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Abstract: The ubiquitin-proteasome system (UPS) ensures regulation of the protein pool in the cell
by ubiquitination of proteins followed by their degradation by the proteasome. It plays a central
role in the cell under normal physiological conditions as well as during viral infections. On the one
hand, the UPS can be used by the cell to degrade viral proteins, thereby restricting the viral infection.
On the other hand, it can also be subverted by the virus to its own advantage, notably to induce
degradation of cellular restriction factors. This makes the UPS a central player in viral restriction and
counter-restriction. In this respect, the human immunodeficiency viruses (HIV-1 and 2) represent
excellent examples. Indeed, many steps of the HIV life cycle are restricted by cellular proteins, some of
which are themselves components of the UPS. However, HIV itself hijacks the UPS to mediate defense
against several cellular restriction factors. For example, the HIV auxiliary proteins Vif, Vpx and Vpu
counteract specific restriction factors by the recruitment of cellular UPS components. In this review,
we describe the interplay between HIV and the UPS to illustrate its role in the restriction of viral
infections and its hijacking by viral proteins for counter-restriction.

Keywords: HIV; ubiquitin; proteasome; restriction factors; TRIM5α; March8; APOBEC; SAMHD1;
BST2/Tetherin

1. Introduction

The human cell is in a continuous arms race with various viruses. This has led to the coevolution
of cellular restriction factors on the one hand and viral proteins for counter-defense on the other
hand. Restriction factors are generally induced as a result of an interferon response—they use
unique mechanisms to impair specific steps of the replication cycle and they exhibit a dominant
and autonomous effect. In this continuous fight, the ubiquitin-proteasome system (UPS) plays a
central role on the cellular as well as on the viral side. The cell expresses restriction factors, some of
which are themselves components of the UPS, targeting viral proteins for degradation and thereby
inhibiting some crucial steps of the viral life cycle. However, viruses have evolved to use the UPS to
their own benefits, subverting components of the UPS to degrade restriction factors, thereby protecting
themselves from the cellular defense machinery to allow their dissemination. In this review, we will
describe the mechanisms by which the human immunodeficiency viruses (HIV-1 and 2) use and
subvert the UPS in the continuous battle between cellular defense and viral counter-defense.

2. The Ubiquitin-Proteasome System

The ubiquitin-proteasome system (UPS) is an important pathway in the cell, ensuring regulation
of the protein pool in the cytoplasm as well as in the nucleus. The UPS is constituted by three
main components: the proteasome holoenzymes, several ubiquitin ligases and a large variety of
deubiquitinating enzymes (DUBs) [1]. Ubiquitin is a ubiquitously expressed and well-conserved

Viruses 2017, 9, 322; doi:10.3390/v9110322 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0002-4209-3976
https://orcid.org/0000-0003-1647-8917
http://dx.doi.org/10.3390/v9110322
http://www.mdpi.com/journal/viruses


Viruses 2017, 9, 322 2 of 21

eukaryotic peptide of 76 amino acids, which can be conjugated to proteins, mainly on their lysine
residues. The addition of a single ubiquitin or small ubiquitin chains is involved in many regulatory
functions, whereas poly-ubiquitination at lysine 48 (K48), corresponding to the addition of chains
exceeding four ubiquitins, serves as a signal for degradation [2–5]. Ubiquitination is dependent on
the ubiquitin machinery: the ubiquitin-activating enzyme E1 first forms a high-energy thiol-ester link
with ubiquitin in an ATP dependent manner; ubiquitin is then transferred onto a thiol group of the
ubiquitin-conjugating enzyme E2; finally, the ubiquitin ligase E3 transfers ubiquitin onto a lysine of its
substrate (Figure 1A) [6,7]. In humans, there are two E1 enzymes, around 40 different E2 enzymes,
which primarily determine the type of ubiquitin chain that is added, as well as over 700 different
E3 ubiquitin ligases, which ensure targeting of various substrates and can be separated into two
main families: HECT (Homologous to E6-AP Carboxyl Terminal) and RING (Really Interesting New
Gene) ubiquitin ligases. DUBs are equally important for maturation, regulation and recycling of
ubiquitin [2–5].

A protein can be conjugated to different types of polyubiquitin chains, depending on which
of the seven lysine residues of ubiquitin is used to link ubiquitin moieties in the chain. Proteins
ubiquitinated by K48-linked chains are mainly destined for proteasomal degradation [8,9]. The 20S
proteasome is a barrel-shaped structure composed of four rings: two outer rings composed of seven
α-subunits and two inner rings composed of seven β-subunits, which carry the protease activity
on the inside of the ring. The 26S proteasome is formed by association of a 20S proteasome with
two 19S lids, which ensure specific recognition of ubiquitinated substrates, recycling of ubiquitin
through deubiquitination, unfolding of the target protein and translocation through the 20S barrel
(Figure 1B) [2,10–14]. While the proteasome represents the main degradation mechanism used in
cells, some membrane-associated proteins are degraded by the endo-lysosomal pathway, which can
be induced by mono-ubiquitination or K63-linked polyubiquitination. In this pathway, ubiquitinated
membrane proteins are endocytosed and are then recognized by the endosomal sorting complexes
required for transport (ESCRT), which mediate invagination of the endosomal membrane surrounding
the ubiquitinated protein. The core ESCRT machinery consists of the ESCRT-I, ESCRT-II and
ESCRT-III complexes, ALIX (Apoptosis-Linked gene 2-Interactiong protein X) and VPS4 (Vacuolar
Protein Sorting-associated 4). This results in the formation of small vesicles inside the endosome,
thereby generating what is called a multivesicular body (MVB). This MVB can then fuse to the lysosome,
where the internal vesicles and their associated proteins are degraded [3,15–17].
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Figure 1. Schematic representation of the ubiquitin-proteasome system. (A) Transfer of ubiquitin from
the ubiquitin-activating enzyme E1 to the ubiquitin-conjugating enzyme E2 followed by its transfer
onto the target protein X by the ubiquitin ligase E3. The broken line symbolizes the thiol-ester bond;
(B) the 26S proteasome, composed of the 20S barrel and two 19S lids. The ubiquitinated target protein
X is recognized by one of the lids and translocated through the barrel where it is degraded by the
proteases located on the inside of the β-rings.
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The UPS plays a central role in many viral infections (reviewed in [18–20]), with five main modes
of action on the viral life cycle:

(1) Some cellular E3 ubiquitin ligases recognize viral proteins and induce their ubiquitination,
which can have a positive effect on viral replication. For instance, ubiquitination of the p6
domain of the HIV-1 Gag polyprotein is important for the interaction of p6 with the ESCRT
machinery. However, the mono-ubiquitination of lysine residues within the p6 domain (K27
and K33) does not seem to be sufficient to facilitate budding of new virions, the latter being also
dependent on the cumulative ubiquitination of NC-p2 (NucleoCapsid-peptide 2) domain [21–24].
Ubiquitination of the HIV-1 accessory protein Tat by cellular E3 ligases stimulates transcription
of viral RNA [25,26].

(2) Ubiquitination of viral proteins can also induce their degradation, thereby blocking the viral
life cycle. This is a strategy used by certain restriction factors. The polymerase PB1 (Protein
Binding 1) of the Influenza A virus (IAV) for example is ubiquitinated (K48-linked ubiquitin) by
the cellular E3 ubiquitin ligase TRIM32 (TRIpartite Motif-containing protein 32), followed by
its degradation by the proteasome [27]. This seems to be a general mechanism as PB1 proteins
derived from various IAV serotypes (H1N1 (Hemagglutinin 1 Neuraminidase 1), H3N2, H5N1
or H7N9) associate with TRIM32 in multiple cell types and this suggests that PB1 has not yet
adapted to avoid TRIM32 targeting [28]. The Human herpesvirus type I (HSV-1) capsid protein
Vp5 has also been shown to be degraded by the ubiquitin proteasome system, leaving the viral
genome exposed to innate immune sensors [29]. Interestingly, TRIM5α was reported to inhibit
HSV-1 and -2 replication at an early stage of the infection cycle [30], suggesting a role for this or
related protein in cytosolic sensing of herpesvirus capsids.

(3) Certain viruses have evolved to recruit the cellular E3 ligases to induce the degradation of
cellular proteins that might have harmful effects on the viral life cycle. For instance, the protein
E6 of Human papillomavirus (HPV) recruits the cellular E3 ubiquitin ligase E6-AP to induce
ubiquitination and degradation of p53, thereby allowing viral replication [31,32]. The NSP1
(Non-Structural RNA binding protein 1) protein of Rotaviruses subverts the Skp1-Cul1-Fbox
(SCF) E3 ligase to induce the ubiquitination and degradation of β-TrCP (β-Transducin repeat
Containing Protein). β-TrCP is by itself a substrate adaptor of an E3 ligase and its degradation
leads to accumulation of the NF-κB inhibitor IκB, resulting in inhibition of the NF-κB induced
antiviral responses [33,34]. These mechanisms are important for HIV replication and will be
detailed in Section 5.

(4) Other viruses directly encode their own E3 ligases. Kaposi sarcoma herpesvirus (KSHV) protein K3
and K5 (RING-CH family of ligases) ubiquitinate MHC-I (Major Histocompatibility Complex I),
resulting in its down-regulation from the cell surface through a clathrin-dependent sorting
pathway to an endolysosomal compartment [35,36]. This endolysosomal sorting requires
K63-linked instead of K48-linked polyubiquitin chains [19]. Another well-known example
is the ICP0 protein (Infected Cell Protein 0) of HSV-1, an E3 ubiquitin ligase which induces the
degradation of the ND10 (Nuclear Domain 10) nuclear body components PML (Promyelocytic
Leukemia Protein) and Sp100 through the UPS, thereby avoiding antiviral sensing [37,38].
ICP0 has also been shown to have a RING-independent E3 ligase activity that polyubiquitinates
the E2 enzyme cdc34. ICP0 influences many cellular pathways and is required for the activation
of most viral and many cellular genes, for reactivation from latency and suppression of innate
immunity [19].

(5) Finally, ubiquitin modifications can be reversed by the isopeptide-bond specific proteolytic
activity of DUBs. In addition to cellular DUBs, it has been reported that various virus families code
their own DUBs (Coronavirus, Herpesvirus etc.) to evade host antiviral immune response and
promote virus replication (for a recent review see [1]). For instance, in the herpesviridae family,
a variety of DUBs play an important role in the virus life cycle (e.g., UL36USP (Ubiquitin Ligase
36 Ubiquitin Specific Protease) of HSV-1, tegument protein pUL48 of human cytomegalovirus
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(HCMV)). Regarding HIV-1, a recent study reported that several cellular DUBs (USP7 and USP47,
Ubiquitin Specific Protease family) play an important role in its replication by regulating Gag
processing and thus the infectivity of released virions and simultaneously the entry of Gag into the
UPS and MHC-I pathway [39]. Moreover, this study showed that treatment with DUB inhibitors
targeting USP47 causes a general Gag processing defect, indicating that USP47 interacts with Gag
and prevents its entry into the UPS. Similarly, proteasome inhibitors have been shown to impact
HIV-1 replication by reducing the release and maturation of infectious particles [40,41] or by
suppressing its transcription [42]. Taken together, these studies suggest a potential antiretroviral
activity of DUB and proteasome inhibitors.

The importance of the UPS in antiviral restriction will be discussed here using HIV as an example.

3. The HIV Life Cycle

HIV-1 and 2 are retroviruses of the genus Lentivirus. Their genome is composed of two (+) single
stranded RNAs encoding the Gag, Pol and Env polyproteins, which correspond to the structural
(matrix, capsid, nucleocapsid and p6), enzymatic (protease, reverse-transcriptase and integrase) and
envelope (transmembrane and surface) viral proteins. In addition, the genome of these two viruses
express two regulatory (Tat and Rev) and four auxiliary (Nef, Vpu/Vpx, Vpr and Vif) proteins,
which regulate several steps in the viral life cycle [43,44]. The main difference between HIV-2 and
HIV-1 is the lack of the Vpu protein in the former, which is replaced by Vpx [45]. Following viral
attachment and entry into the target cell, the dimeric viral genomic RNA is partially uncoated and
transported to the cell nucleus. Concomitantly, reverse transcription of the viral genomic RNA takes
place to form the pre-proviral DNA, which is then integrated into the cellular genome. The integrated
provirus mediates the synthesis of new full-length viral RNA (or unspliced RNA), which will be used
as genomic RNA encapsidated into viral particles and as mRNA for structural and enzymatic proteins
and mono- and multi-spliced viral mRNAs, which encode the viral envelope and the regulatory and
auxiliary proteins in the infected cell. Finally, the components of the viral particle assemble at the
plasma membrane, where new viral particles bud, maturate and disseminate to other host cells in the
infected organism (Figure 2) [43,44,46–49].

During its life cycle, HIV is subjected to different cellular restriction factors (Figure 2), the first
line of defense of cellular immunity. The newly discovered SERINC3 (SERine INCorporator 3) and
SERINC5 proteins target the very beginning of the viral life cycle by inhibiting correct fusion of the
viral envelope with the plasma membrane, thereby preventing the virus from entering into a new host
cell [50,51]. IFITM (InterFeron-Induced TransMembrane) proteins 1, 2 and 3 also target the viral entry
into the cell by inhibiting viral fusion with target cells. The exact mechanism of restriction is yet a
matter of debate, as well as whether IFITM incorporation in virions or its expression in target cells is
responsible for the antiviral effect. IFITM proteins might act on Env to inhibit its functions in viral
fusion and it has been shown that some mutations in the Env protein can indeed confer resistance to
IFITM restriction [52–57]. Once the virus has entered the cell, TRIM5α (TRIpartite Motif-containing
protein 5α) can inhibit the early steps of the viral life cycle in a species-specific manner by accelerating
viral uncoating [58–60]. The viral capsid protein also seems to be the target of Myxovirus resistance 2
(Mx2/B), a restriction factor that inhibits nuclear import and subsequent integration of the provirus
through an unknown mechanism.

Some mutations in the capsid protein have been shown to confer resistance to Mx2 and particularly
some mutations located at the site of interaction with cyclophilin A, an important host factor for
HIV-1 infectivity [61–66]. SAMHD1 (Sterile Alpha Motif and Histidine Aspartate domain-containing
protein 1) also targets the early phase of viral infection: this deoxynucleotide-triphosphohydrolase
inhibits reverse transcription by depleting the pool of cellular dNTPs (deoxy Nucleotide
TriPhosphates) [67,68]. During reverse transcription of the viral RNA, the restriction factor APOBEC3G
(APOlipoprotein B mRNA Editing enzyme, Catalytic polypeptide-like 3G, or A3G) and other factors
from the APOBEC3 family, can induce G to A hypermutations, which prevent production of functional
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viral proteins [69–71]. The amount of viral proteins that are produced in an infected cell can be
limited by Schlafen11 (SLFN11). Due to the bias of HIV-1 towards A/U rich codons, the virus
stimulates production of corresponding tRNAs by the cell to increase viral translation, a mechanism
that seems to be partly counteracted by SLFN11, which binds tRNAs in a codon-specific manner [72–74].
The final steps in the viral life cycle can be targeted by Tetherin/BST2 (Bone marrow STromal
antigen 2), which inhibits release of new viral particles from the host cell [75–77] and March8
(Membrane-Associated RING-CH 8 protein), which decreases incorporation of envelope proteins
into newly produced virions, thereby decreasing their infectivity [78]. Two of these restriction factors,
TRIM5α and March8, use the UPS to exert their restricting activity.

HIV is able to counteract restriction factors using its accessory proteins (Figure 2): Nef prevents
SERINC5 incorporation into virions by mediating its relocalization to late endosomes through
interaction with the clathrin adaptor AP-2 [50,79]. Vif counteracts A3G by inducing its proteasomal
degradation as well as by reducing its transcription and translation [69,80–82]. Vpx (and Vpr of certain
Simian Immunodeficiency Virus (SIV) strains) counteracts SAMHD1 by inducing its proteasomal
degradation [67,83,84]. Vpu (Env for HIV-2 and Nef or Vpu for SIV) counteracts BST2/Tetherin by
sequestering it away from sites of viral budding [76,77,85]. Amongst these accessory proteins, Vif, Vpx
and Vpu hijack the UPS to exert their counter-defense. In the following section, we will discuss in detail
the restriction factors as well as the viral proteins which use the UPS for their respective mechanisms.
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4. Cellular Factors Mediating Viral Restriction Using the UPS

4.1. TRIM5α

One example of the cell using the UPS to restrict HIV is TRIM5α, an E3-ubiquitin ligase that
interacts with the viral capsid after its entry into the cell. TRIM5α mediates a species-specific block:
HIV-1 is restricted by the TRIM5α proteins of old world monkeys like rhesus or cynomolgous
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monkeys, while the TRIM5α of human or new world monkeys have no or only a very weak effect
on HIV-1 [59,60,86,87]. TRIM5α thereby constitutes one of the factors responsible for the interspecies
barrier. The restriction of HIV-1 by TRIM5α is mediated by the interaction of the TRIM5α SPRY
(SPIa and RYanodine Receptor) domain (Figure 3A) with the viral capsid in the cytoplasm of newly
infected cells [59]. This interaction leads to premature decapsidation of the viral core. Moreover, viral
capsid and integrase proteins are degraded (Figure 3C 1©) and the reverse transcription of the viral
genome is inhibited in the presence of a restricting TRIM5α. These effects seem to be mediated by
the UPS, since treatment with proteasome inhibitors restores a normal decapsidation rate and reverse
transcription. It has also been shown that the proteasome co-localizes with TRIM5α and viral cores
in the cytoplasm [88,89]. TRIM5α is also degraded by the proteasome but only in the presence of
susceptible viral cores [90], suggesting that TRIM5α recruits the proteasome to the viral cores and
induces their degradation. This mechanism seems to be mediated by the E3-ubiquitin ligase activity
of TRIM5α, through its RING domain (Figure 3A) [58,91]. Nevertheless, TRIM5α inhibits integration
of the proviral DNA independently of the proteasome, suggesting that TRIM5α uses an additional,
yet uncharacterized, strategy to block viral infection (Figure 3C 2©) [92,93]. Finally, the association
of TRIM5α with the viral capsid enhances its E3-ubiquitin ligase activity, which, in conjunction
with the E2 enzyme UBC13/UEV1A (UBiquitin-Conjugating enzyme 13/Ubiquitin-conjugating
Enzyme Variant 1A), leads to the synthesis of free K63-linked ubiquitin chains, thus stimulating
TAK1 (Transforming growth factor β-Activated Kinase 1) and finally activating AP1 and NF-κB
signaling (Figure 3C 3©) [94,95]. This indicates that TRIM5α, in addition to its direct antiviral activity,
also functions as a sensor that induces a general antiviral state of the cell.
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Figure 3. Restriction of HIV by TRIM5α and March8. (A,B) Schematic representation of the main
domains of (A) the TRIM5α and (B) March8 proteins. Black boxes correspond to transmembrane
domains (TM). Amino acid positions of the beginning and end of the domains as well as the total
length of the proteins are indicated; (C) mechanism of TRIM5α restriction. The dimeric TRIM5α
(red) recognizes the viral capsid and 1© induces the proteasomal degradation of the capsid (blue),
the integrase (yellow) and itself, leading to premature decapsidation of viral RNA. 2© TRIM5α also
blocks integration of the provirus (red T bar) and 3© induces activation of AP1 and NFκB pathways;
(D) March8 (red) mediates intracellular retention of envelope proteins (Env, brown), leading to reduced
Env incorporation into virions, thereby decreasing infectivity.
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4.2. March8

March8 has recently been identified as a restriction factor of HIV-1, expressed by differentiated
myeloid cells like monocyte derived macrophages and dendritic cells [78]. March8 significantly reduces
infectivity of virions produced from March8-expressing cells by decreasing the number of Env-proteins
incorporated into budding virions. March8 is a transmembrane E3-ubiquitin ligase, possessing
an N-terminal, cytoplasmic RING domain (Figure 3B), known to downregulate multiple cellular
proteins from the plasma membrane by ubiquitination followed by degradation in the endo-lysosomal
pathway [96–99]. In the case of HIV-1 restriction, it has been shown that March8 interacts with Env
and causes its downregulation from the cell surface. The RING-domain of March8 is necessary for
this mechanism, suggesting that ubiquitination plays a role. However, Env does not seem to be
degraded in the endo-lysosomal pathway like cellular proteins targeted by March8 but seems rather to
be retained in intracellular compartments. March8 thus sequesters Env away from HIV-1 budding
sites, thereby reducing Env incorporation into newly formed virions, making them less competent for
infection of new target cells (Figure 3D) [78].

5. Counteraction of Restriction Factors by Viral Auxiliary Proteins Using the UPS

5.1. Vif

The family of Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3
(APOBEC3/A3) proteins, is a family of 7 cytosine deaminases (A3A to A3H) which induce transition
of cytosine to uracil on single-stranded DNA, with a preferential recognition of CC sequence motifs
by A3G and TC motifs by the others [100–102]. A3G (Figure 4A) has been the first member of this
family to be identified as a potent antiviral factor. It is incorporated into budding HIV virions and is
thereby carried over into the next infected cell [69]. During reverse transcription of the viral genomic
RNA, the single stranded negative sense DNA is sensitive to the cytosine-deaminase activity of
A3G, leading to C to U transitions [70,71]. These mutations can either be recognized by uracil DNA
glycosylases, like the virion-associated UNG2 (Uracyl N-Glycosylase 2), leading to the degradation of
the provirus by abasic site endonucleases [103], or they can be conserved in the provirus. Due to the
sequence preference of A3G, these mutations very frequently introduce new stop codons in the viral
genome, thus leading to the expression of non-functional mutated or/and truncated viral proteins
(Figure 4C). HIV-1 counteracts A3G with its Vif protein, which prevents A3G incorporation into
virions by inducing its degradation through the proteasome [80]. To do so, Vif recruits an SCF-like
E3-ubiquitin ligase, composed of Cullin5, Rbx2, Elongin B and C. In this complex, Vif possesses the
role of a substrate adaptor, directly interacting with A3G through its N-terminal domain (Figure 4B),
thereby recruiting it for ubiquitination (Figure 4C 3©) [104].

The recruitment of Cullin5 is mediated by the zinc-binding domain of Vif [105] and Cullin5 in turn
recruits the E2-ubiquitin-conjugating enzyme Rbx2. The recruitment of Elongin B and C is mediated
by the BC-box domain of Vif (Figure 4B), which can be negatively regulated by phosphorylation.
In this complex, not only A3G but also Vif is ubiquitinated, which might contribute to the transport of
A3G to the proteasome [106]. The cellular protein HDAC6 (Histone Deacetylase 6) has been shown
to play a role in this process, by inducing Vif degradation through autophagosomes as well as by
protecting A3G from ubiquitination and degradation [107]. The expression level of Vif is also regulated
by Mdm2 (Mouse double minute 2 homolog), an E3-ubiquitin ligase that can induce the ubiquitination
of Vif and its proteasomal degradation [108]. CBF-β (Core Binding Factor β), a co-factor of the
RUNX transcription factor family, is recruited by Vif and ensures its stability by inhibition of Mdm2
binding [109]. CBF-β is also necessary to allow assembly of the SCF-like E3-ubiquitin ligase mediated
by Vif, resulting in the inability of Vif to induce ubiquitination and degradation of A3G in the absence
of CBF-β [110,111]. Moreover, by sequestering CBF-β in the E3-ubiquitin ligase complex, Vif indirectly
causes a decrease in A3G transcription as the A3G gene is regulated by the RUNX transcription factor
family, which requires CBF-β as cofactor (Figure 4C 1©) [81]. Degradation of A3G through the UPS
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has been known for a long time as the main mechanism for HIV-1 to counteract cellular restriction;
however it has been shown that Vif can also inhibit A3G translation [82,112,113] and this inhibition
significantly contributes to the counteraction mechanism (Figure 4C 2©) [82,112,113]. While A3G is the
main member of the A3-family that efficiently restricts HIV, A3D, F and H also showed a restricting
activity towards HIV-1 in the absence of Vif, even though to a lesser extent than A3G [114]. Vif is also
able to recruit these A3 proteins by different motifs of its N-terminal domain (Figure 4B), thus inducing
their degradation by the proteasome similarly to A3G [115–117].
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of the main domains of (A) the APOBEC3G and (B) Vif proteins. Amino acid positions of the beginning
and end of the domains as well as the total length of the proteins are indicated; (C) the mechanism
of APOBEC3G restriction and Vif counteraction. APOBEC3G (red) is incorporated into virions and
induces hypermutations of the provirus leading either to its degradation or production of truncated
viral proteins. Vif (blue) decreases A3G transcription 1©, inhibits its translation 2© (Red T bar) and
induces its degradation by the proteasome 3©.

5.2. Vpx

Sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1, Figure 5A)
is a dGTP-regulated deoxynucleoside-triphosphohydrolase that catalyzes the hydrolysis of dNTPs
to deoxynucleosides and inorganic triphosphate [118,119]. In non-cycling myeloid cells as well as in
resting CD4+ T cells, this restriction factor causes a block in the early steps of the HIV-1 life cycle [67]
by depleting the intracellular pool of dNTPs [68], which leads to abortion of the viral genomic
RNA reverse transcription and accumulation of defective viral cDNA (Figure 5C) [120]. This block
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strongly affects infectivity of HIV-1 in these cell types but has no effect on HIV-2 infectivity [121].
Indeed, HIV-2 possesses the viral protein X (Vpx, Figure 5B) which alleviates the post-entry block
mediated by SAMHD1 by inducing its degradation by the proteasome. Vpx has been found to recruit
the CUL4A-DDB1-DCAF1(DDB1 and CUL4 Associated Factor 1) E3 ubiquitin ligase through a direct
interaction with its substrate recognition protein DCAF1 (DDB1 and CUL4 Associated Factor 1) [122]
while also interacting with the C-terminal domain of SAMHD1, thereby loading SAMHD1 onto the
E3 complex and inducing its ubiquitination followed by its proteasomal degradation (Figure 5C).
The nuclear localization of SAMHD1 is required for its Vpx-induced proteasomal degradation,
suggesting the nuclear UPS is important in this mechanism [123,124]. Degradation of SAMHD1
leads to an increase in cellular dNTP levels and the efficiency of proviral DNA synthesis [120]. In this
manner, the Vpx protein allows HIV-2 to efficiently infect human dendritic and myeloid cells and it
significantly increases the infection by HIV-1 [83]. Vpx therefore seems to be an important protein for
viral replication, however it is present exclusively in HIV-2 and some SIV strains.

In these lineages, the Vpx gene has evolved from Vpr which is present in all HIV and SIV strains
and whose main function is the induction of cell cycle arrest [125–129]. Vpx and Vpr share many
similarities, like for example their interaction with the same CUL4A E3 ubiquitin ligase [122,125].
Interestingly, the Vpr protein of some SIV strains has been shown to induce proteasomal degradation
of SAMHD1, thereby compensating for the lack of Vpx. Indeed it seems that the ability to degrade
SAMHD1 has first been acquired by the Vpr protein in certain lentiviral strains before the evolution of
a separate Vpx gene which has subsequently conserved the function of SAMHD1 antagonism [84,130].
Nevertheless, many lineages, like HIV-1 for example, lack an anti-SAMHD1 activity. HIV Interestingly,
SAMHD1 seems to be regulated in cells by phosphorylation mediated by CDK6-(Cyclin-Dependent
Kinase 6) dependent CDK2, which links its activity to cell cycle control. Indeed, SAMHD1 is
phosphorylated in cycling cells which blocks its activity as a dNTP hydrolase [131]. This correlates with
the permissiveness of cycling cells for HIV-1 infection as opposed to non-cycling cells. Moreover, HIV
infection is made possible despite the lack of a viral factor counteracting SAMHD1 by different cellular
proteins: CD81 for example has recently been shown to favor HIV-1 infection by interacting with
SAMHD1 and stimulation of its proteasome-dependent degradation [132]. Cyclin L2 also induces
SAMHD1 proteasomal degradation through interaction with SAMHD1 and DCAF1, a mechanism
interestingly similar to the one used by Vpx [133].
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Figure 5. Restriction of HIV by SAMHD1 and counteraction by Vpx. (A,B) Schematic representation of
the main domains of (A) SAMHD1 and (B) Vpx. The nuclear localization signal (NLS) is indicated in
red. Amino acid positions of the beginning and end of the domains as well as the total length of the
proteins are indicated; (C) the mechanism of SAMHD1 restriction and Vpx counteraction. Tetrameric
SAMHD1 (red) hydrolyzes dNTPs, leading to a block of reverse transcription of the viral genome.
Vpx (blue) induces SAMHD1 ubiquitination followed by its degradation by the proteasome.
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5.3. Vpu

In the absence of Vpu, newly formed virions remain tethered to the plasma membrane of their host
cell after budding and are eventually endocytosed and degraded [75]. The cellular restriction factor
responsible for the block of virion release is Tetherin/BST-2. BST-2 is found as a disulfide-bond-linked
dimer which is anchored into the plasma membrane by two domains: a transmembrane domain
close to its N-terminus and an extracellular C-terminal glycosyl-phosphatidylinositol (GPI)-anchor
(Figure 6A) [134]. These two domains mediate virion-tethering to the host cell, one remaining in
the plasma membrane and the other one being inserted into the viral envelope (Figure 6C). It has
been shown that this tethering involves approximately a dozen of BST-2 dimers and that among
the two membrane-associated domains, the GPI-anchor is preferentially incorporated into budding
virions [135]. The extracellular domain of BST-2 thereby acts like a molecular ruler, maintaining the
virus at a constant distance of the plasma membrane, preventing it from disseminating to other target
cells [134].

The viral protein Vpu counteracts BST-2 by direct interaction of their transmembrane domains
embedded in the plasma membrane [136]. The exact mode of action of Vpu is still a matter of debate,
but it seems clear now that Vpu sequesters BST-2 away from virion budding sites, thereby preventing
it from incorporation into the viral envelope (Figure 6C 1©) [77,85,137,138]. Several studies have shown
that in the presence of Vpu, newly synthesized BST-2 is sequestered in intracellular compartments,
particularly the trans-golgi-network (Figure 6C 2©). This finally results in the downregulation of surface
levels of BST-2, thereby allowing normal rates of virion release in the presence of Vpu [77,85,137,138].
BST-2 is constitutively regulated by ubiquitination and lysosomal degradation mediated by the
cellular E3 ubiquitin ligases March8 and NEDD4 (Neural precursor cell Expressed Developmentally
Down-regulated protein 4) [139]. It is still a matter of debate however, whether Vpu also uses the
endo-lysosomal system for BST-2 counteraction. The E3-ubiquitin ligase adaptor β-TrCP is known to be
recruited by the cytoplasmic DSGxxS motif of Vpu (Figure 6B) [140], which might lead to ubiquitination
of BST-2 followed by its degradation in the endo-lysosomal system (Figure 6C 3©) [137,141].

Even though the interaction of Vpu with β-TrCP, as well as the capacity of β-TrCP to recruit
an E3-ubiquitin ligase seem to be required for BST-2 counteraction by Vpu [137,142,143], conflicting
data have also been reported [144–146]. Certain components of the autophagy pathway, as well as
clathrin adaptors AP-1 and 2 and components of the ESCRT system might also be involved in the
downregulation of BST-2 by Vpu, which would corroborate transport of BST-2 in the endosomal
system [137,147–149]. However, degradation of BST-2 might not be absolutely required for viral
counteraction of BST-2, since Vpu is capable of intracellular sequestration of BST-2 independently of
its degradation [85,138]. The guanylate binding protein 5 (GBP5) has very recently been discovered as
a new restriction factor of HIV-1 infection, that interferes with viral Env proteins, thereby decreasing
infectivity of produced virions [150,151]. As Vpu and Env are expressed from the same transcript
by leaky scanning, the loss of Vpu expression can in this case lead to an increase of Env expression,
as observed in the macrophage tropic AD8 isolate [152], allowing the virus to partly overcome GBP5
restriction. Surprisingly, such Vpu mutants seem to occur frequently despite the presence of BST-2.
HIV-2 and SIV are also counteracted by BST-2 proteins expressed by their respective host species
in a species-dependent manner, but some of them lack Vpu to counteract this mechanism. It has
been shown that the HIV-2 Env protein can enhance virion release in the presence of BST-2 thereby
substituting for Vpu [153,154]. Certain SIV strains, like SIVagm, SIVblu and SIVmac also lack the Vpu
gene and rely on the accessory protein Nef to counteract BST-2. Other SIV strains like SIVmon, SIVmus,
SIVgsn and SIVden express Vpu and use it to counteract BST-2. Even though SIVgor and SIVcpz
express Vpu, Nef seems to take over the role of BST-2 counteraction. This gives interesting clues about
the evolution of HIV and SIV strains [155–157].
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Figure 6. Restriction of HIV by BST-2 and counteraction by Vpu. (A,B) Schematic representation of the
main domains of (A) the BST-2 and (B) Vpu proteins. Black boxes indicate transmembrane domains
(TM). The glycosyl-phosphatidylinositol (GPI) modification at the C-terminal end of BST-2 is indicated.
Amino acid positions of the beginning and end of the domains as well as the total length of the proteins
are indicated; (C) mechanism of BST-2 restriction and Vpu counteraction. BST-2 tethers virions to the
plasma membrane, thereby hindering their dissemination. Vpu sequesters BST-2 away from virion
budding sites either at the plasma membrane 1© or in intracellular compartments 2©. Vpu can also
induce BST-2 degradation in the endo-lysosomal pathway 3©.

6. Other Cellular Proteins Targeted by the Hijacked UPS

The UPS is hijacked by HIV and plays an important role for the viral defense against multiple
cellular restriction mechanisms. Apart from restriction factors, several other cellular proteins can also
be targeted by HIV through the UPS. The viral auxiliary protein Vpu for example possesses the ability
to associate with the CUL1-Skp1 E3 ubiquitin ligase through interaction with its substrate receptor
β-TrCP. This association not only seems to play a role in the counteraction of BST-2 but has also been
shown to induce degradation of the HIV receptor CD4. Indeed, Vpu induces CD4 ubiquitination
followed by its extraction from the Endoplasmic Reticulum (ER) [140,158–162]. The mechanism used
by Vpu to induce CD4 depletion involves the cellular ER-associated degradation (ERAD) pathway,
which operates as a quality control mechanism to dispose of unwanted ER membrane proteins into
the cytosol for subsequent proteasomal degradation. The dislocation of protein from the membrane is
achieved by the recruitment of the VCP-UFD1L-NPL4 (Valosin-containing protein-Ubiquitin fusion
degradation protein 1-Nuclear protein localization protein 4) complex through recognition by UFD1L
of K48-linked poly-ubiquitin chains on the CD4 cytosolic tail. Interestingly, the degradation of CD4
depends also on ubiquitination of serine/threonine residues [140,158–161]. The ATPase activity of VCP
then drives dislocation of CD4 from the ER membrane into the cytosol and eventually its degradation
in proteasomes. The multiple levels at which Vpu acts to prevent export of CD4 from the ER underscore
the importance of ensuring complete depletion of CD4 from the plasma membrane for progression of
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the infection [143,160,161,163]. Other targets of Vpu-induced ubiquitination and degradation include
the cell surface glycoprotein ICAM-1 and the amino acid transporter SNAT-1, both involved in immune
signaling [164,165].

It is well established that the viral auxiliary protein Vpr associates with the CUL4A-RING E3
ligase through interaction with its substrate recognition subunit DCAF1. This complex has been
shown to induce ubiquitination followed by proteasomal degradation of the DNA glycosylase UNG2.
Thereby Vpr reduces encapsidation of UNG2, ultimately contributing to the protection against the
restriction factor A3G. UNG2 recognizes C to U mutations induced by A3G and generates abasic
sites, leading to degradation of viral DNA. Indeed a virus lacking Vif can be partially rescued
by Vpr-mediated reduction of UNG2 compared to viruses lacking both Vif and Vpr [166–168].
Moreover, it has recently been shown that Vpr can also induce the degradation of A3G itself through
the UPS [169]. Vpr seems to also enhance HIV-1 production in macrophages by UPS-mediated
degradation of the cellular protein Dicer, which is involved in RNA silencing [170]. The main function
of Vpr known to date is the induction of a cell cycle arrest at the G2 phase. The association of Vpr
with the CUL4A E3 ubiquitin ligase has been shown to be important for this process, although the
exact mechanism is still unknown [125–128]. Cell cycle arrest seems to involve Vpr association with
the SLX4-SLX1-MUS81-EME1 complex, leading to SLX4 (Structure-specific endonuclease subunit)
activation and ultimately proteasomal degradation of MUS81 (Crossover junction endonuclease)
and EME1 (Essential Meiotic Structure-Specific Endonuclease 1) [127,128]. Vpr also induces the
degradation of multiple other cellular proteins such as the DNA translocase HLTF (Helicase-Like
Transcription Factor) [171], the DNA replication factor MCM10 (Mini Chromosome Maintenance
10) [172], as well as the chromatin associated proteins ZIP (leucine Zipper), sZIP and class I HDACs
(Histone Deacetylase 6) [173,174].

7. Conclusions

The UPS plays an important role in viral infections in general and especially in the process of viral
restriction and counter-restriction. In this continuous battle between the virus and the cell, the UPS
constitutes an efficient tool for both sides. Several HIV auxiliary proteins have evolved the ability
to interact with components of the UPS, subverting it for its own means. This allows the targeting
of a multitude of different cellular proteins through a single platform. This strategy is not limited
to HIV, but is used by a plethora of different viruses to ensure various aspects of their life cycles.
Overall, the specific degradation of certain cellular proteins in the UPS allows viruses to generate a
favorable environment for their own replication. The almost universal role of the UPS in counteraction
of cellular restriction factors by HIV makes the UPS an interesting target for antiviral therapy. One of the
main difficulties in therapy-design against HIV is the rapid evolution of the virus, which easily escapes
therapeutic molecules by mutation of the targeted viral proteins. Targeting the human UPS represents
a promising antiviral strategy because it would allow to avoid the escape through mutations [175,176].
A better knowledge on how the virus hijacks the UPS and which components are involved in viral
replication is crucial in this attempt.
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