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Myc proteins in brain tumor development and maintenance
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Abstract
Myc proteins are often deregulated in human brain tumors, especially in embryonal tumors that affect children. Many
observations have shown how alterations of these pleiotropic Myc transcription factors provide initiation, maintenance, or
progression of tumors. This review will focus on the role of Myc family members (particularly c-myc and Mycn) in tumors like
medulloblastoma and glioma and will further discuss how to target stabilization of these proteins for future brain tumor
therapies.
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Introduction

The Myc family comprises the transcription factors
c-myc, Mycn, and Mycl (1). Myc proteins are impor-
tant for normal development, especially c-myc and
Mycn which are embryonically lethal when knocked
out (2-4) in transgenic mice. Transgenic mice present
a severely diminished forebrain and hindbrain when
Mycn is specifically abrogated in nestin-positive
neural stem and precursor cells (NSCs) of the deve-
loping brain (5), while a similar conditional c-myc
knock-out moderately impairs brain growth (6).
Nestin-driven transgenes for double c-myc and
Mycn depletion have a nervous system phenotype
that is much more severe than either Myc gene
knock-out alone (7,8). These findings collectively
suggest that Myc proteins are essential for brain
development. Overexpression of c-myc in nestin-pos-
itive NSCs promotes cell proliferation (9), and many
human tumors including brain tumors express high
levels of or show gene amplifications of Myc family
members. This is true for medulloblastoma (10–12)

and glioma (13–15), the most common malignant
types of brain tumors in children and adults, respec-
tively. It is also true for other brain tumor types, like
primitive neuroectodermal tumors (PNETs) (16).
Similarly, overexpressed c-myc or Mycn have been
found to initiate different types of brain tumors like
medulloblastoma (17–20), PNETs (21), and glioma
(22,23) in mice. In most of these cases Myc genes
generate tumors after a rather long latency or in
combination with other oncogenes (like Ras,
Akt, Shh, or beta-catenin) or tumor suppressor genes
(e.g. p53, Ptc, Ink4c). This suggests a necessary
involvement of one or more additional transforming
events before a full-blown cancer can develop. It is not
known in detail how Myc proteins use other cancer
genes to induce these tumors and if there is a diffe-
rence in how the different Myc proteins are involved
in brain tumor initiation. This is also difficult to study
as Myc genes target a large number of other genes and
regulate important cellular mechanisms like prolife-
ration, apoptosis, DNA repair, metabolism, ribosome
biogenesis, and protein synthesis (24). Clearly, Myc
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proteins can use different strategies in their role as
master regulators of cell proliferation and in tumor
maintenance.

Medulloblastoma biology

Brain tumors represent the most common solid
tumor of childhood. The embryonal tumor medul-
loblastoma (MB) is next to leukemia the most
common malignancy in children (25). Treatment
includes surgery, radiation, and chemotherapy,
which cures about 70% (26), although survivors
can have severe long-term side-effects following
this treatment. MB can be categorized into different
subtypes (27) presenting a desmoplastic or nodular,
classic, and large cell/anaplastic (LCA) pathology,
where the LCA subtype shows monomorphic cells
with large nuclei and correlates with the poorest
outcome. Advanced genomic and transcriptional
profiling has recently offered reliable molecular
classification of human MB (28–31). This provides
a better classification of these childhood tumors,
which will facilitate better strategies for improved
patient treatment. Abnormal activation of molecular
pathways like Sonic Hedgehog (SHH) and Wingless
(WNT) signaling contributes to tumorigenesis in
some patients; however, the majority show no abnor-
malities in these pathways and are referred to as
Group 3 or Group 4 MB (32). Wnt signaling abnor-
malities involving beta-catenin nuclear staining
occur in 10%–15% of patients and have been
described as a marker for favorable outcome
(33,34). Such tumors have recently been found to
originate from BLBP-positive cells of the lower
rhombic lip structure in the developing dorsal brain
stem (35). Another developmental pathway believed
to have a critical role in MB maintenance is Notch.
Inhibiting Notch suppresses MB in vivo by apoptosis
and may prove effective in MB therapy (36,37), even
if Notch is not required in Shh-dependent MB
subtypes (38,39). Shh-dependent MB only repre-
sents about 25% of MB cases. Nevertheless there
are numerous reports of Shh-dependent models that
recapitulate human Shh-dependent MB in mice
(see recent review (40)); the first were models that
activated the pathway through loss of Patched (41).
Amplification of MYC or MYCN occurs in about
10% of human MB and correlates with a 5-year
overall survival of only 13% (11). Both MYC and
MYCN amplifications further associate with an
aggressive LCA medulloblastoma pathology
(10,42,43). MYCN is expressed at high levels in
SHH-associated MB (10) and is actually essential
for Shh-dependent tumors in mouse models of this
disease (17). However, most Shh-independent

human MB also express MYCN (20,44,45). Indeed,
in a model where human MYCN drives MB
formation from the glutamate transporter 1 (Glt1)
promoter in cerebellar cells, the majority of the
developed brain tumors are actually Shh-indepen-
dent (20). ThisMBmodel thus correlates with recent
findings (34,46) that suggest a majority of MYCN-
amplified human MB are categorized as non-SHH
Group 4 MB (46).

Glioma biology

Glioma, the most common primary brain tumors in
adults, is classified as grade I to IV according to the
World Health Organization (WHO) (47). Of high-
grade gliomas (grade III and IV), glioblastoma
(GBM) is the most common and most malignant
(grade IV) tumor with dismal outcome. GBMs
account for 60%–70%ofmalignant glioma (48).While
grade III gliomas (anaplastic astrocytoma, anaplastic
oligodendroglioma, and anaplastic oligoastrocytoma)
are characterized by increased cellularity, nuclear aty-
pia, and proliferative activity, GBMs also contain areas
of microvascular proliferation and necrosis. GBMs
have a 5-year overall survival of less than 10% despite
an increased survival effect from the use of the alkylat-
ing agent temozolomide following tumor resection and
radiation (49). An effort to stratify GBMs further and
to enable a more individualized therapy is further to
classify these malignant brain tumors into different
subtypes characterized by molecular abnormalities
(50–52). The most recent efforts of genomic profiling
from The Cancer Genome Atlas (TCGA) Research
Network have defined four subgroups of GBM: pro-
neural, neural, classical, and mesenchymal. These
subgroups show signature aberrations where the
gene expression of EGFR, NF1, and PDGFRA/
IDH1 can help define a classical, mesenchymal, and
proneural subtype, respectively (52). There are many
reports in which Myc proteins have been amplified or
overexpressed in glioma (53–56). Interestingly,
MYCN showed high-level focal amplifications in a
subset of GBM samples (51), and MYC or MYCN
is found to be amplified in almost half of brain cancers
that have combined features of malignant glioma and
primitive neuroectodermal tumors (MG-PNET) (15).
Interestingly, p53, which is directly or indirectly inac-
tivated in 87% of GBMs (TCGA), represses MYC
transcription by directly binding to theMYC promoter
(57). Most important, c-myc plays a critical role in the
regulation and especially the proliferation of glioma
stem cells, which are the putative cells of origin for
these brain tumors (58-60). This suggests that Myc
proteins are master regulators also for these types of
brain tumors.
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Myc signaling in normal brain

Myc proteins are members of a large family of basic
helix-loop-helix (bHLH) transcription factors. These
protein members can form homo- or heterodimeric
complexes with themselves or with other members of
this family. One important prerequisite for Myc activ-
ity is its interaction with a dimerization partner, the
bHLH protein Max (Figure 1) (61). Such generated
Myc-Max complexes bind to E-box sequences which
are found in promoters of many genes that act to
promote transcription and cell proliferation (62,63).
Through Miz1-complexes Myc and Max have been

shown to have repressive functions (64) inhibiting
tumor suppressor genes/cell cycle regulators like
p15Ink4b and also p21Cip1 (65), where Myc
represses p21Cip1 expression via a Miz1-dependent
interaction with the p21 promoter (66). Moreover,
the partners Mad or Mnt (another bHLH protein) act
inMax-dimeric complexes transcriptionally to repress
genes associated with E-box sequences (67).
Myc members are differently expressed in normal

brain. Mycl has no reported phenotype in knock-
out mice but has particularly high expression in the
ventricular zone of the embryonic midbrain (8,68).
Mycn is highly expressed in developing forebrain and
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hindbrain (5), while c-myc is expressed at lower levels
(6,8). In normal cerebellar granule cells, Mycn is
important for cell replication, whereas Mycn protein
degradation is essential for cell cycle exit (69–71).
Importantly, Mycn depletion in nestin-driven NSCs
reduces both germinal zones of the developing cere-
bellum, including the neuroepithelial cells lining the
fourth ventricle as well as the rhombic lip structure
with the granule precursor cells forming the external
germinal layer (5). The depletion also leads to dis-
rupted neuronal differentiation which correlates with
the findings that Myc genes (including c-myc, Mycn,
and Mycl) promote (but are not required for (72)) the
dedifferentiation processes for producing induced
pluripotent stem (iPS) cells (73,74). High expression
of Myc proteins, at least when using v-myc (the
retroviral homolog of c-myc) transduction, is impor-
tant for immortalization and self-renewal of NSCs
(75,76). Interestingly, Mad proteins also appear to
have a role in neuronal differentiation (77). Mxi1,
another member of the Mad family of proteins, can
antagonize Myc oncoproteins in vivo (78). Overex-
pression of Mxi1 in human glioma cell lines reduces
their mitotic activity (79), possibly through down-
regulation of cyclin B1 expression (80). The
data suggest that Mxi1 that interacts with Max can
antagonize Myc and thereby suppress glioma
progression.

Myc protein stability

Myc proteins are extremely unstable with half-lives of
only 20–30 min (81). There are two phosphorylation
sites on Myc proteins which are primarily responsible
for stabilization (Figure 1). First, serine (S62) is
phosphorylated which leads to Myc stabilization
(82). The extracellular-regulated kinase 1, 2 (ERK)
is known to mediate S62 phosphorylation (83). How-
ever, in cerebellar neural precursors, the mitotic
cyclin-dependent kinase 1 (Cdk1) is the priming
kinase for Mycn at S62 (70). Following S62 phos-
phorylation of Myc, threonine 58 (T58) is phospho-
rylated by glycogen synthase kinase 3 beta (GSK3b)
which will target Myc for degradation (84). Under
normal conditions T58 is always phosphorylated
after S62.
The turnover of Myc is mostly controlled by

ubiquitin-mediated proteolysis (85,86), which targets
the specific Myc proteins with great precision.
Specific ubiquitin-protein ligases (of type E3) like
Fbw7 can recognize and bind to Myc, but only
when T58 is phosphorylated alone. This requires
dephosphorylation of S62 with the help of a prolyl
isomerase, Pin1, that binds the phosphorylated sites
and isomerizes Myc on proline 59 (87). This provides

a conformation change of Myc which enables protein
phosphatase 2A (PP2A) to remove the phosphate
group. Fbw7 can now recognize Myc with a single
phosphorylation on T58 and send Myc for proteolytic
degradation (88) by ubiquitylating Myc on its amino-
terminus. It is suggested that at least four ubiquitin
groups need to be linked to a substrate in order for it
to be recognized by a proteasome that will later dissect
it into small peptide fragments (89).
Increased stability of Myc proteins can explain the

reported inconsistency between gene amplifications
and protein levels of Myc found in solid tumors, like
in breast cancer (90,91). There are numerous reports
of enhanced expression levels of Myc oncoproteins in
many different types of tumors, that suggesting this is
an important event for tumor initiation or an apparent
advantage for tumor progression (reviewed in (92)).
Myc protein levels are elevated in subtypes of glioma
(14), but there are few reports in which a correlation
between expression/amplification and protein levels
of Myc proteins is assessed. Such a relationship would
be required in order to understand fully the extent of
putative Myc protein stabilization in these brain
tumors.
Reports of mutations or alterations in genes that

can regulate Myc protein stability are increasing (for a
recent review, see (93)). For example, Fbw7 can
keep Myc levels low and therefore act as a tumor
suppressor. In the absence of Fbw7, the levels of Myc
and the activity of the protein will increase (94), and
mutations in Fbw7 prevent Myc degradation in
T-cell acute lymphoblastic leukemia (T-ALL) (95).
With regard to the discussions of how brain tumor
develops it is interesting to find that Fbw7 is highly
expressed during normal brain development (96,97),
where it can possibly regulate Myc protein stability.
Other ubiquitin ligases recognize Myc on other sites
than Fbw7 does, like S phase kinase-
associated protein 2 (Skp2). Skp2 is responsible for
Myc protein turnover (98) but is paradoxically also
promoting Myc activity by functionally amplifying the
Myc response (99). How Skp2 is working like an
oncogene and how it correlates with Myc is not fully
known (93), but Skp2 is actually associating with Myc
target genes when Myc is active (100). Other proteins
involved in regulating stability of Myc proteins are
also mutated in cancer, like Usp28, which has been
found frequently up-regulated in colon adenocarci-
nomas (101). This soluble deubiquitylating enzyme
(DUB) stabilizes Myc by removing linked ubiquitin
chains that have been conjugated by Fbw7 (Figure 1).
TRIM32 is another ubiquitin ligase that is asymmet-
rically distributed during NSC division and is
inhibiting cell proliferation by promoting Myc
degradation and neuronal differentiation (102).
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However, whether TRIM32 can also regulate prolif-
eration by differentiating brain tumor cells is currently
not known.

Myc mutants

Amutation causing a switch from threonine to alanine
on residue 58 was discovered in the transforming v-
myc viral gene and in Myc or Mycn in Burkitt’s
lymphoma patients (103,104). This mutation pre-
vents the phosphorylation from GSK3b that is so
important for Fbw7 recognition which can lead to
proteolytic degradation of Myc proteins. When
searching the Catalogue of Somatic Mutations In
Cancer (COSMIC) (105), very few mutations for
Myc genes are found in the category of central ner-
vous system (CNS) tumors (Table I). Here, only one
mutation in MYC and two (with one being a silent
mutation) inMYCN were reported (from The Cancer
Genome Atlas (TCGA) genotyping screen (51)).
Whether any of the non-silent mutations (Table I)
could affect Myc protein function or stability has not
been reported.

Myc and Ras collaborate to transform cells

Expression of c-myc together with a co-operative
oncogene like Ras is necessary for the stable trans-
formation of primary or early-passage fibroblasts
(106). Ras can stabilize Myc proteins in tumors.
One example is through high ERK-mediated Myc
S62 phosphorylation in Ras-transformed cells (83).
Different activating mutations of Ras promote ERK-
mediated phosphorylation and are implicated in brain
tumors, but it is important to distinguish if and how
the different isoforms collaborate with Myc proteins
in brain tumor formation and maintenance. For
example, H-rasG12V can collaborate with v-myc to
generate brain tumors in human fetal neural stem
cells (23), but H-rasQ61L cannot help v-myc to gen-
erate brain tumors in human adult neural stem cells in
another report (107). It is possible that fetal neural

stem cells are more prone to transformation than
adult neural stem cells or that the different activating
mutations have different effects on brain tumor devel-
opment. Myc proteins might require different isoforms
of Ras proteins as collaborators in brain tumorigen-
esis. For example, when searching COSMIC (105)
there are reports of mutations in CNS tumors (like
glioma and PNETs) only for N-ras (8/1017) and
K-ras (8/1054), but not for H-ras (108). Mutations
found in K-ras and N-ras were at residues 12 or 61.
For N-ras it is evident that all mutations at residue
12 (4/1017) were found only in glioma samples, while
mutations at residue 61 (4/1017) were found only in
PNET or medulloblastoma. Interestingly, in theMyc-
Ras collaboration, Myc represses the cellular senes-
cence induced by Ras. This repression of senescence
byMyc requires phosphorylation ofMyc at S62 by the
cell cycle kinase Cdk2 that is needed for inhibiting
cellular senescence induced by c-myc (109,110).
Many oncogenes like Ras (22,23), Akt (22), Shh
(17), or beta-catenin (21) can be involved in collab-
orating with Myc proteins to induce brain tumors.
This property of Myc proteins to launch collabora-
tions during tumor formation warrants more high-
throughput screens in order to identify critical Myc
collaborating genes using previously successful strat-
egies with retroviral tagging (111,112) or Sleeping
Beauty techniques (113–116) in mice.

How can we inhibit Myc proteins in brain
tumors?

Many tumors show addiction to Myc oncoproteins
(117). This is also true in Mycn-driven medulloblas-
tomamodels in which inhibition ofMycn will result in
total tumor regression and cellular senescence (20).
In glioma where suppressor genes like p53 and Pten
are inactivated, c-myc is essential for tumor mainte-
nance, and c-myc inhibition will suppress tumors by
promoting differentiation of the glioma cells (60). It is
evident that Myc proteins are validated targets
for cancer therapies (as reviewed in (118,119)).

Table I. Few mutations of Myc genes are found in brain tumor samplesa.

Geneb AA mutation CDS mutation Sample name Sample ID Histology (WHO grade)

MYC p.R316R c.948G > A TCGA-02-0083 1287236 Glioblastoma (IV)

MYCN p.P365P c.1095A > G TCGA-02-0010 1287210 Glioblastoma (IV)

MYCN p.P44L c.131C > T TCGA-02-0028 1287216 Glioblastoma (IV)

aThe mutation data were obtained from the Sanger Institute Catalogue of Somatic Mutations in Cancer web site (as of October, 2011), http://
www.sanger.ac.uk/cosmic (105), in the Primary Tissue category of Central Nervous System (CNS) tumors.
bFor MYC, one mutation was found in 524 cases examined in the category of CNS tumors. For MYCN, two mutations were found in
469 cases examined in the category of CNS tumors. No mutations were reported for MYCL1 in the category of CNS tumors (45 cases).
WHO = World Health Organization; AA = amino acid; CDS = coding sequence; TCGA = The Cancer Genome Atlas (51).
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Targeting these transcription factors that lack clear
binding domains have always proved difficult, and
using short interfering RNAs (like specific short hairpin
RNAs) that target Myc directly is not yet a treatment
option for patients. There are, however, small molec-
ular drugs that inhibit Myc-Max interactions that are
effective in cancers like human acute myeloid leukemia
(120-122). Promoting Mad, another bHLH protein
that antagonizes Myc, would be another promising
approach in brain tumor therapy (123).
There are other ways to induce growth arrest

and senescence in childhood medulloblastoma and
in atypical teratoid/rhabdoid tumor cells by using
G-quadruplex interactive agents in order to disable
c-myc at the promoter level (124). It is also possible to
target regulatory components in which Myc controls
ribosome biogenesis (125). Myc can regulate
transcription of ribosomal proteins through RNA
polymerase II (RNA pol II) (126,127). MYC parti-
cipates in release of paused RNA pol II, as c-myc can
bind positive elongation factor b (P-TEFb) and
stimulate transcriptional elongation in cancer cells.
Combined targeting of c-myc and P-TEFb could
prove effective for tumors maintained by Myc
proteins (128). Another strategy is to force changes
in chromatin modification controlled by Myc genes
(129). For example, histone lysine side-chain acety-
lation increased by c-myc can be effectively
suppressed by inhibition of acetyl-lysine recognition
domains (bromodomains) in multiple myeloma,
a Myc-dependent hematologic cancer (130).
Pathways downstream of receptor tyrosine kinases

like MAPK/ERK and PI3K/Akt/mTOR that indi-
rectly control Myc protein stability (Figure 1) are
often overexpressed or altered in brain tumors.
MAPK/ERK kinase inhibitors can dephosphorylate
c-myc and reduce cell proliferation and anchorage-
independent growth of rhabdomyosarcoma (131), a
soft tissue sarcoma in children. However, down-
stream of Shh signaling, Cdk1 rather than ERK is
associated with S62 activity, at least in granule neuron
precursors (69,70) that could serve as medulloblas-
toma cells of origin (13,132). The cyclin-dependent
kinase sibling Cdk2 can also phosphorylate S62. Yet,
while Cdk2 inhibitors will promote senescence in
Myc-induced cells (133), Cdk1 inhibitors (134) can
be used to promote the apoptotic effects induced by
Myc proteins (135). This is also the suggested cell
death that temozolomide treatment promotes from c-
myc via Akt signaling in O6-methylguanine-DNA
methyl transferase (MGMT) expressing glioblastoma
(136). Akt activity also determines the sensitivity to
mammalian target of rapamycin (mTOR) inhibitors
by regulating c-myc expression (137). Moreover,
mTOR exists in a complex, mTORC1, that directly

phosphorylates and inhibits PP2A (138) which (as
described above and visualized in Figure 1) will
lead to sustained Myc protein activity. Consequently,
clinical inhibitors of PI3K/mTOR prove efficacy when
used to degrade Mycn in neuroblastoma (139,140), a
childhood tumor thought to originate from the
peripheral neural crest. Such PI3K/mTOR inhibitors
are indeed also effective in suppressing glioma (141)
and medulloblastoma (142). Other examples to target
Myc protein stability include treatment with clinically
available synthetic steroid drugs, like dexamethasone,
that can be used to destabilize Mycn, leading to
inhibited growth of Shh-dependent medulloblastoma
(143). Ultimately, drugs that can target regulators of
the ubiquitin-proteasome system (reviewed in (144))
can promote final degradation of long-lived and
harmful Myc proteins also in brain tumor cells. To
summarize, there are numerous observations about
howMyc proteins co-ordinate cell transformation and
many promising ideas on how to target these proteins
in brain tumors, so let’s keep on hunting.
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