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Abstract 

Background: Human multiple myeloma (MM) cell lines (HMCLs) have been widely used to understand the 
molecular processes that drive MM biology. Epigenetic modifications are involved in MM development, 
progression, and drug resistance. A comprehensive characterization of the epigenetic landscape of MM would 
advance our understanding of MM pathophysiology and may attempt to identify new therapeutic targets.  
Methods: We performed chromatin immunoprecipitation sequencing to analyze histone mark changes 
(H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3) on 16 HMCLs.  
Results: Differential analysis of histone modification profiles highlighted links between histone modifications 
and cytogenetic abnormalities or recurrent mutations. Using histone modifications associated to enhancer 
regions, we identified super-enhancers (SE) associated with genes involved in MM biology. We also identified 
promoters of genes enriched in H3K9me3 and H3K27me3 repressive marks associated to potential tumor 
suppressor functions. The prognostic value of genes associated with repressive domains and SE was used to 
build two distinct scores identifying high-risk MM patients in two independent cohorts (CoMMpass cohort; n = 
674 and Montpellier cohort; n = 69). Finally, we explored H3K4me3 marks comparing drug-resistant and 
-sensitive HMCLs to identify regions involved in drug resistance. From these data, we developed epigenetic 
biomarkers based on the H3K4me3 modification predicting MM cell response to lenalidomide and histone 
deacetylase inhibitors (HDACi).  
Conclusions: The epigenetic landscape of MM cells represents a unique resource for future biological studies. 
Furthermore, risk-scores based on SE and repressive regions together with epigenetic biomarkers of drug 
response could represent new tools for precision medicine in MM. 
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Introduction 
Multiple myeloma (MM) is a B cell neoplasia 

characterized by the accumulation of clonal plasma 
cells in the bone marrow. Despite the survival 
improvement provided by current treatments, the 
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majority of patients relapse and eventually become 
resistant to all treatments. The median overall 
survival of MM patients is 6 years [1]. MM is 
characterized by a high degree of biological, genetic 
and intra-clonal heterogeneity [2,3]. The development 
of MM is usually accompanied by a series of genetic 
alterations, such as cytogenetic abnormalities, 
primary and secondary chromosomal translocations 
and oncogenic activation. Identifying these alterations 
is highly valuable in understanding the pathogenesis 
of MM and predicting outcome and therapeutic 
response. Chromosomal alterations, including t(4;14) 
translocation, 17p13 deletion and 1q21 gain correlate 
with poor disease prognosis [4]. Several mutations 
also negatively impact on survival, including 
mutations in CCND1 and genes involved in DNA 
repair pathways (TP53, ATM, ATR and ZNFHX4) [5].  

The epigenetic control of gene expression plays 
an essential role in the regulation of cell fate and cell 
identity. Aberrant changes in key regulatory 
chromatin features, such as DNA methylation and 
histone post-translational modifications (PTMs), are 
involved in MM pathophysiology and drug resistance 
[6]. The histone PTM landscape is particularly 
dynamic and constantly evolving [7]. Structural 
changes in active euchromatin or silenced 
heterochromatin are controlled by epigenetic enzyme 
complexes of chromatin writers, readers and erasers. 
Histone deacetylases (HDAC) are dysregulated in 
MM with an aberrant overexpression of class I 
HDACs in a subset of patients, which is associated 
with a shorter overall survival [8]. HDAC inhibitors 
(HDACi) are now used in the treatment of several 
hematologic malignancies, including MM [9]. 
Moreover, epigenetic biomarkers for MM can be used 
as predictive and prognostic indicators to guide 
diagnosis and treatment [10–13]. These data suggest 
that individualizing therapy based on epigenetic 
biomarkers has the potential to increase therapeutic 
efficacy for MM patients.  

Human MM cell lines (HMCLs) have been 
widely used for the understanding of MM biology, 
identifying target genes, screening of anti-myeloma 
drugs and, more recently, characterizing the MM 
mutational landscape [14,15]. In the past few years, 
we have derived a large cohort of patient-derived 
HMCLs that remain dependent on the addition of 
exogenous MM growth factors, reflecting primary 
tumor conditions [16]. Using these myeloma cell lines 
as well as commercial myeloma cell lines, we 
described their molecular diversity by analyzing their 
gene expression profile and mutational landscape and 
showed that HMCL molecular diversity reflects part 
of the molecular heterogeneity of primary MM cells 
[14,16]. However, the global epigenetic landscape of 

HMCLs has never been described. 
A comprehensive characterization of the 

epigenetic landscape of HMCLs would advance our 
understanding of MM pathophysiology and its 
analysis might lead to the identification of new 
therapeutic targets for future application in MM. In 
this study, we present the first epigenetic landscape of 
HMCLs. We generated chromatin immuno 
precipitation sequencing (ChIP-seq) maps for a set of 
active (H3K4me1, H3K4me3, H3K27ac, H3K36me3) 
and inactive (H3K9me3, H3K27me3) histone PTMs on 
16 HMCLs, representative of the molecular 
heterogeneity of MM [14,16]. Differential analysis of 
PTM profiles on HMCLs highlighted links between 
histone modifications and cytogenetic abnormalities. 
We have identified super-enhancers (SE) associated 
with genes involved in the biology of MM, such as 
MAF, MYC, CCND1, CCND2, TRAF3 or NSD2, and 
repressive domains, characterized by the co-locali-
zation of the H3K9me3 and H3K27me3 modifications 
on promoters of genes with potential tumor 
suppressor function. We used genes belonging to 
these two subsets and associated with prognostic 
value to build two distinct scores that can predict MM 
patient survival. Finally, we have identified H3K4me3 
active promoters associated with the sensitivity of 
HMCL cells to lenalidomide and the HDACi 
romidepsin. From these data, we have developed 
epigenetic biomarkers based on this H3K4me3 PTM 
predicting the response to lenalidomide and 
romidepsin HDACi. Together, these data constitute a 
rich source of information that might guide analyses 
towards the identification of novel biomarkers and 
therapeutic targets for MM. 

Methods 
Samples 

XG human myeloma cell lines were obtained as 
previously described [16]. AMO-1, OPM2 and 
SKMM2 were purchased from DSMZ (Braunschweig, 
Germany) and RPMI8226 from ATCC (Manassas, 
USA). JJN3 was kindly provided by Dr.Van Riet 
(Brussels, Belgium), and KMS-12-BM by Dr Otsuki 
(Okayama, Japan). HMCLs characteristics are 
available in Table 1. 

Bone marrow samples were collected after 
patient’s written informed consent in accordance with 
the Declaration of Helsinki and institutional research 
board approval from Montpellier University Hospital. 
Bone marrow was collected from 69 patients at 
diagnosis and 28 patients at relapse, this cohort was 
called Montpellier cohort. MM cells of patients were 
purified using anti-CD138 MACS microbeads 
(Miltenyi Biotec, Bergisch Gladbach, Germany). We 
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also used RNA sequencing data of 674 newly 
diagnosed MM patients with longitudinal follow-up 
from the Multiple Myeloma Research Foundation 
CoMMpass trial (NCT01454297; version IA11a), 
termed in the following CoMMpass cohort. 

Normal plasma cells were generated using a 
3-step in vitro model starting from purified memory B 
cells from 3 different healthy donors as reported 
[17,18].  

HMCLs response to drug treatment 
HMCLs were cultured in RPMI-1640 medium 

(Gibco, Thermo Fisher Scientific, Waltham, USA) 
supplemented with 10% fetal bovine serum (Eurobio, 
Les Ulis, France) and IL-6 (Peprotech, Rocky Hill, 
USA) for XG cell lines. We evaluated the sensitivity of 
HMCLs to GSK525762, Chaetocin (Sigma-Aldrich, 
Saint-Louis, USA), EPZ-6438, lenalidomide and 
romidepsin (Selleckchem, Houston, USA). The IC50 of 
GSK525762, Chaetocine, lenalidomide and romidep-
sin was determined at day 4 using the CellTiter-Glo 
assay (Promega, Madison, USA), as previously 
described [11,19]. HMCLs were cultured 8 days with 
or without EPZ-6438. Cell concentration and viability 
were assessed using trypan blue dye exclusion test, as 
previously described [12]. The data represent the 
mean ± standard deviation of three independent 
experiments that were carried out on sextuplet culture 
wells (Figure 6A and Supplementary Figure 16A). 

Gene expression profiling and statistical 
analysis 

HMCLs, patients MM cells and normal plasma 
cells RNA sequencing was done as previously 
described [12]. The RNA sequencing (RNA-seq) 

library preparation was done with 150 ng of input 
RNA using the Illumina TruSeq Stranded mRNA 
Library Prep Kit. Paired-end RNA-seq were 
performed with Illumina NextSeq sequencing 
instrument (Helixio, Clermont-Ferrand, France). 
RNA-seq read pairs were mapped to the reference 
human GRCh37 genome using the STAR aligner [20]. 
All statistical analyses were performed with the 
statistics software R (version 3.6.2; https://www.r- 
project.org), and R packages developed by 
Bioconductor project (https://www.bioconductor. 
org) [21]. The expression level of each gene was 
summarized and normalized using the DESseq 
R/Bioconductor package [22]. 

For the Montpellier cohort and HMCLs, 
Affymetrix U133P chips were also used, as previously 
described [23,24] (ArrayExpress public database 
under accession numbers E-TABM-937 and 
E-TABM-1088), to calculate previously published risk 
scores including RS score [25], HRS score [26], IFM 
score [27], EZ score [12] and HA score [11].  

Whole Exome sequencing (WES) and variant 
calling 

WES of human MM cell line was performed as 
described above [14]. WES public data were used for 
KMS-12-BM [28]. Reads were mapped to the reference 
human hg19 using the Bowtie 2 aligner version 2.3.2 
[29]. SAMtools version 1.5 was used to convert SAM 
files to sorted BAM files [30]. Indel realignment, base 
quality recalibration and variant calling steps were 
completed with GATK 3.8-1 [31]. ANNOVAR was 
used to annotate variants [32]. Then, filters described 
in Vikova et al. were applicated [14].  

 
 

Table 1. Characteristics of HMCLs based on molecular classification  

HMCLs name HMCL classification Target genes Translocation del1p 1qgain del13q del17p 
AMO-1 CD-2L CCND2 t(12;14) + + - - 
JJN3 MF c-Maf t(14;16) - + + + 
KMS-12-BM CD-2L CCND1 t(11;14) + - + + 
OPM2 MS MMSET/FGFR3 t(4;14) + + - + 
RPMI8226 MF c-Maf t(14;16) + + + + 
SKMM2 CD-1 CCND1 t(11;14) + - + + 
XG1 CTA/FRZB CCND1 t(11;14) - - - - 
XG2 CTA/FRZB CCND2 t(12;14) - - - - 
XG5 CD-1 CCND1 t(11;14) + - - + 
XG6 CTA/MF c-Maf t(16;22) + - + - 
XG7 MS MMSET t(4;14) + + + - 
XG12 CTA/MF c-Maf t(14;16) + - - - 
XG13 MF c-Maf t(14;16) + - + + 
XG19 CTA/MF c-Maf t(14;16) + - + + 
XG20 MS MMSET t(4;14) + - - + 
XG21 CD-1 CCND1 t(11;14) - + - - 
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HMCLs ChIP-seq  
HMCLs were cross-linked in formaldehyde at a 

final concentration of 1% for 8 minutes. All 
experiments reagents were included in the iDeal 
ChIP-seq kit for histones (Diagenode, Liege, Belgium). 
Sonication was performed using a Bioruptor Plus 
sonication device (Diagenode, Liege, Belgium) under 
the optimal conditions to shear cross-linked DNA to 
fragments of 100-300 base pairs in length. ChIP were 
conducted with the IPStar Compact Automated 
System (Diagenode) and the iDeal ChIP-seq kit for 
histones (Diagenode, C01010059). ChIP were 
performed starting from 1,000,000 cells. Crossed- 
linked DNA was incubated 13h with H3K4me1 
(Diagenode, C15410194), H3K4me3 (Diagenode, 
C15410003), H3K9me3 (Diagenode, C15410193), 
H3K27ac (Diagenode, C15410196), H3K27me3 
(Diagenode, C15410195) or H3K36me3 (Diagenode, 
C15410192) antibody and 3h with the beads. After 5 
min washes, eluates were recovered and reverse 
cross-linked for 4h at 65°C. Samples were treated for 
1h with RNase at 37°C, prior to DNA purification 
with the Auto IPure kit v2 (Diagenode, C03010010). 
Libraries were performed using NEBNext Ultra II 
DNA Library Prep Kit for Illumina (New England 
Biolabs). ChIP-seq were performed with Illumina 
NextSeq500 technology (Helixio, Clermont-Ferrand, 
France) using the following parameters: single-ended, 
50bp, 40 million reads. 

ChIP-seq for H3K4me1, H3K4me3, H3K9me3, 
H3K27ac, H3K27me3 and H3K36me3 histone marks 
of 4 MM patients were performed using purified MM 
cells (MMC) of 4 MM patients as previously described 
[33]. LiftOver function from the rtracklayer R package 
(version 1.52.1) was used to change the genomic 
coordinate of MMC peaks, from hg38 to hg19. Peaks 
identified in MMC were compared to HMCL peaks 
for each histone marks using the findOverlaps 
function from the regioneR R package (version 1.24.0).  

Reads were mapped to the human reference 
genome (hg19) using Bowtie2 (version 2.3.2) [29]. 
Peak-calling was performed using MACS2 (version 
2.1.2) [34]. Peak annotation and differential binding 
analyses of ChIP-seq peak data were performed using 
ChIPseeker [35] and DiffBind [36] R/bioconductor 
packages, respectively. Heatmaps and average 
profiles were generated by deeptools (version 3.5.0) 
[37]. Super-enhancers (SE) were identified using the 
ROSE (Rank Ordering of Super-Enhancers) algorithm 
[38,39] based on H3K27ac and H3K4me1 ChIP-seq 
signals. TSS exclusion zone size was adjusted to 2500 
bp to exclude promoter regions. Transcriptionally 
active genes were assigned to super-enhancers using a 
simple proximity rule (50 kb window). Scores were 

built using our previously published methodology 
[10]. Genes composing super-enhancer and repressive 
domain scores were selected for their prognostic 
significance using Maxstat R function and the 
Benjamini Hochberg multiple testing correction. Score 
values correspond to the sum of the Cox 
beta-coefficients of each gene, weighted by ± 1 if 
patient MM cells signal for the gene of interest is 
above or below the Maxstat reference value of this 
gene. The statistical significance of differences in 
overall survival between patients’ groups was 
calculated using the log-rank test and survival curves 
were plotted using the Kaplan-Meier method. 
CoMMpass and Montpellier cohorts were used as 
training and validation cohorts, respectively. 
Statistical differentially bound regions between 
drug-sensitive and -resistant HMCLs were identified 
with DiffBind R/bioconductor package (FDR ≤ 0.05). 

Generation of HMCL stably expressing 
isoform 1 Cul4B-GFP  

XG1 cells were infected with lentiviral vectors 
containing GFP (PS100093V, OriGene) or GFP-tagged 
Cul4B isoform 1 (Cul4B-GFP) (RC206935L4V, 
OriGene). The cell lines were selected with puromycin 
and sorted by FACS based on GFP expression levels. 

Results 
Epigenetic landscape of HMCLs 

We performed ChIP-seq analysis using 16 
HMCLs characterized by molecular and genetic 
variability, which reflect part of the heterogeneity of 
the disease (Table 1) [14,16]. To evaluate the 
epigenetic landscape of these HMCLs, two repressive 
marks (H3K9me3 and H3K27me3) and four active 
marks (H3K4me1, H3K4me3, H3K27ac and 
H3K36me3) were selected. The six histone marks used 
in this study are those proposed by the International 
Human Epigenome Consortium as the most 
informative ones and constitute an essential part of 
the reference epigenome (http://ihec-epigenomes. 
org/research/reference-epigenome-standards/). 
Specifically, H3K36me3 is related to transcriptional 
elongation in the gene body, H3K4me3 to 
poised/active promoters, H3K4me1 to poised/active 
enhancers, H3K27ac to determine active regulatory 
elements (both enhancers and promoters), H3K9me3 
to detect heterochromatin and H3K27me3 to detect 
Polycomb-repressed chromatin. The annotation of the 
peaks reveals that the enhancer-related H3K4me1 
modification is mainly found in distal intergenic 
(45.4% ±2.6%) and intron (35.4% ±2.4%) regions 
whereas H3K27ac, a modification known to be 
associated with both active enhancers and promoters, 
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is mainly found in distal intergenic (34.8% ±4.0%) and 
promoter (32.9% ±4.6%) regions (Figure 1A). 
H3K4me3 is mainly located at promoters, as expected 
for a mark of actively transcribed gene promoters, but 
also in intergenic regions (promoters: 42.1% ±6.8%; 
intergenic: 36.2% ±5.0%). The H3K4me3 and H3K27ac 
marks exhibit the same profile surrounding the 
transcription start site (TSS) with a major peak located 
downstream the TSS (Figure 1B-D). The H3K4me1 
mark is located both upstream and downstream to the 
TSS (Figure 1B-D). On enhancer regions, the majority 
of H3K27ac peaks overlapped with H3K4me1 peaks, 
revealing active enhancers, whereas non-overlapping 
H3K4me1 peaks were associated with poised 
enhancers (Figure 1D) [40]. The H3K36me3 
modification is identified downstream to the TSS, on 
the body of active genes with a distribution of intron 
and exon regions representing 69.8% of total regions. 
The repressive marks, H3K9me3 and H3K27me3, 
respectively detecting HP1- and Polycomb-repressed 
chromatin, were essentially found in intergenic 
regions (61.6% ±6.2% and 54.1% ±4.3%, respectively), 
with distinct localization, but also on gene promoters 
(Figure 1A-D). A small fraction of these promoters 
was enriched by H3K9me3 and H3K27me3 
co-localization. Moreover, we compared our results 
with the ChIP-seq data of 4 MM patients [33]. We 

identified that more than 80% of MM patients peaks 
were commonly found in HMCL data for H3K4me1, 
H3K4me3, H3K9me3, H3K27me3 and H3K36me3 
histones marks. Concerning H3K27ac, 70% of overlap 
was identified comparing HMCLs and primary MMC 
from patients (Supplementary Table 1). 

Figure 2A shows the global profile of histone 
modifications on the 16 HMCLs. The clustering based 
on peak localizations distinguishes each mark from all 
others and repressive (H3K9me3 and H3K27me3) 
from active (H3K4me1, H3K4me3, H3K27ac and 
H3K36me3) marks. TSSs of actively transcribed genes 
are marked by H3K4me3 and H3K27ac modifications, 
which explains the high similarity between H3K4me3 
and H3K27ac profiles (Figure 1C and 1D) [40]. When 
each mark is observed independently, the clustering 
of HMCLs reveals subgroups associated to different 
cytogenetic abnormalities or HMCLs transcriptional 
classification [16]. Differential analysis on H3K9me3 
reveals a highly similar cluster, composed of 
KSM-12-BM, OPM2, RPMI8226, XG19 and SKMM2, 
characterized by the association of del1p, del13q and 
del17p cytogenetic abnormalities (Figure 2B and 
Supplementary Table 2) (r > 0.5). The H3K27me3 
analysis distinguishes the group of HMCLs harboring 
the t(4;14) translocation (XG7, XG20 and OPM2) from 
other HMCLs (Figure 2C and Supplementary Table 3) 

 

 
Figure 1: Histone mark enrichment distribution in HMCLs. (A) Pie chart showing the distribution of H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3 
peaks in promoter, 5’ UTR, exon, intron, 3’ UTR, downstream and distal intergenic regions. The peaks were identified by MACS and were annotated using ChIPseeker R package. 
Results are expressed as the mean percentage distribution of the 16 HMCLs. (B) Heatmap of histone modification peaks binding to the TSS regions (from -5 kb to 5 kb) ranked 
by histone mark signal in the XG6 cell line. (C) ChIP-seq profiles across 5 kb regions centered on the TSS of the full genome of XG6 cell line. The y axis shows the histone 
ChIP-seq signal normalized using the log2 ratio (histone vs input) normalization. Heatmaps and average profiles of histone mark enrichment were generated by deeptools using 
all known genes for each individual histone modification. (D) Venn diagram of overlapped region between H3K9me3 and H3K27me3 in intergenic regions and promoters, 
H3K4me1 and H3K27ac in enhancer regions, and H3K4me1 and H3K27ac in promoters in XG6. 
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(r > 0.5). The t(4;14) translocation results in 
IgH/MMSET hybrid transcripts inducing 
overexpression of the MMSET gene [41]. There is a 
correlation between the number of H3K27me3 peaks 
and MMSET mRNA expression in the groups of 
HMCLs without t(4;14) translocation (R2 = 0.33; 
P-value < 0.02) (Supplementary Figure 1A) whereas 
no correlation is observed in t(4;14) cell lines (data not 
shown). However, the percentage of reads in 
H3K27me3 peaks is correlated to the MMSET mRNA 
expression in all HMCLs (R2 = 0.48; P-value < 0.01) 
(Supplementary Figure 1B). These results suggest that 
H3K27me3 localizations are very similar in t(4;14) 
HMCLs and that the global enrichment of H3K27me3 
increases with the deregulation of MMSET without 
increasing the total number of H3K27me3 sites on the 
genome. Popovic et al. showed that MMSET 
overexpression led to a global loss of H3K27me3 and 
an enrichment of this modification on specific loci 
[42]. Overexpression of MMSET is associated with a 
shift in the genomic localization of the H3K27 
methyltransferase EZH2, imposing EZH2 and 
H3K27me3 accumulation at specific loci [43]. 
Differentially bound site analysis revealed around 
46000 sites significantly differentially associated to the 
H3K27me3 modification in t(4;14) HMCLs (MMSET 
subgroups) compared to HMCLs without t(4;14) 
translocation (FDR ≤ 0.05) (Supplementary Figure 
2A). Of these, 1822 sites are located on gene 
promoters, with 809 gene promoters presenting lower 
H3K27me3 levels versus 1013 gene promoters 

enriched in H3K27me3 in the MMSET subgroup (FDR 
≤ 0.05) (Supplementary Figure 2B and 2C). Among 
this set of genes, we found genes involved in the 
induction of apoptosis (TP73 and BNIP3) and the cell 
cycle regulation (CEND1, CCNO, CDKN1C and 
CDK2AP1). Comparing gene expression profiles of 
the 3 HMCLs harboring t(4;14) translocation (XG7, 
XG20 and OPM2) with HMCLs without the 
translocation revealed 144 genes significantly 
overexpressed and 23 genes significantly 
downregulated in the t(4;14) HMCLs. Among the 144 
genes overexpressed in t(4;14) HMCLs, the level of 
H3K27me3 is significantly lower on the promoter of 
31 genes in t(4;14) HMCLs compared to HMCLs 
without t(4;14) translocation. The promoter of 3 genes 
is significantly enriched in H3K27me3 in HMCLs 
harboring a t(4;14) translocation among the 23 genes 
downregulated (Supplementary Figure 2D and 
Supplementary Table 4). Global analyses of 
H3K4me1, H3K4me3, H3K27ac and H3K36me3 
modifications do not provide a clear link between 
cytogenetic abnormalities and histone modifications, 
while H3K27ac and H3K36me3 clustering tends to 
group HMCLs by HMCL molecular subgroups 
(Figures 2E-G). We also studied the link between 
histone modification profiles and frequently mutated 
genes in HMCLs (Supplementary Figure 3). 
Interestingly, HMCLs with TP53 bi-allelic events are 
characterized by a specific H3K9me3 profile 
(Supplementary Figure 4). 

 

 
Figure 2: Differential histone enrichment evaluation in 16 HMCLs. Correlation heatmaps of H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3 marks 
were generated using Diffbind R package. A) Correlation heatmap, using occupancy data (peaks identified by MACS), performed on the 6 histone marks in HMCLs shows distinct 
separation from each other and between active and repressive histone marks. B) Correlation heatmap, using affinity data (read count), highlights the link between histone 
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modifications and both HMCLs molecular classification and cytogenetic abnormalities (dark box: presence, light box: absence). The clustering of the samples was calculated using 
the cross-correlations of each row of the binding matrix. The correlations range from 0 (no correlation, white) to 1 (strong correlation, dark green). Orange boxes encompass 
interest clusters identified using unsupervised hierarchical clustering. CD-1, CD-2L, CTA/MF, CTA/FRZB, MF and MS correspond to the transcriptional classification of 
HMCLs.[16] 

 
Figure 3: Super-enhancers identified in HMCLs. (A) Total of H3K27ac ChIP-seq signal in units of reads per bin mapped reads in enhancer regions for all enhancers in RPMI8226, 
KMS-12-BM, XG2 and XG7 cell lines harboring translocation which targets MAF, CCND1, CCND2 and NSD2 gene, respectively. Enhancers are ranked by increasing H3K27ac 
ChIP-seq signal. (B) Gene tracks of H3H4me1 and H3K27ac ChIP-seq occupancy at super-enhancers near genes involved in MM pathogenesis. Super-enhancers of CCND1, NSD2 
and CCND2 overlap the TSS region while MAF enhancer is localized downstream of the gene. The x axis shows the genomic position and H3K27ac and H3K4me1 
enhancers-containing regions are depicted with a beige and brown box, respectively. The y axis shows signal coverage of ChIP-seq occupancy in units of reads per bin mapped 
reads. 

 
Figure 4: SE-risk score can predict survival in MM patients. (A) SE-risk score pipeline using first ROSE algorithm on ChIP-seq data of HMCLs to find super-enhancers. 
SE-associated genes are identified using RNA-seq of HMCLs. Genes of interest are then filtered according to their expression in HMCLs, plasma cells of MM patients (MMC) and 
normal plasma cells (NPC), and their prognostic value in MM patients. (B) Prognostic value of the SE-risk score in MM. Patients of the CoMMpass cohort (n = 674) were ranked 
according to the increased SE-risk score and a maximum difference in OS was obtained with SE-risk score of -4.0 splitting patients into high-risk (n = 283; red curve) and low-risk 
(n = 391; green curve) groups. SE-risk score also had a prognostic value in an independent cohort of 69 patients (Montpellier cohort). To compute the SE-risk score in Montpellier 
cohort, the proportion of patients of the CoMMpass cohort for each gene was applied on the Montpellier cohort to determine gene cut-point. The same gene beta-coefficient 
and score cut-point was applied to distinguish high-risk (n = 34: red curve) from low-risk (n = 35; green curve) groups. (C) SE-associated gene score correlates with the response 
to GSK525762 in HMCLs. Linear regression analysis of the SE-associated gene score in function of the IC50 of GSK525762 in 8 HMCLs. Coefficient of determination R2 
represents the square of the Pearson correlation coefficient (r) (Pearson correlation test). 
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SE-risk score predicting survival in MM 
patients 

H3K4me1 and H3K27ac modifications are 
known to be associated with enhancer regions and, 
more specifically, active enhancers can be identified 
by co-occupancy of H3K4me1 and H3K27ac [40]. 
Super-enhancers consist of a set of large enhancer 
domains displaying physical proximity (+/- 12.5kb) 
and are associated with genes that control and define 
cell identity [38,39]. Using the MM1S cell line, Lovén 
et al. identified super-enhancers associated with key 
MM genes, including MYC, IRF4, PRDM1, XBP1, 
CCND2, PIM1, BCL-xL and MCL1 [39].We identified 
a number ranging from 607 to 2510 predicted 
super-enhancers in each of the HMCLs 
(Supplementary Table 5). These super-enhancers 
differed from typical enhancers in both size and 
H3K4me1 and H3K27ac levels (Figure 3A). Enhancers 
tend to loop to and associate with adjacent genes in 
order to activate their transcription [44]. Using a 
simple proximity rule, we assigned all TSSs to 
super-enhancers within a 50 kb window [45]. Among 
the SE-associated genes identified, we found genes 
identified in the study of Lovén et al. (MYC, IRF4, 
PRDM1, XBP1 and CCND2) but also other key MM 
genes, such as ACTG1, MAF, CCND1, TRAF3 and 
NSD2 (MMSET). Among them, we found 
SE-associated genes targeted by MM translocations 
(Table 1 and Figure 3B).  

We used these SE-associated genes to build a 
score predicting survival in MM patients. First, we 
selected SE-associated genes with strong expression in 
HMCLs, overexpressed in plasma cells of MM 
patients compared to normal plasma cells and 
associated with shorter overall survival in MM 
patients using the Maxstat algorithm [46] (Figure 4A). 
Twenty-eight genes fulfilled these criteria: BSG 
(CD147), HK2, HNRNPC, HSPA9, IL10, ILF3, LDHB, 
MDH1, MYBPC2, NCL, NUDC, PARP1, PDIA6, 
PRPS1, RPL8, RPL13A, RPL27A, RPL35, SF3B2, 
SLC7A5, SLC25A39, SMARCA4, SPN (CD43), STC2, 
THY1 (CD90), TNPO2, TPR and YWHAQ 
(Supplementary Figures 5 and 6). Then, the 
prognostic information of these 28 SE-associated 
genes was combined to build a SE-risk score. This 
score is defined by the sum of the beta coefficients of 
the Cox model for each prognostic gene, weighted by 
±1 if the patient plasma cells signal for a given gene is 
above or below the Maxstat reference value of this 
gene as previously described [47]. Using two 
independent cohorts, the SE-risk score had a 
prognostic value when used to split patients into two 
groups using the Maxtstat R function. The score splits 
patients into a high-risk group (score > -4.0) and a 

low-risk group (score < -4.0) in the CoMMpass 
(P-value < 0.0001; high-risk group: 58.0% of patients; 
low-risk group: 42.0% of patients) and Montpellier 
(P-value < 0.005; high-risk group: 50.7% of patients; 
low-risk group: 49.3% of patients) cohorts (Figure 4B). 
Investigating the link between the SE-risk score and 
cytogenetic abnormalities, SE-risk score values were 
significantly higher in MM patients with del(13q), 
del(17p), del(1p), 1q gain and t(12;14) in the 
CoMMpass cohort (Supplementary Figure 7). We 
evaluated the evolution of the score from diagnosis to 
relapse in 14 MM patients with paired samples. No 
significant difference between the two groups was 
identified (Supplementary Figure 8). However, 2 MM 
patients presented a striking increase in SE-risk score 
from diagnosis to relapse. We next investigated the 
SE-risk score value distribution according to 
Affymetrix GEP-based risk scores previously reported 
in MM. The SE-risk score values were significantly 
higher in high-risk patients defined by RS score [25], 
and IFM score [27]. The SE-risk score values were also 
significantly higher in intermediate and high-risk 
patients compared to low-risk patients defined by the 
International Staging System (ISS) [48]. Furthermore, 
high-risk patients defined with the SE-risk score 
demonstrated a significant increase in the percentage 
of proliferating MM cells determined by BrdU 
incorporation [49] (median = 1.55%, range: 0 – 17.3%) 
compared to the low group (median = 0.7%; range: 0 – 
7.3%) (Supplementary Figure 9). Bromodomain and 
extra-terminal (BET) inhibitors have been shown to 
repress super-enhancer-associated transcription. To 
evaluate the link between the score and the response 
of MM cells to bromodomain and extra-terminal 
(BET) inhibitors, we calculated the SE-associated gene 
score in HMCLs. Interestingly, we found a significant 
anti-correlation between the score and the response to 
a BET inhibitor in clinical development in 
hematological cancers (GSK525762) in HMCLs (R2 = 
0.4081; P-value < 0.05) (Figure 4C). The same tendency 
was obtained using JQ1 and OTX015 BET inhibitors 
(Data not shown). Using other scores based on gene 
expression profiling (EZ [12], HA [11] and HRS [26] 
scores) calculated in 8 HMCLs, we did not find a 
significant correlation between these scores and the 
BET inhibitor sensitivity (Supplementary Figure 10). 
Nevertheless, a correlation was found between HRS 
score and the response to GSK525762 (R2 = 0.489; 
P-value < 0.05). High SE-associated gene score allows 
the identification of high-risk MM patients that could 
benefit from BET inhibitors. Conversely, high HRS 
score is associated with resistance to GSK525762 BET 
inhibitor. 
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Figure 5: H3K9me3/H3K27me3 score can predict survival in MM patients. (A) Repressive domains characterized by co-localization of H3K9me3 and H3K27me3 enrichment on 
promoter of SEMA6A and ARHGEF5 gene. The promoter of these genes is the most frequently enriched in H3K9me3 and H3K27me3 modifications in HMCLs. The x axis shows 
the genomic position and the y axis shows signal coverage of ChIP-seq occupancy in units of reads per bin mapped reads. (B) Prognostic value of the H3K9me3/H3K27me3 score 
in MM. Patients of the CoMMpass cohort (n = 674) were ranked according to the increased H3K9me3/H3K27me3 score and a maximum difference in OS was obtained with 
increased H3K9me3/H3K27me3 score of -3.45 splitting patients into high-risk (n = 390; red curve) and low-risk (n = 284; green curve) groups. High-risk group for individual gene 
composing H3K9me3/H3K27me3 score is associated with low gene expression (negative beta-coefficient) whereas high-risk group for H3K9me3/H3K27me3 score is associated 
with high score because of the multiplication of the beta-coefficient (negative value) and the weight (+1 or -1 if the signal of MM patient gene is above or below the Maxstat 
reference value, respectively) of genes. H3K9me3/H3K27me3 score also had a prognostic value in an independent cohort of 69 patients (Montpellier cohort). To compute the 
H3K9me3/H3K27me3 score in Montpellier cohort, the same method described before was used. 

 
Interestingly, 21 genes (HK2, HNRNPC, HSPA9, 

ILF3, LDHB, MDH1, MYBPC2, NCL, NUDC, PARP1, 
PDIA6, PRPS1, RPL13A, RPL27A, SF3B2, SLC25A39, 
SMARCA4, STC2, TNPO2, TPR and YWHAQ) were 
significantly overexpressed in HMCLs compared to 
plasma cells of MM patients (Supplementary Figure 
5), suggesting that genes may play a role in disease 
progression and independence of MM cells from 
micro-environment. Moreover, DEMETER2 [50] and 
CERES [51] dependency scores calculated from public 
datasets of RNAi [52,53] and CRISPR/Cas9-based [51] 
screening (Dependency Map data, Broad Institute, 
www.depmap.org) indicated that YWHAQ, IL10, HK2 
and THY1 are significant essential MM genes 
(Supplementary Table 6 and Supplementary Figure 
11). Indeed, THY1 knockdown presented the larger 
DEMETER2 dependency score difference between 
HMCLs and all other cell types investigated. 
Altogether, these data show that a signature of genes 
associated with super-enhancers in MM could be 
defined allowing the identification of high-risk MM 
patients that could benefit from treatment with BET 
inhibitors. 

H3K9me3 and H3K27me3 co-localization in 
promoters can be associated with prognostic 
value in MM 

Several reports have demonstrated that 
H3K9me3 and H3K27me3 modifications are mutually 
exclusive in constitutive heterochromatin. It was 
previously suggested that H3K9me3 may crosstalk 
with the Polycomb mediated H3K27me3 modification 
to cooperate in gene repression (Figure 1D) [54–56]. 
We decided to find gene promoters enriched by both 
H3K9me3 and H3K27me3 modifications to build a 
score based on genes associated with epigenetic 
transcriptional repression and identify new potential 
tumor suppressor genes. First, H3K9me3 and 
H3K27me3 overlapping regions on gene promoters 
were identified for all HMCLs. To identify potential 
tumor suppressor genes, we selected genes 
significantly under-expressed in plasma cells of MM 
patients compared to normal plasma cells, and 
associated them with poor outcome when their 
expression is low in MM cells of patients. We 
identified eighteen genes: ARHGEF5, BIVM, DEF8, 
GRID2IP, HDAC9, HSPA1L, KDM4C, NLRP2, P4HA3, 
PAG1, PM20D1, RMND5A, SEMA6A, SFMBT2, 
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THEMIS2, TPRKB, ZFP2 and ZNF5188B (Supple-
mentary Figures 12 and 13). The promoters of 
SEMA6A and ARHGEF5 genes were most frequently 
enriched by both H3K9me3 and H3K27me3 
modifications in HMCLs (Figure 5). We combined the 
prognostic information from these eighteen genes into 
a tumor suppressor-based risk score as described 
above. This score splits patients into two groups in the 
training cohort (CoMMpass cohort, n=674, P-value < 
0.0001): a low-risk group (score < -3.45) of 57.9% MM 
patients associated with global high expression of 
these genes and a high-risk group (score > -3.45) of 
42.1% MM patients associated with global low gene 
expression (Figure 5B). This score also splits MM 
patients into low and high-risk groups (62.3% and 
37.7% of patients, respectively) in the validation 
cohort (Montpellier cohort, n=69, P-value < 0.01). In 
the CoMMpass cohort, the score was significantly 
higher in non-hyperdiploid, del13q, del17p, 1q gain, 
t(4;14), t(12;14) and t(14;16) subgroups of patients 
(Supplementary Figure 14). Of the eighteen genes, 
thirteen genes (ARHGEF5, DEF8, GRID2IP, HDAC9, 
HSPA1L, KDM4C, P4HA3, PAG1, SEMA6A, SFMBT2, 
THEMIS2, ZFP2 and ZNF518B) were down-regulated 
in HMCLs compared to primary MM cells 

(Supplementary Figure 12). We evaluated the link 
between the score and the response of MM cells to 
EZH2 and SUV39H1/2 inhibitors, EPZ-6438 [57] and 
chaetocine [58], respectively. Interestingly, we found a 
significant anti-correlation between the score and the 
response to EPZ-6438 (R2 = 0.4348; P-value < 0.05) 
(Figure 5C) and chaetocine (R2 = 0.4128; P-value < 
0.05) (Figure 5D) in HMCLs. 

H3K4me3 bound sites linked to lenalidomide 
and romidepsin resistance in HMCLs 

Epigenetic modifications, including histone 
modifications, participate to MM pathogenesis and 
chemotherapy resistance. To better understand the 
epigenetic mechanisms involved in drug resistance, 
we explored histone marks in drug-resistant and 
-sensitive HMCLs. H3K4me3, a modification 
associated with promoters of actively transcribed 
genes, was chosen to identify epigenetic changes 
involved in drug resistance. We analyzed the 
relationship between the H3K4me3 landscape of 
HMCLs and their response to conventional drugs 
including bortezomib, melphalan, dexamethasone, 
lenalidomide and HDACi [14].  

 
 

 
Figure 6: H3K4me3 modification differentially enriched in lenalidomide (LEN) -sensitive and -resistant HMCLs. We distinguished two groups of HMCLs: sensitive cell lines, the 
IC50 were ranged from 0.3µM to 79 µM, and resistant cell lines, the IC50 were not reached at 100µM. (A) Correlation heatmap using only the 5903 sites identified as being 
significantly differentially bound in lenalidomide-resistant compared to lenalidomide-sensitive HMCLs (FDR ≤ 0.05). (B) Volcano plot of differentially bound sites localized on 
promoters using lenalidomide-resistant vs lenalidomide-sensitive HMCLs contrast. Sites identified as significantly differentially bound in lenalidomide-sensitive and -resistant 
HMCLs are colored in orange and red, respectively. (C) Gene tracks of H3K4me3 ChIP-seq occupancy. The promoter of ANKRD30B and SLAMF6 genes is the most significantly 
differentially enriched by H3K4me3 modifications in lenalidomide-sensitive group compared to lenalidomide-resistant group and, conversely, the promoter of GPR15 and NKX6-1 
genes is the most significantly differentially enriched by H3K4me3 modifications in lenalidomide-resistant group compared to lenalidomide-sensitive group. The x axis shows the 
genomic position and the y axis shows signal coverage of ChIP-seq occupancy in units of reads per bin mapped reads. (D) Molecular signature of differentially bound sites localized 
on gene promoters enriched in lenalidomide-sensitive and -resistant HMCLs was investigated using GSEA database (FDR ≤ 0.05). No overlap was found for gene promoters 
enriched in lenalidomide-sensitive HMCLs. 
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Of major interest, we identified 5903 
significantly differentially H3K4me3-enriched sites 
between lenalidomide-resistant (AMO1, JJN3, 
KMS-12-BM, SKMM2, XG1, XG5, XG7, XG12, XG20 
and XG21 HMCLs) and lenalidomide-sensitive cell 
lines (OPM2, RPMI8226, XG2, XG6, XG13 and XG19 
HMCLs) (Figure 6A) (FDR ≤ 0.05). Regarding gene 
promoters, 203 H3K4me3 differentially bound sites 
were significantly enriched in lenalidomide-sensitive 
HMCLs compared to lenalidomide-resistant HMCLs 
(FDR ≤ 0.05) whereas 136 H3K4me3 differentially 
bound sites were significantly enriched in the 
lenalidomide-resistant group compared to the 
lenalidomide-sensitive group (Figure 6B). Examples 
of significantly differentially enriched regions are 
presented in Figure 6C. Gene set enrichment analysis 
revealed that H3K4me3 differentially bound sites 
enriched in lenalidomide-resistant HMCLs were 
associated to interferon signaling and cytokine 
signaling in the immune system (Figure 6D). 
Differential sites enriched in lenalidomide-sensitive 
HMCLs were significantly associated with an 
NFKBIA target gene signature.  

Lenalidomide targets the Cereblon complex, 
formed by CUL4, RBX1, DDB1 and CRBN proteins 
[59]. Interestingly, we observed a H3K4me3 
enrichment on the promoter of CUL4B in 

lenalidomide-sensitive compared to resistant HMCLs 
(Supplementary Figure 15). The presence of CUL4B 
isoform 1 appeared to be associated with 
lenalidomide sensitivity. To validate this observation, 
we generated XG1 cell line derivatives stably 
expressing GFP tagged-Cul4B isoform 1 (Cul4B-GFP 
cell line) or the GFP alone. The overexpression of 
Cul4B isoform1 expression was validated both by 
western blot and RT-qPCR (Figure 7A and 7B). Cells 
were sorted by flow cytometry based on their GFP 
levels in order to keep those with high expression of 
Cul4B-GFP (Figure 7C). Nuclear localization of the 
ectopic Cul4B-GFP was confirmed by microscopy 
(Figure 7D). Sensitivity to lenalidomide of the XG1 
Cul4B-GFP and the control XG1-GFP cell lines were 
studied by proliferation assays. MM cells expressing 
Cul4B-GFP were significantly more sensitive to 
lenalidomide compared to the control (Figure 7E). 
Moreover, Cul4B-GFP expression also increased cell 
sensitivity to pomalidome, a third generation IMiD 
that also targets CRBN [59] (Figure 7F). Altogether, 
these data indicate that the expression of Cul4B 
isoform 1 is related to the response to IMiDs in MM 
cells and support the potential interest of ChIP-seq 
analyses to identify biomarkers that could predict 
response to these drugs.  

 

 
Figure 7: Increased expression of Cul4B isoform 1 re-sensitizes MM cell lines to lenalidomide. XG1 cells were infected with lentiviral particles containing GFP or GFP-tagged 
Cul4B isoform 1 (Cul4B-GFP), selected with puromycin and sorted by FACS based on GFP expression levels. (A) Protein expression levels of endogenous and ectopic Cul4B 
isoform 1 analyzed by western blot with a specific antibody in XG1 cells. Protein levels of CRBN were also analyzed. Tubulin used as loading control. (B) The level of Cul4B 
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isoform 1 mRNA in XG1 Cul4B-GFP cells was analyzed by qPCR and normalized to the level in XG1 GFP cells. N = 3. t-test p-value = 0.05. (C) GFP and Cul4B-GFP expression 
levels in XG1 cells were analyzed by flow cytometry. (D) Cells were fixed with 4% PFA for 10 min at RT. DNA was stained with DAPI (20μg/ml) for 5 min. Scale bar = 10 um. 
(E) Cells were treated with the indicated concentrations of lenalidomide for 4 days. Cell growth was analyzed by Cell Titer Glo (CTG) and normalized to XG1 GFP for each 
concentration. Graph shows the average of 4 independent experiments. T-test significance: p-value (12.5 μM) = 0.0023, p-value (50 μM) = 0.0011, p-value (100 μM) = 0.0028. (F) 
Cells were treated with the indicated concentrations of pomalidomide for 4 days and proliferation was analyzed by Cell Titer Glo (CTG). Graph shows the average of 3 
independent experiments. p-value (12.5 μM) = 0.004, p-value (50 μM) = 0.0009, p-value (100 μM) = 0.0004. 

 
To confirm the potential of ChIP sequencing data 

to identify epigenetic mechanisms involved in drug 
resistance, we investigate the bound sites 
differentially enriched in H3K4me3 between 
romidepsin-resistant (AMO1, XG7, XG13, XG19 and 
XG20) and romidepsin-sensitive (OPM2, RPMI8226, 
SKMM2, XG1, XG5, XG6 and XG12) cell lines 
(Supplementary Figure 16A) (FDR ≤ 0.05). Among the 
2098 H3K4me3 significantly differentially bound sites, 
250 bound sites were localized on gene promoters 
(Supplementary Figure 16B). Romidepsin is a class I 
histone deacetylase inhibitor currently evaluated in 
combination with lenalidomide in phase I/II 
(NCT017755975) in patients with relapse or refractory 
multiple myeloma. Among the 250 H3K4me3 bound 
sites located on gene promoters, 180 were 
significantly enriched in romidepsin-sensitive 
HMCLs associated with an HDAC3 and PRDM6 
target gene signature (Supplementary Figure 16D). 
We found 70 differentially bound sites enriched in the 
romidepsin-resistant group compared to the 
romidepsin-sensitive group. Gene set enrichment 
analysis revealed a significant association with 
H3K27me3 and polycomb complex subunit (SUZ12 
and EED) target genes. That indicates that ChIP-seq 
strategies could be an interesting tool to identify 
biomarkers associated with drug response or 
resistance in MM. Further investigations are needed 
to establish potential future clinical applications.  

Moreover, among the 6 histones modifications, 
only the differentially bound sites identified with 
H3K4me1, H3K4me3 and H3K9me3 allowed the 
distinction between resistant and sensitive cell lines 
for lenalidomide and romidepsin drugs (Supple-
mentary Figure 17 and 18). Using H3K9me3, only few 
bound sites were significantly differentially enriched 
between resistant and sensitive groups. It could be 
interesting to carry out more investigations on the 
H3K4me1 differentially bound sites to identify 
super-enhancers associated to drug resistance. 
Altogether, these data underline the interest of ChIP 
sequencing to identify epigenetic biomarkers related 
to drug response in MM. 

Discussion 
In this study, we have characterized the 

landscape of histone modifications in a large 
collection of HMCLs representative of MM molecular 
heterogeneity [16]. Some histone modification 
profiles, such as H3K27me3, were clearly related to 

cytogenetic abnormalities. In t(4;14) HMCLs, MMSET 
overexpression results in the genome-wide redistri-
bution of the SET domain protein EZH2 and its 
associated H3K27me3 mark [60]. Gene expression 
profiling revealed deregulated genes involved in cell 
cycle (e.g. CCNE2), apoptosis (e.g. BAX and BCL2) 
and DNA repair (e.g. ATM and GADD45A) [61]. 
Moreover, we showed that promoter of genes 
involved in the negative regulation of cell cycle (e.g. 
CEND1 and CDKN1C) and the induction of apoptosis 
(e.g. TP73 and BNIP3) were enriched in the 
H3K27me3 mark in t(4;14) HMCLs. Methylation of 
the BNIP3 promoter was also described and 
associated with poor overall survival in MM patients 
[62]. These results confirmed the interplay between 
MMSET, EZH2 and H3K27me3 [61,63] and revealed 
new potential therapeutic targets for t(4;14) MM 
patients associated with poor prognosis [64]. We also 
observed that TP53 bi-allelic events are associated 
with a H3K9me3 signature. SUV39H1, the histone 
methyltransferase responsible for the H3K9me3 mark, 
is a target of p53 repression and p53 target promoters 
are enriched in the H3K9me3 repressive mark [65], 
suggesting that TP53 mutation could modulate 
H3K9me3 level on these promoters and thus the p53 
apoptotic response. 

We and others showed that super-enhancers 
were associated to key genes contributing to myeloma 
pathogenesis, such as MYC, IRF4, CCND1, NSD2 and 
MAF [39,66]. Acetylated chromatin, particularly 
super-enhancer regions, is associated to bromo-
domain and extra-terminal (BET) proteins to facilitate 
transcriptional activation [67]. BET inhibitors disrupt 
the interaction of bromodomains with acetylated 
histones and lead to loss of enhancer-promoter 
long-range interactions. The score based on genes 
associated with super-enhancers built in this study 
allows one to identify high-risk MM patients that 
might benefit from BET inhibitors. Several BET 
inhibitors are currently evaluated in phase I/II in MM 
patients, including OTX015 (NCT01713582), CPI-0610 
(NCT02157636), GSK525762 (NCT01943851), and 
RO6870810 (NCT03068351) [68]. We showed that 
SE-associated risk score was correlated with the 
response to GSK525762 in HMCLs. Moreover, 
concerning the 28 genes composing the SE-risk score, 
the prognostic value of 7 genes (BSG, HK2, HSPA9, 
IL10, PARP1, PDIA6 and SLC7A5) has already been 
described in MM [69–79] while the expression of 
HNRNPC, ILF3, LDHB, MDH1, NCL, PRPS1, RPL8, 
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RPL13A, RPL35, SMARCA4, SPN, STC2 and THY1 was 
described to be associated to tumorigenesis, drug 
resistance and/or poor prognosis in other cancers 
[80–93]. Furthermore, the prognostic value of 
MYBPC2, NUDC, RPL27A, SF3BS, SLC25A39, TNPO2, 
TPR, YWHAQ transcriptional deregulation has not 
been described before. Interestingly, among these 
genes associated with SE in MM, YWHAQ, IL10, HK2 
and THY1 were identified as significant essential MM 
genes in RNAi or CRISPR screening, corroborating 
epigenetic and transcriptional modifications at a 
functional level. 

It is widely believed that H3K9me3 and 
H3K27me3 do not co-occur at the same loci, but some 
ChIP-seq data indicate that these two marks can be 
found together at a subset of developmentally 
regulated gene in mouse embryonic stem cells, 
extra-embryonic lineages and human differentiated 
cells [54–56]. This dual repression at specialized 
regulators may point to the importance of 
maintaining their silencing to confer a selective 
advantage in tumoral cells. Here, we identified 18 
potential suppressor tumor genes enriched in 
H3K9me3 and H3K27me3 repressive marks on their 
promoter. To our knowledge, the tumor suppressor 
function of these genes has not yet been described in 
MM. However, some of them are involved in cell 
proliferation inhibition. The NLRP2 gene, coding for a 
member of the nucleotide binding and leucine-rich 
repeat receptor (NLR), is an inhibitor of NF-κB 
pathway inhibitor which plays a key role in survival 
and proliferation of myeloma cells [94,95]. PAG1 
encodes for a type III transmembrane adaptor protein 
and is an inhibitor of Src tyrosine kinases known to 
promote proliferation in MM [96,97]. From these 18 
genes we built a score identifying a high-risk group of 
MM patients with global low expression of putative 
suppressor genes associated with H3K9me3 and 
H3K27me3 marks. We showed that this score was 
correlated with the response to EPZ-3864 and 
chaetocin, a SUV39H1/2 protein inhibitor, in HMCLs. 
High-risk MM patients identified with this score 
could benefit from combined therapeutic targeting of 
EZH2 and SUV39H1 histone methyltransferases. 
Moreover, the therapeutic interest of EZH2 inhibitors 
has already been demonstrated in HMCLs and 
primary myeloma samples [98]. Concerning 
SUV39H1, high expression level is associated with a 
poor prognosis in MM patients and SUV39H1 
inhibitor also exhibited anti-MM effects both in 
HMCLs and primary samples [99].  

Despite the improvement of MM patient 
survival through the development of novel agents, 
including new generation of IMiDs or proteasome 
inhibitors, monoclonal antibodies and HDAC 

inhibitors, the acquisition of drug resistance is the 
major limitation of MM therapy. The great majority of 
MM patients ultimately relapse and the treatment of 
relapse/refractory MM remains a major challenge. In 
this study, we analyzed the relationship between 
differential enrichment of H3K4me3 on gene 
promoters in HMCLs and response to treatment. We 
developed an epigenetic biomarker based on this 
histone modification, which predicts lenalidomide 
and romidepsin responses in HMCLs. IMiDs are 
known to target the cereblon complex. Cereblon is 
composed of CUL4, RBX1, DDB1 and CRBN proteins 
and induces the ubiquitination of B-cell transcription 
factors IKZF1 and IKZF3 in presence of IMiDs [59]. 
Among the genes encoding these proteins, we 
observed a significant difference in H3K4me3 
enrichment on the promoter of CUL4B in 
lenalidomide-sensitive HMCLs compared to resistant 
HMCLs (Supplementary Figure 15). In other studies, 
loss of CUL4B has been described as conferring 
resistance to lenalidomide in lymphoma and 
myeloma cell lines [100,101]. Here, we have shown 
that the presence of the CUL4B splicing variant 1 is 
indeed associated with sensitivity to lenalidomide 
and pomalidomide. 

This study provides a comprehensive 
characterization of the MM epigenetic landscape, 
representing a unique resource for future biological 
studies which could help in identifying novel critical 
epigenetic modifications involved in MM progression 
and drug resistance. Furthermore, risk-scores based 
on super enhancers and repressive regions together 
with epigenetic biomarkers of drug response could 
represent new tools for precision oncology in MM. 
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