacity, invasion 
and metastatic capacity of LC cells, as well as 
prognosis [65]. ACC contains two subtypes (ACC1 
and ACC2). ACC1 is the first key enzyme that 
catalyzes the denovo synthesis of fatty acids. 
Mal-CoA produced by ACC2 can repress the entrance 
of fatty acids into mitochondria for β oxidation of 
fatty acids, thus coordinating synthesis of liver fatty 
acids with β-oxidation and ketone synthesis. 
Inhibiting deficiency of ACC might cause complete 
blocking of the pathway for synthesis of fatty acids, 
which reflects that the pathways of fatty acid 
synthesis in LC cells are strictly regulated by ACC 
genes [66-68] (Fig. 1). 

The rloe of endogenous fatty acids metabolism 
in LC 

Synthesized fatty acids have extensive functions. 
β oxidation of fatty acids can produce Ac-CoA which 
offers raw materials for TCA. Moreover, fatty acids 
also participate in cell proliferation directly [69]. The 
metabolism of endogenous fatty acids can also 
contribute to epithelial-mesenchymal-transition 
(EMT) regulation, thus influencing the invasive and 
metastatic capacity of LC cells [70]. Lipid signals, such 
as prostaglandin E2 (PGE2), lysophosphatidic acid 
(LPA) and sphingosine-1-phosphate (S1P), can collect 
macrophages and immune cells, and stimulate the 
production of tumor capillaries [71-72]. PGE2 can 
inhibit the activation of macrophages related to 
tumor, thus assisting tumor cells to escape from 
immunity monitoring [73]. Phospholipid is an 
important component of the cytomembrane and 
organelle membrane. Reduction of phospholipids can 
influence the bioelectricity transduction of organelles 
with membranes and cells. Besides, phospholipids 
participate in the acetylation of proteins and other 
protein modifications after translation. 
Phosphatidylinositol, phosphatidylserine and lecithin 
can form the lipid raft structure to promote the 
activation of growth factor and participate in the 
activation of important signal pathways, such as 
phosphoinositide 3-kinase (P13K)/protein kinase B 
(AKT), Ras and Wnt [74]. Multiple molecules can 
influence the activity of the metabolism of 
endogenous fatty acids. For example, sterol 
regulatory element binding proteins (SREBPs) are 
important transcription factors in sterol regulation 
and lipid synthesis and belong to one member of the 
basic helix-loop-helix (bHLH)-zip transcription factor 
family, with at least 3 spliceosomes (SREBP1a, 
SREBP1c and SREBP2). Under normal situations, 
SREBP and SREBP cleavage-activating protein (SCAP) 
form the composites in endoplasmic reticulum, and 
SREBP enters into the nucleus after cells are excited by 
stimulus signals. Meanwhile, the expressions of 
ACLY, ACC and FASN are regulated. Inhibiting 
pathways of lipid metabolism might be an alternative 
treatment for lung adenocarcinoma [75] (Fig. 1). 

The significance of endogenous fatty acids 
metabolism 

Tumor cells choose de novo synthesis of fatty 
acids at the cost of abundant valuable ATPs and 
metabolites. Such a metabolic approach gives LC cells 
traits of fast proliferation and invasion. Two different 
kinds of drive-gene mutant (KrasG12D;P53fl/fl and 
KrasG12D;LKB1fl/fl)mouse LC model have high rates of 
endogenous fatty acids metabolism [76], and the 
KrasG12D;LKB1fl/flLC model has higher rates of 
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endogenous fatty acids metabolism than 
KrasG12D;P53fl/fl[77].This reveals that activated 
metabolism of endogenous fatty acids provides key 
substances for LC. Many anti-tumor drugs targeted at 
key enzymes of lipid metabolism have been 
developed based on the reported active lipid 
metabolism in LC cells. The discovery of 
high-efficiency anti-tumor targets based on lipid 
metabolism may become an edge in designing tools to 
defeat LC. 

Molecular mechanism related to 
metabolic remodeling of LC 
PI3K/AKT/mTOR signal pathway and LC  

 PI3K/AKT/mTOR is a typical signal pathway 
which is the focus of most current research. It mainly 
receives extracellular RTK (e.g. EGFR1/2/3/4, 
PDGFR, VEGFR, IGF-1R and HERs) signals to activate 
intra-cellular PI3K signals. PI3K signals activate the 
second receptor and the second receptor binds with 
the PH structure of AKT to activate AKT. AKT 
activates mTOR by inhibiting the formation of 
TSC1/TSC2 composite and PRAS40, an important 
negative regulatory factor in this pathway [78]. mTOR 
participates in the transcription and metabolism of 
cell proteins by regulating many downstream factors, 
and thereby influencing cell growth and proliferation. 

It is reported in studies on LC that 50-73% of NSCLC 
patients have high expression of AKT and suffer poor 
prognosis [79-80], while 2-5% of NSCLC patients have 
mutations of PI3K and AKT. Moreover, 70% of 
NSCLC patients have an absence of the negative 
regulatory factor PETN of the PI3K/AKT/mTOR 
signal pathways, which further results in a poor 
prognosis [81-82]. PI3K/AKT/mTOR pathway also 
participates in the regulation of EMT and glycolysis of 
LC [83-84].  

Inhibiting the PI3K/AKT/mTOR pathway can 
inhibit NSCLC proliferation of TKI, indicating that 
interrupting the PI3K/AKT/mTOR pathway might 
be a treatment strategy for TKI drug resistance [85-86]. 
In summary, the PI3K/AKT/mTOR signal pathway 
participates in energy material metabolism, 
proliferation, autophagy, apoptosis and regulations of 
other biological functions of cells related to LC [87-90] 
(Fig. 2). 

MEK/ERK/AMPK signal pathway and LC 
Extracellular PTKs also can induce Raf activation 

when activating PI3K. The activated Raf then activates 
MEK, EPK and AMPK successively. Finally, the 
MEK/ERK/AMPK signal pathway is activated and 
participates in the occurrence and development of 
tumor cells. The MEK/ERK/AMPK signal pathway 
mainly perceives intracellular energy changes. Cells 
can activate AMPK automatically upon anoxia, 

ischemia, hunger and exercise. The 
activated AMPK can increase the supply 
of ATP and regulate the metabolic levels 
of glucose and lipids. Glycolysis 
inhibition sensitizes NSCLC with T790M 
Mutation to irreversible EGFR inhibitors 
via AMPK/mTOR/Mcl-1 pathway [91]. 
Therefore, AMPK is also regarded as the 
monitor of energy level changes [92-95]. 
According to studies on 3%-5% of NSCLC 
patients have mutation of BRAF [96] and 
some NSCLC patients have mutation of 
MEK, which could be used as the driving 
gene of NSCLC [97]. 

ERK can also participate in the 
formation of an inflammation 
microenvironment of LC cells [98]. The 
MEK/ERK/AMPK signal pathway can 
participate in the regulation of drug 
resistance to NSCLC [99], and its 
retardants have been applied to stage-II 
clinical studies [100]. MEK/ERK/AMPK 
pathway is important to the proliferation 
and apoptosis of LC cells [101-102] (Fig. 
2). 

 

 
Figure 2. Related molecular mechanisms of metabolic remodeling in lung cancer. 
PI3K/AKT/mTOR and MEK/ERK/AMPK signaling pathways are both involved in metabolic remodeling of 
lung cancer cells. And, the two signaling pathways are regulated by extracellular signals (e.g. GFs, 
hormones, cytokines) to activate cascade response. Importantly, the interaction of the two signaling 
pathways affects glycolysis, TCA cycle, PPP, endogenous fatty acids metabolism. Consequently, the 
aggressive biological behaviors of lung cancer cells are activated by metabolic remodeling. 
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Figure 3. Regulatory factors of metabolic remodeling in lung cancer. Metabolic remodeling in lung cancer include glycolysis metabolism and endogenous fatty acids 
metabolism. Many negative/ positive regulatory factors involved in glycolysis and endogenous fatty acids metabolism. 

 

Others molecular mechanisms for Metabolic 
Remodeling in LC 

Previous studies have found that some key 
molecules exerts its inhibitory effect in LC 
progression through down-regulating glycolysis, 
such as MiR-128 (inhibiting AKT) [108], MiR-512-5p 
(inhibiting p21) [109], MiR-133b (targeting PKM2) 
[110], MiR-449a (targeting LDHA) [111], p53 
(targeting RRAD) [112], Albendazole (inhibiting 
HIF-1α) [113], Resveratrol(inhibiting HK2) [114], 
Deguelin (inhibiting HK2) [115], FBP1 [116], 
Clotrimazole (targeting FDP) [117], Nerium oleander 
(targeting lactate) [118]. However, some other 
molecules have been reported to play a promotive 
effect in glycolysis and glutamine metabolism of LC, 
such as MiR-214 (targeting HK2) [119], NADPH 
oxidase 4 (NOX4) (targeting PI3K/AKT pathway) 
[120], α-enolase (targeting PI3K/AKT pathway) [121], 
LncRNA-CRYBG3 (targeting LDHA) [122], BarH-like 
homeobox 2 (Barx2) (targeting Wnt/β-catenin 
pathway) [123], Small ubiquitin-like modifier 1 
(SUMO-1) (targeting PKM2) [124], Uncoupling 
protein1/3 (UCP1/3) (targeting HK2 and PFK) [125]. 
Compared with normal lung tissue, endogenous fatty 
acids metabolism is significantly enhanced in LC 
tissue. And, a high level of endogenous fatty acids 
metabolism has been reported to have a closely 
association with poor prognosis of LC patients 
[126-127]. Recent studies have proven some key 
molecules that exert its inhibitory effect in 
endogenous fatty acids metabolism of LC, resulting in 
the suppression of LC malignant biological behavior. 
They are Genistein (inhibiting SCD1) [128], B7-H3 
(targeting SREBP1) [129], D561-0775(inhibiting 
AMPK) [130]. However, some other molecules were 
proven to exerts its promotive effect in endogenous 
fatty acids metabolism of LC, such as EGFR (targeting 

SCD1) [131], Autophagy [132], Myc (targeting COX 
and LOX pathway) [133], Squalene synthase 
(targeting TNFα) [134], PPARγ [135] (Fig. 3). 

Conclusions 
Researchers have recognized many tumor 

characteristics through fighting tumors and 
formulating targeted treatments according to these 
characteristics. Tumor evolution is the consequence of 
both internal and external factors. The complexity of 
this evolution process is comparable with that of 
human evolution. For example, the first tumor of lung 
cancer may show significant damages. Although early 
screening, chemoradiotherapy, targeted treatment 
and immunotherapy have increased the diagnostic 
efficiency of lung cancer significantly, most patients 
with lung cancer develop unexpected progression of 
disease after multiple treatments. However, it is 
exciting that we have now recognized the metabolic 
difference between tumor cells and normal cells. 
These research conclusions reveal the relationship 
between abnormal metabolism and tumor evolution. 
The current study reviewed the molecular 
mechanisms of glycolysis metabolism and 
endogenous fatty acids metabolism of lung cancer, 
and offer a new opportunity for targeted tumor 
treatments. 
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