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Abstract: The continuous interactions between host and viruses during their co-evolution 
have shaped not only the immune system but also the countermeasures used by 
viruses.  Studies in the last decade have described the diverse arrays of 
pathways and molecular targets that are used by viruses to elude immune 
detection or destruction, or both.  These include targeting of pathways for 
major histocompatibility complex class I and class II antigen presentation, 
natural killer cell recognition, apoptosis, cytokine signalling, and complement 
activation.  This paper provides an overview of the viral immune-evasion 
mechanisms described to date.  It highlights the contribution of this field to our 
understanding of the immune system, and the importance of understanding this 
aspect of the biology of viral infection to develop efficacious and safe 
vaccines. 

1. INTRODUCTION 

The continuous interactions between hosts and viruses during their co-
evolution have shaped not only the immune system but also the counter-
measures used by viruses.  The evasion strategies that viruses have devised 
are highly diverse, ranging from the passive to the active. Passive evasion 
strategies comprise hiding inside the infected host cell in a dormant form or 
creating a broad antigenetic diversity among the progeny virions during each 
replication cycle (as exploited, for example, by retroviruses), thus evading or 
staying one step ahead of the immune response.  Active mechanisms include 
interferences with pathways for major histocompatibility complex (MHC) 
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class I and class II antigen presentation, natural killer (NK) cell recognition, 
cytokine signalling, apoptosis of infected cells, and complement activation. 
In this review, the authors provide an overview of the different active 
mechanisms that viruses use to evade host immune responses.  Due to space 
constraints, those mechanisms will be presented concisely in pairs of 
associated figures and tables.  The basic concepts of the components of the 
immune system targeted by the viruses are described in the figures, while 
viral strategies are listed in the corresponding tables.  To save space, viruses 
are cited using the abbreviations of the International Committee for 
Taxonomy of Viruses. 

2. VIRAL INTERFERENCE WITH MHC CLASS I 

PATHWAY 

CD8-positive cells play an important role in immunity against viruses.  
Just how important these cells are is demonstrated by the evolution of viral 
strategies for blocking the genesis or the display of viral peptide-MHC class 
I complexes on the surface of viral infected cells.  To enhance the 
understanding of this field, the manner in which viral proteins are processed 
for recognition by virus-specific CD8+ T cells is briefly described 
(Figure 1).  In the infected cells, peptides are generated from by-products of 
proteasomal degradation.  Most of the substrates consist of defective 
ribosomal products (DRiPs).  Peptides are then transported into the 
endoplasmic reticulum (ER) by the TAP protein.  Here, MHC class I 
molecules are folded through the actions of general purpose molecular 
chaperones working with a dedicated chaperone (Tapasin) that tethers MHC 
class 1 to TAP.  After peptide binding, MHC class I molecules dissociate 
from TAP, leave the ER and migrate to the plasma membrane through the 
Golgi complex.  As viral peptide-MHC class I complexes accumulate on the 
cell surface, they have a greater chance of triggering activation by CD8+ T 
cells with a cognate receptor. Viruses have been shown to interfere with 
virtually every step of T cell antigen processing and presentation (Figure 1 
and Table 1).  The viral proteins involved in such mechanisms have been 
called VIPRs (pronounced “viper”) for viral proteins interfering with antigen 
presentation.  They are listed in Table 1 together with their mechanism of 
action.  For an excellent review on this subject, see that of Yewdell and Hill 
(2002).



Viral subversion of the immune system 259

Figure 1. Viral interference with MHC class I pathway.   

The classical MHC class I pathway is depicted with reference to viral interfering proteins 
listed in Table 1.  Peptides are derived from DRiPs through the action of proteasomes and 
transported into the ER by the TAP protein.  Nascent MHC class I molecules bind to TAP via 
tapasin.  Binding of peptide to MHC class I molecules releases them from the ER.  Peptide-
MHC class I molecules then migrate to the cell surface.  VIPRs have been shown to interfere 
with virtually every step of T cell antigen processing and presentation, namely (1) prevention 
of peptide degradation; (2) inhibition of peptide translocation in the ER, the inhibitory viral 
protein being either on the cytosolic side (2a) or in the lumen of the ER (2b); (3) retention of 
MHC class I molecules in the ER (3a) or in the transGolgi network (TGN) (3c), or by 
targeting of ER MHC class I molecules for degradation by the proteoasomes (3b); 
(4) reduction of peptide-MHC class I complexes exposed on the cell surface by inhibition of 
their migration to the cell surface, by increasing their endocytosis from the cell surface and by 
increasing their degradation into lysosomes; and (5) inhibition of T CD8+ cell recognition of 
cell surface peptide-MHC class I complexes.  The VIPRs acting at those steps are listed in 
Table 1. 
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Table 1. Viral interference with the MHC class I pathway. 

Site(1) Virus(2) Viral gene 
or protein 

Mechanism of action Source 

1 HHV-4 EBNA-1 Contains a sequence that renders it resistant to 
proteasome degradation and self inhibition of 
synthesis 

[1; 2] 

1 HHV-5 UL83 Inhibits generation of antigenic peptides from a 
72 kDa transcription factor by phosphorylation of the 
latter

[3] 

2a HHV-1 
HHV-2

ICP47 Prevents peptide translocation by interacting with both 
TAP 1 and TAP 2 on the cytosolic side of the ER 

[4; 5] 

2a BoHV-1 ICP47 Prevents peptide translocation by interacting with both 
TAP 1 and TAP 2 on the cytosolic side of the ER 

[6] 

2b HHV-5 US6 Binds to TAP in the ER lumen and prevents peptide 
transport

[7; 8; 9]

3a Adeno-
virus

E19 Retains MHC-I in the ER by binding to the α1 and 
α2 regions (could also inhibit peptide loading of the 
MHC-I)

[10; 11; 
12; 13] 

3a HHV-5 US3 Retains MHC-I in the ER [14; 15]
3a MuHV-1 m4 Forms extensive complexes with MHC-I in the ER [16] 
3b HHV-5 US2, US3 Targets class 1 heavy chains for degradation by the 

proteasome
[17] 

3b MuHV-4 K3 Targets class 1 heavy chains for degradation by the 
proteasome and subverts TAP/Tapasin associated 
class I 

[18; 19]

3b HIV-1 Vpu Destabilizes newly synthesized class 1 molecules 
and targets for degradation 

[20] 

3b HTLV-1 p12(I) Targets class 1 heavy chains for degradation by the 
proteasome

[21] 

3c MuHV-1 m152 Retains MHC-I within the ER-transGolgi
intermediate compartment 

[22] 

4 MuHV-1 m06 Prevents the MHC-I from reaching the cell surface [23] 
4 HIV, SIV nef Accelerates endocytosis of class 1 complexes 

(specific targeting of HLA A and B locus) 
[24; 25]

4 EHV-1 ? Enhanced endocytosis of MHC-I from the surface [26] 
4 HHV-8 K3, K5 Targets the MHC-I to lysosomes [27]
5 MuHV1 m4 Inhibits T CD8+ cell recognition [28] 

NOTES: (1) Site of action. Numbers refer to paths identified in Figure 1. (2) International 
Committee for Taxonomy of Viruses (ICTV) abbreviations. 
SOURCES: [1] Levitskaya et al., 1995. [2] Yin, Maoury and Fahraeus, 2003. [3] Gilbert et al.,
1993. [4] Galocha et al., 1997. [5] Ahn et al., 1996. [6] Hinkley, Hill and Srikumaran, 1998. 
[7] Hengel et al., 1996, 1997. [8] Ahn et al., 1997. [9] Lehner et al., 1997. [10] Cox, Bennink 
and Yewdell, 1991. [11] Burgert and Kvist, 1987. [12] Jefferies and Burgert, 1990. 
[13] Bennett et al., 1999. [14] Ahn et al., 1996. [15] Jones, et al., 1996. [16] Kavanagh, 
Koszinowski and Hill, 2001. [17] Wiertz et al., 1996. [18] Boname and Stevenson, 2001. 
[19] Lybarger et al., 2003. [20] Kerkau et al., 1997. [21] Johnson et al., 2001. [22] Ziegler et
al., 1997. [23] Reusch et al., 1999. [24] Le Gall et al., 1998. [25] Cohen et al., 1999. 
[26] Rappocciolo, Birch and Ellis, 2003. [27] Hewitt et al., 2002. [28] Kleijnen et al., 1997. 
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Figure 2. Viral evasion of NK cells.   

Viral mechanisms interfering with NK cell functions fall into five categories, namely 
(1) expression of virally encoded MHC class I homologues that serve as NK cell decoys and 
ligate inhibitory receptors to block NK cytotoxicity; (2) selective modulation of MHC class I 
allele expression.  Some viruses are able to down-regulate MHC class I molecules that are 
efficient for presentation of viral peptides to CD8+ cytotoxic T cells (such as HLA-A and 
HLA-B) without affecting or even increasing the expression of HLA-C and HLA-E, the 
dominant ligands for NK cell inhibitory receptors; (3) through the various mechanisms listed 
in Table 2, some viruses are capable of inhibiting the function of NK activatory receptor; 
(4) other viruses interfere with the cytokine pathways relevant to NK cell activation by 
producing virally encoded cytokine-binding proteins or cytokine antagonist; and (5) viruses 
can also directly inhibit NK cells by infecting them or by using viral envelope proteins to 
ligate NK cell inhibitory receptor. 
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3. VIRAL EVASION OF NATURAL KILLER CELLS 

NK cells are lymphocytes that, in contrast to B and T cells, do not 
undergo genetic recombination events to increase their affinity for particular 
ligands, and are therefore considered as part of the innate immune system.  
They are capable of mediating cytotoxic activity and producing cytokines 
after ligation of a variety of germline-encoded receptors.  Like CD8+ T cells, 
NK cells mediate direct lysis of target cells by releasing cytotoxic granules 
containing perforin and granzymes, or by binding to apoptosis-inducing 
receptors on the target cells.  Several receptors that can activate NK cells 
have been identified, among which some recognize viral proteins (Orange et 
al., 2002).  Due to the possible consequences of NK cell activation, normal 
host cells must inhibit NK activity.  Various inhibitory receptors are 
consistently expressed by a subset of NK cells.  These receptors bind to host 
MHC class I molecules and transmit inhibitory signals to the NK cells. 

As noted above, many viruses have acquired effective means of avoiding 
T cell antigen presentation, thus avoiding T cell adaptive immune response.  
However, by eluding T cells, the viruses might have increased their 
susceptibility to NK cell-mediated defences.  Consequently, in addition to 
the inhibition of T cell antigen presentation, some viruses have also acquired 
mechanisms to evade the action of NK cells. These mechanisms fall into five 
categories, presented in Figure 2; the viruses known to have acquired such 
mechanisms are listed Table 2. For an excellent review of the viral evasion 
of NK cells, see Orange et al. (2002). 

Table 2. Viral evasion of natural killer cells. 

Site (1) Virus(2) Viral
gene

Mechanism of action Source 

1 HHV-5 UL18 Homologue of MHC class I, binds to ILT-2 [1; 2; 3; 4]
1 MuHV-1 m144 Homologue of MHC class I [5; 6; 7] 
1 MuHV-1 m157 Homologue of MHC class I, binds to Ly49-1 [8; 9; 10] 
1 MuHV-2 r144 Homologue of MHC class I [11] 
1 MOCV MC80R Homologue of MHC class I [12] 
2 HHV-5 US2, 

US11
Cytosolic degradation of MHC class I, with 
exception of HLA-C and HLA-E 

[13; 14; 
15; 16] 

2 HHV-5 US2,  
US3,
US6,
US11

Degradation or intracellular retention of MHC 
class I but not IL-18 

[17] 

2 HHV-5 UL40 Enhances surface expression of HLA-E [18; 19; 
20] 

2 MuHV-1 m04 Forms complexes with MHC class I molecules 
intracellularly and on the cell surface 

[21] 

2 HIV Nef Induces the endocytosis of MHC class I with 
exception of HLA-C and HLA-E 

[22; 23] 
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Site (1) Virus(2) Viral
gene

Mechanism of action Source 

2 SIV Nef Induces the endocytosis of MHC class I with 
exception of HLA-C and/or HLA-E 

[22; 24] 

2 HHV-8 K5 Induces the endocytosis of HLA-A and HLA-B [19; 25] 
3 HHV-5 ? Decreases surface expression of the CD2 ligand 

LFA-3 
[26] 

3 HHV-5 UL16 Blocks the interaction of NKG2D-DAP10 and 
ULBP

[27; 28; 
29] 

3 MuHV-1 m152 Decreases surface expression of H60 (NKG2D 
ligand)

[30] 

3 HHV-8 K5 Mediates ubiquitination and decreases surface 
expression of ICAM-1 and B7-2 

[25; 31; 
32] 

3 HIV, 
HTLV

? Mediates syalilation of cell surface receptors in 
infected cells 

[33] 

3 HIV Tat Inhibits LFA-1 mediated Ca2+ influx through 
binding of L-type Ca2+ channel 

[34; 35] 

4 MuHV-1 m131/129 Putative chemokine homologue [36; 37] 
4 HHV-8 vMIP-1, 

vMIP-2
Chemokine antagonists [38; 39] 

4 HHV-5 UL111a Viral IL-10 homologue [40] 
4 HHV-4 BCRF1 Viral IL-10 homologue [41] 
4 ECTV p13 IL-18 binding protein [42] 
4 MOCV MC54L IL-18 binding protein [43] 
4 HPV E6, E7 IL-18 binding protein and antagonistic binding to 

IL-18 Rα
[44; 45] 

4 MuHV-4 hvCKBP Chemokine binding protein [46] 
4 VACV vCKBP Chemokine binding protein [47] 
5 HIV / Infects NK cells [48]
5 HHV-1 / Infects NK cells [49]
5 HCV E2 Binds to CD81 [50; 51] 

NOTES: (1) Site of action. Numbers refer to paths identified in Figure 2. (2) International 
Committee for Taxonomy of Viruses (ICTV) abbreviations. 
SOURCES: [1] Beck and Barrell, 1988. [2] Reyburn et al., 1997. [3] Leong et al., 1998. 
[4] Cosman et al., 1997. [5] Farrell et al., 1997. [6] Kubota et al., 1999. [7] Cretney et al.,
1999. [8] Smith, Idris and Yokoyama, 2001. [9] Mandelboim et al., 2001. [10] Arase et al.,
2002. [11] Kloover et al., 2002. [12] Senkevich and Moss, 1998. [13] Schust et al., 1998. 
[14] Gewurz et al., 2001. [15] Machold et al., 1997. [16] Lopez-Botet, Llano and Ortega, 
2001. [17] Park et al., 2002. [18] Tomasec et al., 2000. [19] Ishido et al., 2000. [20] Wang et 
al., 2002. [21] Kavanagh et al., 2001. [22] Le Gall et al., 1998. [23] Cohen et al., 1999. 
[24] Swigut et al., 2000. [25] Coscoy, Sanchez and Ganem, 2001. [26] Fletcher, Prentice and 
Grundy, 1998. [27] Sutherland, Chalupny and Cosman, 2001. [28] Kubin et al., 2001. 
[29] Cosman et al., 2001. [30] Krmpotic et al., 2002. [31] Ishido et al., 2000. [32] Coscoy and 
Ganem, 2001. [33] Zheng and Zucker-Franklin, 1992. [34] Zocchi et al., 1998. [35] Poggi et 
al., 2002. [36] Fleming et al., 1999. [37] Saederup et al., 2001. [38] Kledal et al., 1997. 
[39] Inngjerdingen, Damaj and Maghazachi, 2001. [40] Kotenko et al., 2000. [41] Moore et 
al., 1990. [42] Born et al., 2000. [43] Xiang and Moss, 1999. [44] Lee et al., 2001. [45] Cho
et al., 2001. [46] Parry et al., 2000. [47] Alcami et al., 1998. [48] Chehimi et al., 1991.
[49] York and Johnson, 1993. [50] Tseng and Klimpel, 2002. [51] Crotta et al., 2002. 
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Figure 3. Viral inhibition of MHC class II antigen presentation.

MHC class II  and  chains and the invariant chain (Li) are expressed constitutively or in 
response to IFN-g stimulation.  These molecules assemble in the ER to form the - -Li
complexes that are then transported from the ER through the Golgi apparatus to the TGN, 
where the complexes are sorted to endosomes in response to signals present in the 
cytoplasmic tail of Li.  In early endosomes, Li is progressively degraded by low-pH proteases 
so that fragments of it remain bound to the peptide-binding groove formed by the -  chains.  
The MHC class II complexes then traffic into more acidic late endosomes and prelysosomal 
compartments known as MHC class II loading compartment (MIIC).  Viral antigens can reach 
the endocytic pathway by phagocytosis, endocytosis or recycling of internal vesicules (site of 
virus assembly).  Antigens delivered into the endocytic pathway are degraded by acid-
dependent proteases to form peptides that are delivered to MIIC and loaded onto MHC class 
II -  dimers.  Exchange of peptide antigens for Li fragments occurs in collaboration with 
class II-like -  dimers called DM.  From the MIIC, peptide-loaded class II moves to the cell 
surface for presentation to CD4+ T cells. Viral mechanisms interfering with MHC class II 
antigen presentation fall into 5 categories: (1) inhibition of the IFN-  transduction cascade 
leading to the expression of MHC class II; (2) Inhibition of the association of the  and 
chains with the Li chains; (3) redirecting the  and b chains and DM for degradation by the 
proteasome; (4) preventing MHC class II from reaching the endocytic compartment; and 
(5) interfering with MHC class II processing and acidification of the endosome. 
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4. VIRAL INHIBITION OF MHC CLASS II 

ANTIGEN PRESENTATION 

CD4-positive cells can recognize viral antigens expressed on virus-
infected cells expressing MHC class II molecules to act cytolytically, to 
produce antiviral cytokines or to coordinate the antiviral immune response. 
MHC class II molecules are expressed constitutively by thymic epithelial 
cells, activated T cells and professional antigen-presenting cells, while in 
other cells, such as fibroblasts, keratinocytes, endothelial, epithelial and glial 
cells, their expression require IFN-γ stimulation.  The latter induces the 
expression of MHC-II molecules through a complex cascade of factors 
(reviewed in Hegde, Chevalier and Johnson, 2003). 

From the recent literature, it appears that viral inhibition of MHC class II 
antigen presentation is designed to prevent presentation of endogenous viral 
antigens in virus-infected cells rather than presentation of exogenous 
antigens in professional antigen-presenting cells.

Table 3. Viral inhibition of MHC class II antigen presentation. 

Site (1) Virus(2) Viral
gene

Mechanism of action Source 

1 Adeno-
virus

E1A Interferes with MHC class II upregulation (INF γ
signal transduction cascade) 

[1] 

1 HHV-5 ? Interferes with MHC class II upregulation (INF γ
signal transduction cascade) 

[2; 3] 

2 HHV-5 US3 Bounds to α/β subunits of MHC class II complexes 
in the ER reducing their association with Li 

[4] 

3 HHV-5 US2 Targets the MHC class II α and DM-α molecules for 
degradation by the proteasome 

[5] 

4 HHV-1 ? Redistributes MHC class II molecules away from the 
endocytic pathway 

[6] 

4 HIV Env Redistributes MHC class II molecules away from the 
endocytic pathway 

[7] 

5 HIV Nef Interference with MHC class II processing [8] 
5 SIV Nef Interference with MHC class II processing [9] 
5 HHV-1 gB Interference with molecular co-players of MHC 

class II (DR and DM) processing 
[10] 

5 HPV/BPV E5 Interference with MHC class II processing, and 
acidification of the endosomes 

[11; 12] 

5 BPV E6 Interacts with AP-1, the TGN-specific clathrin 
adaptator complex 

[11; 13] 

NOTES: (1) Site of action. Numbers refer to paths identified in Figure 3. (2) International 
Committee for Taxonomy of Viruses (ICTV) abbreviations. 
SOURCES: [1] Leonard and Sen, 1996. [2] Miller et al., 1999. [3] Miller et al., 1998. [4] Hegde 
et al., 2002. [5] Tomazin et al., 1999. [6] Lewandowski, Lo and Bloom, 1993. [7] Rakoff-
Nahoum et al., 2001. [8] Stumptner-Cuvelette et al., 2001. [9] Schindler et al., 2003. 
[10] Neumann, Eis-Hubinger and Koch, 2003. [11] Tortorella et al., 2000. [12] Andresson et 
al., 1995. [13] Tong et al., 1998. 
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To enhance the understanding of this field, Figure 3 illustrates how viral 
peptides are processed for presentation in association with MHC class II 
molecules on the surface of an infected host cell. Some of the viral 
mechanisms acquired by viruses to interfere with this process are listed in 
Table 3.  For an excellent review of this topic, see Hegde, Chevalier and 
Johnson (2003). 

Figure 4. Viral interference with cytokines, chemokines and their receptors. 

The strategies acquired by viruses to interfere with or to exploit host cytokines, chemokines 
and their receptors can be classified into 5 categories: (1) some viruses encode membrane 
anchored molecules able to bind host chemokine and eventually transduce a signal. Because 
these viral molecules have sequence similarity with host cellular receptors, they have been 
called chemokine receptors; (2) other viruses encode soluble proteins capable of binding to 
chemokines and preventing their action on target cells. Because these viral proteins are not 
homologues of host cellular proteins, they have been called chemokine binding protein rather 
than chemokine receptor; similarly, (3) viral encoded membrane anchored cytokine receptors; 
and (4) soluble cytokine receptors or soluble cytokine binding proteins have been described; 
(5) viruses are known to encode homologues of cytokines or chemokines. 
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5. VIRAL INTERFERENCE WITH CYTOKINES, 

CHEMOKINES AND THEIR RECEPTORS 

Viral infection induces the production of cytokines and chemokines 
playing crucial roles in inducing the migration and activation of immune 
cells to areas of infection; in immune regulation; in anti-viral defence; as 
well as in the capacity of target cells to support virus replication.  For 
example, cytokines such as interferons (IFN) and tumour necrosis factor 
(TNF) induce intracellular pathways that activate an anti-viral state or 
apoptosis, and thereby contribute to limit viral replication. A very large 
number of cytokines induce mechanisms that enhance immune recognition, 
or immune responses that protect against viral infection.  Finally, some anti-
viral cytokines mediate killing of infected cells by NK cells or cytotoxic T 
lymphocytes.  Therefore, it is not surprising to find that cytokines, 
chemokines and their receptors are targets of viral immune-evasion 
strategies.  The different strategies developed by viruses to interfere with or 
to exploit host cytokines, chemokines or their receptors are illustrated in 
Figure 4.  Example of viruses known to have acquired such strategies are 
listed in the accompanying Table 4.  For an excellent review of this topic, 
see the recent review by Alcami (2003). 

Table 4. Viral interference with cytokines, chemokines and their receptors. 
Site (1) Virus(2) Viral gene Mechanism of action Source

1 HHV-8 ORF74 Viral chemokine receptor, induces cell 
proliferation in vitro and tumours in transgenic 
mice 

[1] 

1 HHV-5 US28 Viral chemokine receptor [2] 
1 HHV-5 US27 Viral chemokine receptor [3] 
1 SCMV E3-7 Cluster of five HCMV US28 homologues [4] 
1 MuHV-1 m33 Viral chemokine receptor [5] 
1 HHV-6 U51 Viral chemokine receptor [6] 
1 FWPV FPV 021, 

027, 206 
Viral chemokine receptor [7] 

1 SWPV SPV146 CXCR1 homologue [3] 
1 SPPV Q2/3L CC-chemokine receptor [3] 
1 YLDV 7L, 145R CCR8 homologues [8] 
1 LSDV LSDV011 CC-chemokine receptor homologue [9] 
2 EHV-1 gG 

(vCKBP4)
Secreted or membrane anchored C-, CC-, CXC- 
chemokine binding protein 

[10] 

2 EHV-3 gG 
(vCKBP4)

Secreted or membrane anchored C-, CC-, CXC- 
chemokine binding protein 

[10] 

2 BoHV-1 gG 
(vCKBP4)

Secreted or membrane anchored C-, CC-, CXC- 
chemokine binding protein 

[10] 

2 BoHV-5 gG 
(vCKBP4)

Secreted or membrane anchored C-, CC-, CXC- 
chemokine binding protein 

[10] 
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Site (1) Virus(2) Viral gene Mechanism of action Source
2 RanHV-1 gG 

(vCKBP4)
Secreted or membrane anchored C-, CC-, CXC- 
chemokine binding protein 

[10] 

2 CapHV-1 gG 
(vCKBP4)

Secreted or membrane anchored C-, CC-, CXC- 
chemokine binding protein 

[10] 

2 CerHV-1 gG 
(vCKBP4)

Secreted or membrane anchored C-, CC-, CXC- 
chemokine binding protein 

[10] 

3 MYXV vCKBP1 Secreted C-, CC-, CXC- chemokine binding 
protein

[11] 

3 VACV vCKBP2 Secreted C-chemokine binding protein [12; 13] 
3 CPXV H5R Secreted C-chemokine binding protein [12; 13] 
3 MYXV M-T1 Secreted C-chemokine binding protein [12; 13] 
3 MuHV-4 vCKBP3 Secreted C-, CC-, CXC-, CX3C- chemokine 

binding protein 
[14] 

3 VACV A41L vCKBP2 homologue [15] 
4 HHV-5 UL144 Membrane TNFR homologue [16] 
5 CPXV CrmB Secreted TNF inhibitor [17] 
5 MYXV MT-2 Secreted TNF inhibitor [18]
5 CPXV CrmC Secreted TNF inhibitor [19] 
5 CPXV CrmD Secreted TNF inhibitor [20] 
5 CPXV [21] 
5 VACV 

CrmE
CrmE

Secreted TNF inhibitor, also expressed at the cell 
surface [22] 

5 LCDV1 ORF167L Homology to domain of TNFR [23] 
5 SFV T2 TNF-R homologue [24; 25] 
5 ECTV E13 Secreted; blocks binding of CD30 to CD30L and 

induces reverse signalling in cells expressing CD30L
[26] 

5 VACV vCD30 Secreted; blocks binding of CD30 to CD30L and 
induces reverse signalling in cells expressing CD30L

[27] 

5 VACV B16R Secreted receptor for interleukin-1  [28] 
5 MYXV MT-7 Secreted receptor for IFN-γ [29] 
5 VACV B8R Secreted receptor for IFN-γ [30] 
5 VACV B19R Secreted and cell surface binding protein for IFN-

α/β
[31] 

5 HHV-4 BARF1 Secreted binding protein for CSF1 [32]
5 ORFV GIF Secreted binding protein for GM-CSF/IL2 [33] 
5 MOCV MC54 Secreted binding protein for IL18 [34] 
5 ECTV E19 Secreted binding protein for IL18 [35] 
5 MOCV MC51, 

MC53
Secreted binding proteins for IL18 [36] 

6 VACV C11R Viral epidermal growth factor homologue [37] 
6 ORFV A2R Viral vascular endothelial growth [38] 
6 HHV-4 BCRF1 Viral IL-10 homologue [39] 
6 HHV-5 UL111a Viral IL-10 homologue [40] 
6 ORFV vIL-10 Viral IL-10 homologue [41] 
6 EHV-2 E7 Viral IL-10 homologue [42] 
6 SaHV-2 ORF13 Viral IL-17 homologue [43] 
6 HHV-8 K2 Viral IL-6 homologue [44] 
6 VACV A39R Viral semaphorin, binds semaphorin receptor 

VESPR 
[45] 
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Site (1) Virus(2) Viral gene Mechanism of action Source
6 FWPV FPV080 Viral TGF-β homologue [7] 
6 FWPV FPV072, 

FPV076
Viral β-NGF homologue [7] 

6 HHV-8 K6 Viral CR8 agonist [46] 
6 HHV-8 K4 C-, CC-, CXC-, CX3C-chemokine antagonist [47] 
6 HHV-8 K4.1 CCR4 agonist [48] 
6 HHV-6 U83 CC-chemokine agonist [49] 
6 MOCV MC148 CC-, CXC-chemokine antagonist, CCR8 specific 

antagonist
[50; 51] 

6 MuHV-1 m131/129 CC-chemokine agonist [52 – 54]
6 HHV-5 UL146 CXCR2 agonist [55] 
6 GaHV-2 MDV003 CXC chemokine [56] 
6 HIV tat Partial chemokine similarity [57] 
6 HRSV gG Partial chemokine similarity, CX3CL1 activity [58] 

NOTES: (1) Site of action. Numbers refer to paths identified in Figure 4. (2) International 
Committee for Taxonomy of Viruses (ICTV) abbreviations. 
SOURCES:  [1] Arvanitakis et al., 1997. [2] Bodaghi et al., 1998. [3] Murphy, 2001. 
[4] Alcami, 2003. [5] Davis-Poynter et al., 1997. [6] Milne et al., 2000. [7] Alfonso et al., 
1996. [8] Lee, Essani and Smith, 2001. [9] Tulman et al., 2001. [10] Bryant et al., 2003. 
[11] Mossman et al., 1996. [12] Smith et al., 1997. [13] Graham et al., 1997. [14] Parry et al.,
2000. [15] Ng et al., 2001. [16] Benedict et al., 1999. [17] Hu, Smith and Pickup, 1994. 
[18] Macen et al., 1996. [19] Smith et al., 1996. [20] Loparev et al., 1998. [21] Saraiva and 
Alcami, 2001. [22] Reading, Khanna and Smith, 2002. [23] Tidona and Darai, 1997. 
[24] Smith et al., 1990. [25] Smith et al., 1991. [26] Saraiva et al., 2002. [27] Panus et al.,
2002. [28] Alcami and Smith, 1992. [29] Upton, Mossman and McFadden, 1992. [30] Alcami 
and Smith, 1995. [31] Colamonici et al., 1995. [32] Strockbine et al., 1998. [33] Deane et al.,
2000. [34] Xiang and Moss, 1999a. [35] Smith, Bryant and Alcami, 2000. [36] Xiang and 
Moss, 1999b. [37] Twardzik et al., 1985. [38] Meyer et al., 1999. [39] Hsu et al., 1990. 
[40] Kotenko et al., 2000. [41] Fleming et al., 1997. [42] Rode et al., 1993. [43] Yao et al.,
1995. [44] Aoki et al., 1999. [45] Gardner et al., 2001. [46] Boshoff et al., 1997. [47] Kledal
et al., 1997. [48] Stine et al., 2000. [49] Zou et al., 1999. [50] Krathwohl et al., 1997. 
[51] Luttichau et al., 2000. [52] Fleming et al., 1999. [53] Saederup et al., 2001. 
[54] Saederup et al., 1999. [55] Penfold et al., 1999. [56] Parcells et al., 2001. [57] Albini et 
al., 1998. [58] Tripp et al., 2001. 

6. VIRAL MANIPULATION OF THE CELL DEATH 

PROGRAMME

Replication of viruses may stimulate suicide of the host cell directly or 
via recognition by immune effector cells. These cells (cytolytic T cells and 
NK cells) induce cell death by secretion of cytotoxic cytokines such as TNFs 
and by processes requiring direct cell-cell contact, such as release of perforin 
and granzyme.  This form of programmed cell death is called apoptosis.  
Apoptosis is an orchestrated biochemical process that leads ultimately to the 
demise of the cell, initiated by both internal sensors (intrinsic pathway, 
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mitochondria dependent) and external stimuli (extrinsic pathway, death 
receptor mediated). 

Figure 5. Viral inhibition of apoptosis.

Apoptosis can be initiated by two main pathways.  The extrinsic pathway is triggered by death 
ligands binding to their cognate death receptors. These receptors then multimerize and their 
death domains (DDs) interact with the DDs of adaptator proteins that bind to pro-caspase 8 
and/or pro-caspase 10 to form the DISC.  This ends with pro-caspase cleavage in their active 
form.  These caspases can then cleave Bid and activate the effector caspase cascade.  On the 
other end, internal sensors initiate the intrinsic pathway via a process that results in hetero-
oligomeric pores formation in the outer membrane of the mitochondria.  Factors such as 
cytochrom c, Smac and Omi are then released in the cytoplasm where cytochrom c promotes 
formation of the apoptosome, resulting in autocatalytic activation of caspase 9, which initiates 
the effector caspase cascade.  Caspases activation is negatively regulated by IAP, which are 
counter-balanced by proapoptotic Smac and Omi.  Viral mechanisms of apoptosis inhibition 
fall into 4 main categories: (1) modulating of death receptors signalling; (2) regulation of 
caspase; (3) mimicking Bcl-2; and (4) blinding the internal sensors. 

In the case of replicating viruses, apoptosis can be viewed as an altruistic 
defence mechanism by which the host infected cell commits suicide in order 
to prevent virus spread in the infected host.  Indeed, premature cell death 
would enable viruses to maximally replicate or to establish latency.  
Apoptosis is a complex and highly regulated process.  Many viruses have 
acquired mechanisms to inhibit this important biological process, by 
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targeting different steps. These mechanisms of viral inhibition of apoptosis 
can be classified into four main classes: modulation of death receptor 
signalling; caspase regulation; Bcl-2 mimicking; and internal sensors 
blinding.  They are described in Figure 5.  Viral proteins inhibiting apoptosis 
are listed in Table 5, together with their mechanism of action.  For an 
excellent review of this subject, see Benedict, Norris and Ware (2002). 

Table 5. Viral inhibition of apoptosis. 

Site (1) Virus(2) Viral
gene

Mechanism of action Source 

1 adeno-
virus

E3-6.7 Complexes with 10.4 and 14.5 resulting in 
downmodulation of TRAIL receptor 1 and 2 

[1] 

1 adeno-
virus

E3-10.4 Inhibits TNF and FasL induced apoptosis [2; 3] 

1 adeno-
virus

E3-14.5 Inhibits TNF and FasL induced apoptosis [2; 3] 

1 adeno-
virus

E3-14.7 Inhibits TNF induced apoptosis [4; 5] 

1 BoHV-4 ORF71 Inhibits TNF and FasL induced apoptosis (viral 
homologue of cFLIP) 

[6] 

1 EHV-2 E8 Inhibits TNF and FasL induced apoptosis (viral 
homologue of cFLIP) 

[7] 

1 SaHV-2 ORF71 Inhibits TNF and FasL induced apoptosis (viral 
homologue of cFLIP) 

[8] 

1 HHV-8 K13 Inhibits TNF and FasL induced apoptosis (viral 
homologue of cFLIP) 

[9] 

1 MOCV MC159 Inhibits TNF and FasL induced apoptosis (viral 
homologue of cFLIP) 

[7; 10] 

1 HHV-5 UL36 Prevents caspase 8 activation [11]
1 MYXV MT-2 TNF-R homologue [12; 13] 
1 HHV-4 LMP1 Interacts with TRFAFs and TRADD [14; 15] 
1 SFV T2 TNF-R homologue [16; 17] 
1 VACV CrmE TNF-receptor [18] 
1 CPXV CrmB TNF-receptor [19] 
1 CPXV CrmC TNF-receptor [20] 
1 CPXV CrmD TNF-receptor [21] 
1 CPXV CrmE Secreted TNF inhibitor, also expressed at the cell 

surface 
[22] 

1 LCDV1 ORF167L Homology to domain of TNFR [23] 
1 HHV-5 UL144 Membrane TNFR homologue [24] 
2 ASFV A224L IAP-related protein [25; 26] 
2 Baculo-

virus
P35 Inhibits caspase 1, 3, 6, 8 and 10 [27 – 29]

2 Baculo-
virus

IAP Inhibits caspase 3, 6 and 7 [27; 30] 

2 CPXV CrmA Inhibits caspase 1, 4, 5 and 11 [31 – 33]
2 VACV SPI-2 Inhibits caspase 1, 4, 5 and 11 [34] 
2 ECTV SPI-2 Inhibits caspase 1, 4, 5 and 11 [35] 
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Site (1) Virus(2) Viral
gene

Mechanism of action Source 

3 Adeno-
virus

E1B-
19K

Bcl-2-related protein [36; 37] 

3 HHV-4 BHRF1 Bcl-2-related protein [38; 39] 
3 HHV-4 BALF1 Bcl-2-related protein [40]
3 HHV-8 HHV-8 

vBcl-2
Bcl-2-related protein [41] 

3 SaHV-2 ORF16 Bcl-2-related protein [42; 43] 
3 MuHV-

4
m11 Bcl-2-related protein [44] 

3 ASFV A179L Bcl-2-related protein [45] 
3 HHV-1 US3 Prevents virus induced apoptosis via a post-

translational modification of Bad 
[46] 

3 HHV-1 US5 Cooperates with US3 [46] 
3 HHV-5 UL37 Appears to be functionally similar to Bcl-2 [47]

3 HHV-4 LMP1 Up-regulates Bcl-2 and other cell survival proteins [14; 15] 
3 HIV Nef Prevents apoptosis via phosphorylation of Bad [48] 
3 HTLV-1 Tax Activates the Bcl-xL promoter while repressing 

transcription of Bax 
[49] 

4 Adeno-
virus

E1B-
55K

Binds to p53 and functionally inactivates it [50] 

4 HPV E6 Targets p53 for degradation [51 – 53]
4 SV-40 Large T Binds to p53 and inactivates it [54; 55] 
4 HBV pX Complexes p53 and inhibits p53-mediated 

transcriptional activation 
[56] 

NOTES: (1) Site of action. Numbers refer to paths identified in Figure 5. (2) International 
Committee for Taxonomy of Viruses (ICTV) abbreviations. 
SOURCES:  [1] Benedict et al., 2001. [2] Gooding et al., 1991. [3] Shisler et al., 1997.
[4] Gooding et al., 1988. [5] Li, Kang and Horowitz, 1998. [6] Wang et al., 1997. [7] Bertin et 
al., 1997. [8] Glykofrydes et al., 2000. [9] Sturzl et al., 1999. [10] Shisler and Moss, 2001. 
[11] Skaletskaya et al., 2001. [12] Macen et al., 1996. [13] Xu, Nash and McFadden, 2000.
[14] Kawanishi, 1997. [15] Henderson et al., 1991. [16] Smith et al., 1990. [17] Smith et al.,
1991. [18] Reading, Khanna and Smith, 2002. [19] Hu, Smith and Pickup, 1994. [20] Smith et 
al., 1996. [21] Loparev et al., 1998. [22] Saraiva and Alcami, 2001. [23] Tidona and Darai, 
1997. [24] Benedict et al., 1999. [25] Chacon et al., 1995. [26] Nogal et al., 2001. [27] Clem, 
2001. [28] Clem, Fechheimer and Miller, 1991. [29] Bertin et al., 1996. [30] Crook, Clem and 
Miller, 1993. [31] Dbaibo and Hannun, 1998. [32] Tewari and Dixit, 1995. [33] Zhou et al.,
1997. [34] Dobbelstein and Shenk, 1996. [35] Turner et al., 2000. [36] Sundararajan and 
White, 2001. [37] Henry et al., 2002. [38] Henderson et al., 1993. [39] Kawanishi, 1997. 
[40] Marshall et al., 1999. [41] Sarid et al., 1997. [42] Nava et al., 1997. [43] Derfuss et al.,
1998. [44] Wang, Garvey and Cohen, 1999. [45] Afonso et al., 1996. [46] Jerome et al., 1999.
[47] Goldmacher et al., 1999. [48] Wolf et al., 2001. [49] Tsukahara et al., 1999. 
[50] Teodoro and Branton, 1997. [51] Thomas and Banks, 1998. [52] Thomas and Banks, 
1999. [53] Pan and Griep, 1995. [54] Lane and Crawford, 1979. [55] Linzer and Levine, 
1979. [56] Wang et al., 1995. 
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7. VIRUS COMPLEMENT-EVASION STRATEGIES 

Complement is part of the innate immune system and is activated in a 
cascade manner through two main pathways, known as the classical and the 
alternative, and illustrated in Figure 6.

Figure 6. Virus complement evasion strategies. 

Complement is part of the innate immune system and is activated in a cascade manner 
through two main pathways, known as the classical and the alternative pathways.  The 
classical pathway is activated by the recognition proteins C1q or mannose-binding lectin, 
which bind respectively to charge clusters or neutral sugars on targets.  In contrast, activation 
of the alternative pathway is a default process that proceeds unless down-regulated by specific 
mechanisms. Complement activation results in cleavage and activation of C3 and deposition 
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of opsonic C3 fragments on surfaces. Subsequent cleavage of C5 leads to assembly of the 
membrane attack complex (C5b,6,7,8,9), which disrupts lipid bilayers.  Viruses have 
developed different strategies acting at different stages of the complement cascade in order to 
evade complement-mediated destruction. These are listed in Table 6, and are referred to in 
this figure.  These strategies fall into three main categories: (1) some viruses interfere with the 
classical pathway by avoiding complement binding to antibody-antigen complexes, either by 
shedding or internalization of these complexes from the cell surface or by expressing virally-
encoded Fc receptor on the cell surface; (2) other viruses encode and express functional 
homologue of cellular regulators of complement activation (RCA), protecting their lipid 
envelope and the membrane of the infected cell; and (3) some viruses can incorporate host 
complement RCA in their envelope and/or up-regulate expression of these proteins in infected 
cells.

Complement activation on host cells is prevented by several membrane 
regulators of complement activation (RCA), the activity of which is 
predominantly restricted to complement of the same species, a phenomenon 
called homologous restriction. These proteins down-regulate complement 
activity at two steps in the classical and the alternative pathways: 
complement receptor 1 (CD35) and decay-accelerating factor (CD55) inhibit 
the formation and accelerate the decay of the classical pathway and 
alternative pathway C3-activating enzymes (C3 convertases); complement 
receptor 1 and membrane cofactor protein (CD46) act as cofactors for Factor 
I (a serum protease), which catabolizes C4b and C3b, thereby inhibiting 
formation of the C3 convertases C4b2a and C3bBb; finally, at the end of the 
complement cascade, CD59 and possibly also homologous restriction factor 
(C8-binding protein) prevent the formation of the membrane attack complex. 

In general, micro-organisms lack mammalian RCA and thus cannot 
restrict complement deposition and amplification on their surfaces. 
However, the toxicity of the complement system has selected viruses that 
have acquired countermeasures.  The viral strategies to evade complement-
mediated destruction are summarized in Table 6.  For a recent review of this 
topic, see that of Favoreel et al. (2003).

Table 6. Virus complement-evasion strategies. 

Site (1) Virus(2) Viral
gene

Mechanism of action Source 

1 SuHV-1 gE-gI Shedding of viral protein-antibody complexes [1] 
1 SuHV-1 gB-gD Internalization of viral protein-antibody complexes [2] 
2 HHV-1 gE-gI Fc receptor activity [3] 
2 HHV-3 gE-gI Fc receptor activity [4] 
2 SuHV-1 gE-gI Fc receptor activity [1] 
2 HHV-5 UL118-

UL119
Fc receptor activity [5] 

2 HHV-5 TRL11/ 
IRL11

Fc receptor activity [6] 

2 MuHV-1 Fcr1 Fc receptor activity [7] 
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Site (1) Virus(2) Viral
gene

Mechanism of action Source 

2 S TGEV Fc receptor activity [8] 
2 S MHV Fc receptor activity [8] 
2 S BCoV Fc receptor activity [8] 
3 CPXV IMP Downregulates chemotactic proteins C3a, C4a, C5a [9] 
4 VACV VCP Cofactor for factor I [10] 
4 VARV SPICE Cofactor for factor I [11] 
5 VACV VCP Binds to C4b [10] 
5 VARV SPICE Binds to C4b [11] 
5 SaHV-2 ORF4 Inhibits formation and accelerates decay of 

classical and alternative C3 convertases 
[12] 

6 VACV VCP Cofactor for factor I [10] 
6 VARV SPICE Cofactor for factor I [11] 
6 HHV-4 ? Cofactor for factor I? [13]
7 HHV-1, 

HHV-2
gC1,
gC2

Binds human C3b [14] 

7 VACV VCP Binds to C3b [10] 
7 VARV SPICE Binds to C3b [11] 
7 SaHV-2 ORF4 Inhibits formation and accelerates decay of 

classical and alternative C3 convertases 
[12] 

7 SuHV-1  gC Binds species-specific C3b [15] 
7 BoHV-1 gC Binds species-specific C3b [15] 
7 EHV-1 gC Binds species-specific C3b [15] 
7 EHV-2 gC Binds species-specific C3b [15] 
8 HHV-1 gC1 Inhibits Factor D binding [16]
9 HHV-1 gC1 Inhibits C5 binding [16]

10 CPXV IMP Downregulates chemotactic proteins C3a, C4a, C5a [9] 
11 SaHV-2 ORF15 Homologue of CD59 [17] 
12 HHV-5 ? Upregulation of CD55 and CD46 [18]
12 SuHV-2 ? Incorporation of cellular complement regulators [19] 
12 VACV ? Incorporation of cellular complement regulators [20] 
12 HIV ? Incorporation of cellular complement regulators [21] 
12 HTLV ? Incorporation of cellular complement regulators [22] 
12 SINV ? Incorporation of sialic acids [23] 

NOTES: (1) Site of action. Numbers refer to paths identified in Figure 6. (2) International 
Committee for Taxonomy of Viruses (ICTV) abbreviations. 
SOURCES:  [1] Favoreel et al., 1997. [2] Favoreel et al., 1999. [3] Watkins, 1964. [4] Ogata 
and Shigeta, 1979. [5] Lilley, Ploegh and Tirabassi, 2001. [6] Atalay et al., 2002. [7] Thale et
al., 1994. [8] Oleszak et al., 1993. [9] Howard et al., 1998. [10] Kotwal et al., 1990. 
[11] Rosengard et al., 2002. [12] Fodor et al., 1995. [13] Mold et al., 1988. [14] Friedman et
al., 1984. [15] Huemer et al., 1993. [16] Kostavasili et al., 1997. [17] Rother et al., 1994. 
[18] Spiller et al., 1996. [19] Maeda et al., 2002. [20] Vanderplasschen et al., 1998.
[21] Saifuddin et al., 1995. [22] Spear et al., 1995. [23] Hirsch, Griffin and Winkelstein, 
1981.
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8. CONCLUSION 

During the millions of years they have been co-evolving with their host, 
viruses have learned how to manipulate host immune control mechanisms.  
The review of the immune evasion strategies acquired by viruses revealed 
several fascinating aspects of this field.  First, it is remarkable that individual 
virus families have targeted many common immunological principles.  
Second, the analysis of viral immunoregulatory proteins revealed that they 
belong to two classes: those encoded by genes with and those encoded by 
genes without sequence homology to cellular genes. While the former 
indicates that viruses have “stolen” genes from the host that were 
subsequently modified for the benefit of the virus, the latter suggests 
acquisitions through a mechanism of convergent evolution. 

Viruses are obligate parasites that live “on the edge”. On the one hand, 
they need to impair the immune response of their host to be able to replicate 
and to avoid eradication; but, on the other hand, they need to respect the host 
immune response in order to ensure their host’s (and hence their own) 
survival.  In other words, the perfect adaptation of a virus to its host would 
represent a virus able to complete its biological cycle without inducing 
clinical symptoms.  Further studies are required to determine the roles of 
viral immune-evasion mechanisms in this delicate equilibrium.  Indeed, most 
of the studies cited in this review have investigated the ability of viral genes 
to interfere with the host immune response in vitro.  However, only in vivo
experiments will be able to determine the real biological functions of these 
viral immune-evasion mechanisms.  A beautiful example supporting this 
statement has been provided by the study of vaccinia virus IL-1β receptor.  
Indeed, while this viral product was thought to contribute to the 
pathogenicity of the virus, it is interesting to observe that deletion of the 
corresponding gene enhanced virus virulence and the onset of fever, 
suggesting that the purpose of a least some of the immune-evasion 
mechanisms is to reduce immunopathology caused by viral infection 
(Alcami and Smith, 1996).

In conclusion, this review highlights the complexity and the importance 
of viral immune-evasion strategies in the host-virus relationship. 
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