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Major depressive disorder (MDD) is a devastating mental disorder characterized by considerable clinical and biological
heterogeneity. While comparable clinical symptoms may represent a common pathological endpoint, it is conceivable that distinct
neurophysiological mechanisms underlie their manifestation. In this study, both static and model-based dynamic functional
connectivity were employed as predictive variables in the normative model to map multilevel functional developmental trajectories
and determined clusters of distinguishable MDD subgroups in a large multi-site resting fMRI dataset of 2428 participants (healthy
controls: N= 1128; MDD: N= 1300). An independent cohort of 72 participants (healthy controls: N= 35; MDD: N= 37) with both
resting fMRI and task-based fMRI data was utilized to validate the identified MDD subtypes and explore subtype-specific task-based
neural representations. Our findings indicated brain-wide, interpatient heterogeneous multilevel brain functional deviations in
MDD. We identified two distinct and reproducible MDD subtypes, exhibiting comparable severity of clinical symptoms but
opposing patterns of multilevel functional deviations. Specifically, MDD subtype 1 displayed positive deviations in the frontoparietal
and default mode networks, coupled with negative deviations in the occipital and sensorimotor networks. Conversely, MDD
subtype 2 exhibited a significantly contrasting deviation pattern. Additionally, we found that these two identified MDD subtypes
exhibited different neural representations during empathic processing, while the subtypes did not differ during implicit face
processing. These findings underscore the neurobiological complexity of MDD and highlights the need for a multifaceted approach
to diagnosis and treatment that can be tailored specifically to individual subtypes, facilitating personalized and more effective
interventions for individuals with MDD.
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INTRODUCTION
Major depressive disorder (MDD) is a highly prevalent and
burdensome mental disorder, with its onset commonly occurring
during adolescence and high rates of chronification in later life
leading to a tremendous burden of disease [1–3]. Those afflicted
with MDD typically exhibit a range of clinical symptoms, including
depressive mood and anhedonia as well as cognitive impairment,
somatic symptoms, social deficits and recurrent suicidal thoughts
[4–7]. According to the most recent Diagnostic and statistical
manual of mental disorders (DSM-5) [8], a diagnosis of MDD with
the same severity can encompass a vast array of symptom
combinations. Together with variations in the specific symptoms,
variations in the age of onset, duration of illness, presence of
comorbid mental or neurological disorders and environmental

factors can collectively result in the physiological heterogeneity
among individuals diagnosed with MDD. This heterogeneity poses
a significant challenge in developing effective diagnostic and
treatment strategies. Therefore, a more nuanced and individua-
lized approach is imperative in understanding and treating MDD.
During recent decades, researchers have sought to identify

MDD subtypes relying on clinical symptoms, genetics and other
neurobiological features [9–11]. A growing number of studies
have employed neuroimaging technologies to determine the
representations of these MDD subtypes [12–15]. For example,
studies focusing on intrinsic brain organization as assessed by
resting-state functional magnetic resonance imaging (R-fMRI)
revealed that compared to individuals with treatment-sensitive
depression, individuals with treatment-resistant depression
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showed hyperactivity in regions of the default mode network
(DMN), hypoconnectivity within and between DMN regions, as
well as aberrant activity and connectivity in the occipital lobe
[16–18]. While resting-state fMRI has provided valuable insights
into intrinsic functional alterations in MDD, task-based fMRI
enables the examination of brain activity in response to specific
cognitive or emotional demands, offering a complementary
perspective on the neurobiological dysfunctions of MDD indivi-
duals. Impairments in social functioning, such as emotional
perception and empathy, manifest as distinct behavioral patterns
and neural representations across various MDD subtypes [19–21].
However, it is noteworthy that the observed subtypes which are
typically determined through clinical assessments and genetic
subgroups, might be driven by distinct neurophysiological
underpinnings. Moreover, intervention studies using transcranial
magnetic stimulation (TMS) targeting the dorsolateral prefrontal
cortex (dlPFC), a key region of the frontoparietal network (FPN),
have demonstrated heterogeneity in treatment efficacy, with
therapeutic benefits observed only in around 50% MDD indivi-
duals. These findings underscore the necessity of a more precise,
biologically informed framework for delineating MDD subtypes
[22, 23]. The determination of neuroimaging-based subtypes of
MDD has thus the potential to allow a more precise and
biologically-informed definition of subtypes of intricate and
clinically-relevant phenotypes. This, in turn, could facilitate the
development of neuroimaging-based precise diagnostic meth-
odologies and personalized therapeutic interventions.
The functional connectivity (FC) has been extensively employed

to capture the intricate spatio-temporal structure of the functional
organization of brain regions and networks. Its strength has been
demonstrated to correlate with glucose metabolism and to
undergo changes with age [24, 25]. Many neuroimaging studies
have relied on static FC, derived from averaging R-fMRI or
electroencephalography (EEG) time periods of 6–10min, to
investigate altered brain functional patterns among MDD
subtypes [26–28]. However, static FC, defined as the degree of
coherence between the blood-oxygen-level-dependent (BOLD)
time-series of two brain regions across the entire scanning period,
fails to adequately represent the complex temporal dynamics of
brain function [26]. In contrast, model-based dynamic FC using
dynamic conditional correlations (DCC) method can allowed us to
estimate the instantaneous functional connectivity between all
pairs of ROIs at each time point during the scan [24, 29, 30] with a
higher retest reliability compared to traditional dynamic functional
connectivity approach (i.e. sliding window). Furthermore, tradi-
tional case-control analyses, which primarily focus on group-level
abnormalities, are insufficient for elucidating individual-level
anomalies. The normative model, however, offers a pioneering
statistical framework to characterize the biological developmental
trajectory of neuroimaging features and to quantify individual
deviations from this norm [26, 31, 32]. This approach provides
valuable insights into inter-individual heterogeneity and aids the
identification of neurobiological subtypes within psychiatric
disorders. Consequently, in the current study, we employed both
static and model-based dynamic FC as predictive variables for the
first time in a normative model to comprehensively map the
multilevel functional developmental trajectories of the human
brain and characterize individual functional deviations in MDD.
Against this background, we employed a multi-faceted

approach that integrated normative modeling and R-fMRI to
quantify the neurobiological heterogeneity in MDD patients.
Specifically, we parameterize this heterogeneity using multilevel
(static and model-based dynamic) FC values as functional features.
Our primary objective was to explore whether if subtype-specific
neural representations in both R-fMRI and task-state fMRI exist (T-
fMRI) (Fig. 1). We hypothesized that individuals with MDD would
exhibit significant heterogeneity in FC deviation patterns across all
levels, and that a more comprehensive understanding of these

deviations could be identified by examining multilevel FC features.
Furthermore, we predicted that individuals with MDD could be
clustered into different subgroups, characterized by unique
patterns of multilevel FC deviations and task-based representa-
tions. Thus, we conducted a comprehensive investigation utilizing
a large, multi-site R-fMRI dataset of 2428 participants (Dataset 1),
as well as an independent cohort of 72 participants with both
R-fMRI and T-fMRI data (Dataset 2). We first characterized the
multilevel FC for each participant by computing static FC using
Pearson correlation and model-based dynamic FC employing
dynamic conditional correlation, which has been shown to
possess a high level of test-retest reliability [24, 29, 33]. Next, we
constructed normative models based on the multilevel FC features
observed in HCs. These models were then employed to estimate
individualized multilevel FC deviation maps for individuals with
MDD. Following this, clustering analyses were applied to both the
large, multi-site dataset and the independent cohort to identify
potential MDD subtypes. Finally, we evaluated the imaging
differences and task-based representation differences among
the identified MDD subtypes. The comprehensive analytical
pipeline overview of the current study is shown in Fig. 1.

METHODS
Participants
To investigate the resting-state multilevel functional heterogeneity and
subtype-specific task-based representations of MDD, we included 2
independent cohorts: Dataset 1, referred to as the REST-meta-MDD cohort,
included R-fMRI data from 1300 MDD patients and 1128 HCs collected by
25 Chinese research groups [34]. All participants in Dataset 1 provided
information on diagnosis, age at scan, sex, education level, and for MDD
patients, additional details such as first-episode or recurrent MDD,
medication status, illness duration, and 17-item Hamilton Depression
Rating Scale (HAMD) scores. Dataset 2, an independent clinical cohort,
contained R-fMRI and T-fMRI data from 37 first-episode, unmedicated MDD
patients and 35 HCs [35–38]. This dataset included measures of diagnosis,
age at scan, sex, education level, 21-item Beck Depression Inventory II (BDI-
II) scores, and Interpersonal Reactivity Index-C (IRI-C) scores, which assess
individual emotional empathy traits. To ensure data quality and
consistency [34, 39], we excluded the participants from both datasets on
predefined criteria: incomplete information, age outside the 18–65 range,
poor spatial normalization quality, inadequate brain coverage, and
excessive head motion. Additionally, we excluded sites with less than 10
individuals. After these exclusions, Dataset 1 comprised a sample of 830
MDD patients and 765 HCs from 16 research groups/sites, while Dataset 2
included 27 MDD patients and 31 HCs (more details see Table 1 and Table S1).
The authors assert that all procedures contributing to this work comply
with the ethical standards of the relevant national and institutional
committees on human experimentation and with the Helsinki Declaration
of 1975, as revised in 2013. All procedures involving participants were
approved by the local ethical committees of participating centers (Dataset
1: respective local institutional review boards and ethics committees of
REST-meta-MDD Consortium; Dataset 2: local ethics committee at the
University of Electronic Science and Technology of China) and written
informed consent was obtained from all participants.

Dataset 1: Characterization of MDD subtypes based on
individual multilevel functional deviations
MRI paradigms and data preprocessing. All participants in Dataset 1
underwent at least a T1-weighted structural scan and an R-fMRI scan, with
the scan parameters detailed in Table 2. The structural MRI and R-fMRI data
were preprocessed at each research group/site using a standardized
DPARSF protocol (Supplement) [34].

Normative modeling of multilevel functional connectivity. To evaluate
individual multilevel (i.e. static and model-based dynamic) functional
connectivity, the average BOLD signals were extracted for the Dosenbach
160 regions of interest (ROIs) for each participant [40]. These ROIs were
chosen based on their functional definition from five meta-analyses
focusing on distinct cognitive domains, including error processing, default
mode (task-induced deactivations), memory, language, and sensorimotor
functions [40]. The Dosenbach’s 160 atlas has demonstrated strong
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sensitivity and reliability in detecting abnormal functional connectivity and
network topology of MDD [34, 39]. The ROIs were further divided into six
brain networks: the frontoparietal network (FPN), default mode network
(DMN), cingulo-opercular network (CON), sensorimotor network (SMN),
occipital network (ON), and cerebellar network (Cere). For each brain
region, we used Pearson correlation to calculate static functional
connectivity strength (SFCS) and dynamic conditional correlation [33] to
estimate dynamic functional connectivity strength (DFCS) and dynamic
functional connectivity variance (DFCV) (Supplement). Then, we developed
normative models of these multilevel FC features (i.e. SFCS, DFCS and
DFCV) as a function of age and sex, by using Gaussian process regression
(GPR, Supplement) in the HCs [26, 31, 32]. To validate the generalizability of
these models, we used a 10-fold cross-validation process prior to applying
the trained models on MDD patients. Following this validation, the final
normative models were trained on the entire healthy control cohort for
subsequent analysis of functional deviation in MDD patients. To account
for potential site effects and confounding factors, all functional con-
nectivity features were modulated by a combat harmonization procedure
that considered disease status, sex, age, years of education and mean
framewise displacement as covariates.

Estimating individual multilevel functional deviations for MDD individuals.
For each individual with MDD, we assessed their multilevel functional
deviations by positioning their FC features onto the trained final normative

models from HCs. Specifically, we derived a Z-score for each FC feature to
quantify the degree of deviation from the normative model. The Z-score
was defined as follows:

Z ¼ FCobserved � FCpredicted

σ

where FCobserved represents the observed FC feature, FCpredicted is the
expected FC value estimated by the GPR, and σ is the square root of
variance estimated from the GPR. Similarly, the individual multilevel
functional deviation map of each HC was estimated by computing the
Z-score during the 10-fold cross-validation. To identify significant
individual-level FC deviations in participants, deviation maps were
thresholded of Z= ± 2.58 (corresponding to a p-value of <0.005), in line
with previous studies [26, 41, 42].

Characterizing MDD subtypes based on individual multilevel functional
deviations. A data-driven k-means clustering algorithm was used to
determine MDD subtypes with multilevel FC features as clustering features.
We varied the number of clusters (subtypes) from 2 to 10 and determined
the optimal number of MDD subtypes using the NbClust package in R
(Supplement) [43]. The leave-one-site-out validation was further conducted
to evaluated the inter-site reproducibility of subtyping results. Subse-
quently, the brain deviations as well as demographic and clinical variables
were further compared among the identified subtypes.

Fig. 1 Comprehensive analytical pipeline overview. A Estimation of major depressive disorder (MDD) individual deviation with normative
models: Normative models are derived from the multilevel functional connectivity (FC) features of healthy controls (HCs) subjects. These
models are then utilized to map MDD individuals, resulting in the MDD individual multilevel FC deviation map. B Identification of MDD
subtypes and subtype differences: A K-means clustering algorithm is conducted to group MDD patients into distinct subtypes based on their
individual multilevel FC deviation maps, and compare the imaging differences among the identified subtypes. The identified subtype labels
are used to classify individual within the independent cohort into their respective subtypes by a K-Nearest Neighbors (KNN) algorithm and the
task-based fMRI data was analyzed to explore representation differences among the identified subtypes.
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Dataset 2: Specific task-based representations for identified
MDD subtypes
MRI paradigms and data preprocessing. All participants in Dataset 2
underwent a T1-weighted structural scan, a 6.5min R-fMRI scan, and two
T-fMRI scans. The first T-fMRI scan lasted 7.3min and involved a pain empathy
task, where participants viewed physical pain stimuli (e.g. cutting a finger with
a scissors) and affective pain stimuli (i.e. painful facial expressions), along with
corresponding control stimuli (physical control, e.g. cutting papers with a
scissors; affective control, neutral facial expression). During this task,
participants were instructed to imagine the level of pain the person in the
picture was experiencing. The second T-fMRI scan lasted 11.2min and involved
an implicit face processing task, where participants were asked to indicate the
gender of faces displaying various emotional expressions, including angry,
fearful, sad, neutral and happy. More details about the R-fMRI and the two
T-fMRI scans are described in our previous studies [35, 37]. All MRI data in
Dataset 2 were acquired via a 3.0 Tesla GE MR750 system (General Electric
Medical System, Milwaukee, WI, USA) and were preprocessed with the
standard DPARSF protocol similar with Dataset 1 (Supplement).

Identifying MDD subtypes with independent clinical cohort. To accurately
identify individuals in Dataset 2 as the independent cohort into their
respective MDD subtypes, we employed the K Nearest Neighbors (KNN)
algorithm with a focus on FC features. The detailed steps taken were:

1. Feature Extraction: we calculated multilevel FC features (i.e. SFCS,
DFCS and DFCV) for each MDD individual in Dataset 2 based on their
R-MRI image.

2. Functional Deviation Estimation: we estimated the functional
deviations for each MDD individual in Dataset 2 based on the
normative models established from HC data in Dataset 1.

3. Classification Using KNN: we mapped the MDD individual in Dataset
2 to the subtyped MDD individuals of Dataset 1 by KNN (K= 1)
algorithm with the functional deviations as classification features.

Validating subtype-specific task-based representations. To explore potential
subtype-specific task-based neural representations during T-fMRI, we

conducted a General Linear Model (GLM) implemented in SPM 12 v7771
to analyze the pain empathy task and the implicit face processing task. On
the individual level, two T-fMRI tasks were modeled with the canonical
hemodynamic response function (HRF) on corresponding stimulus
conditions (pain empathy: physical pain, affective pain, physical control
and affective control; implicit face processing: angry, fearful, sad, neutral
and happy). Additionally, contrast images of these T-fMRI tasks (pain
empathy: [physical pain > physical control] and [affective pain>affective
control]; implicit face processing: [angry>neutral], [fearful>neutral], [sad>-
neutral], [happy>neutral], [negative>neutral] and [positive>neutral]) were
produced on the individual level for further intergroup comparison
analyses. Small volume correction (SVC) with pFWE <0.05 correction at
cluster level was conducted with bilateral dorsolateral prefrontal cortex
(dlPFC) as ROI given the key role of dlPFC in emotion processing and as the
target intervention region for MDD in previous studies [44, 45].

RESULTS
Individual deviations from normative models of multilevel
functional connectivity in MDD
We conducted comprehensive analyses of FC for each participant,
generating a total of 480 FC features through both static and
model-based dynamic FC assessments. Normative models for
these multilevel FC features were established derived from the
Dataset 1 of 765 TD individuals (313 males, 18–64 years, Table 1),
incorporating age and sex as arguments (see Methods). The
robustness of these models was confirmed through 10-fold cross-
validation, as indicated by standardized mean squared error
(mean ± SD: 1.002 ± 0.012) and mean squared log-loss (mean ± SD:
0.002 ± 0.006) (Fig. S1). Correlation analyses between FC values
and age revealed consistent age-related patterns across SFCS,
DFCS, and DFCV levels, albeit with distinct patterns between
genders (Fig. S2 and Fig. S3). After establishing robust normative
models, we estimated the deviations of multilevel FC features
from the established-normative models for each MDD individual
(n= 830, 306 males, 18–65 years, Table 1). Relative to HCs, MDD
individuals exhibited significant deviations in all three FC levels,
with significantly larger positive deviations in the frontoparietal
network (FPN), DMN and cingulo-opercular network (CON), and
significantly larger negative deviations in the occipital network
(ON), sensorimotor network (SMN) and CON (Fig. 2A, B). In
addition, MDD individuals showed a greater number of extreme
deviations (Fig. 2C), including greater extremely positive devia-
tions in dynamic FC (i.e., DFCS and DFCV, Fig. 2D, E), and greater
extremely negative deviations in static FC (i.e., SFCS, Fig. 2F, G).
Notably, the combination of static and dynamic FC analyses
identified a substantial majority (98.1%, n= 814) of MDD
individuals showing extreme deviations from the established
normative models in at least one multilevel FC feature. Specifically,
66.4% (n= 551) of MDD individuals showed extremely positive
deviations, while 93.4% (n= 775) displayed extremely negative
deviations (Fig. 2H). In contrast, when relying solely on static FC
analysis, the identification rate for extreme deviations in MDD was
notably lower (58.7% in total, n= 487). Further statistical analyses
revealed that although there were considerable overlaps
(6.3–33.7%, n= 52–280) in the identification of extreme deviations
across the three levels of FC features, there were also MDD
individuals with FC-specific extreme deviations (Fig. 3A). These
results revealed that both static and model-based dynamic FC
contribute to mapping the functional abnormal patterns asso-
ciated with MDD.

High heterogeneity in multilevel functional connectivity
deviations among MDD individuals
To further examine the multilevel functional heterogeneity among
individuals with MDD, we calculated the proportion exhibiting
extreme deviations in each FC feature. Out of 480 FC features
examined, a substantial portion FC features displayed extreme
positive (74.6%, n= 358) or negative (82.7%, n= 397) deviations

Table 1. Demographic and clinical characteristics of the participants.

Demographics MDD HC p value

Dataset 1 830 765

Age, years, mean (SD) 34.39 (11.58) 34.59
(13.13)

0.755a

Sex, M/F 306/524 313/452 0.097b

Education, years, mean
(SD)

11.95 (3.36) 13.55
(3.43)

<0.001a

First episode/
Recurrence

419/208

Medicated/
unmedicated

222/314

HAMD-17 21.28 (6.61)
(n= 746)

Dataset 2 27 31

Age, years, mean (SD) 28.44 (8.22) 26.07
(8.41)

0.296a

Sex, M/F 5/22 12/19 0.092b

Education, years, mean
(SD)

14.00 (3.28) 14.38
(2.90)

0.642a

BDI-II 32.33 (9.42)

IRI-total score 46.30 (10.11)

MDD major depressive disorder, HC healthy control, SD standard deviation,
M male, F female, BDI-II beck depression inventory II, IRI interpersonal
reactivity index-C.
ap value was calculated using two-sample t test.
bp value was calculated using Chi-square test; all p values were corrected
with FDR-correction.
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Fig. 2 Multilevel functional connectivity deviations from the established-normative models in major depressive disorder (MDD). A, B
Region-level and network-level functional connectivity deviations in SFCS, DFCS and DFCV for MDD. * indicates that the network-level
deviation of MDD significantly differs (pFDR < 0.5) from healthy control in the functional connectivity corresponding to that color. C–G The
between-group differences of the overall deviation indices in multilevel functional connectivity between MDD and HCs. *p < 0.05, **p < 0.01,
***p < 0.001, nsp > 0.05, FDR corrected. H Bar plots show the distribution of the number of functional connectivity features per patient with
extreme deviations. FC functional connectivity, SFCS static functional connectivity strength, DFCS dynamic functional connectivity strength,
DFCV dynamic functional connectivity variance, FPN frontoparietal network, DMN default mode network, CON cingulo-opercular network,
SMN sensorimotor network, ON occipital network, Cere cerebellar network. Error bars indicate 95% confidence interval.
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in at least one MDD individual (Fig. 3B). However, when
considering each FC feature individually, the percentage of MDD
individuals exhibiting extreme deviations from the normative
model was notably low, both for positive (2.3%, n= 19) and
negative (4.5%, n= 37) deviations (Fig. 3B). At the network-level,
extremely positive deviations in MDD were predominantly
observed in the SFCS and DFCV features of FPN, DMN, SMN and
CON (n > 70, 8.4%), while extremely negative deviations were
more widespread across all six networks (n > 190, 22.9%), with
particularly evident in the SMN and CON (Fig. 3C). These findings
indicated that although alterations in FC are prevalent in the
majority of MDD individuals, the specific FC features or brain
regions exhibiting out-of-range alterations vary considerably
among individual patients.

Multilevel functional connectivity deviation-based MDD
subtypes
With multilevel FC deviations as clustering features, we classified the
MDD individuals from Dataset 1 into two distinct subtypes (see
Methods). This optimal subcluster number was consistently selected
by 11 of 26 cluster criteria in the NbClust package (Fig. 4A).
Furthermore, these subtyping results showed high reliability and
reproducibility, as evidenced by the significantly greater similarity of
functional deviations within the same subtype compared to those

between different subtypes (pFDR < 0.001, Fig. 4B). Furthermore, there
was no significant difference in the number of MDD subtypes across
different sites (χ15

2= 24.95, p= 0.051, Fig. 4C, Table S2), and a high
overlap rate (mean 97.1%, range: 93.8–98.9%, Fig. 4D) between the
subtyping result of leave-one-site-out validation and the main
subtyping result was observed.
In terms of functional deviation among the identified MDD

subtypes, subtype 1 (n= 383, 46%) exhibited significantly more
severe deviations compared to subtype 2 (n= 447, 54%) across all
three levels FC features (pFDR < 0.001, Fig. 4E and Table S3). Among
individuals with MDD subtype 1, positive deviations were observed in
the FPN and DMN, accompanied by negative deviations in the ON
and SMN. Conversely, MDD subtype 2 individuals displayed a
significantly opposite deviation pattern across all three levels of
functional connectivity features (pFDR < 0.05, Fig. 4F and Table S4–5).
To evaluate the robustness of our clustering results, we conducted
additional analyses by applying hierarchical clustering (Fig. S4),
varying the number of clusters (Fig. S4), and performing clustering
with both MDD and HC participants combined (Fig. S5). Consistently,
the identified MDD subtypes demonstrated reproducible patterns of
brain functional deviations across all methodological variations,
reinforcing that the identified subtypes are independent of
methodological choices. Further statistical comparisons revealed that
MDD subtype 1 exhibited significantly higher extremely positive

Fig. 3 The proportion of patients with major depressive disorder (MDD) with extreme deviation. A The proportion of MDD individuals
with extreme deviation identified by each level of FC features and its overlaps across three levels of FC features. No FC feature represents that
no FC feature at any level identified the presence of extreme deviation in these MDD individuals. B The proportion of MDD individuals with
extreme deviation in single node at each FC feature-level, red spheres represent the extremely positive deviations and blue spheres represent
the extremely negative deviations. C The proportion of MDD individuals with extreme deviation in network-level, top: extremely positive
deviations, bottom: extremely negative deviations. SFCS static functional connectivity strength, DFCS dynamic functional connectivity
strength, DFCV dynamic functional connectivity variance, FPN frontoparietal network, DMN default mode network, CON cingulo-opercular
network, SMN sensorimotor network, ON occipital network, Cere cerebellar network.
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deviations compared to those with MDD subtype 2 for SFCS and
DFCS features (pFDR < 0.001, Fig. 4G), particularly in the FPN, DMN and
CON (Fig. S6). Nevertheless, no significant differences were observed
between the two subtypes in terms of the burden of depression
(t(744)= 0.415, p= 0.678), medicated proportion (χ2= 0.161,
p= 0.688) or first-episode proportion (χ2= 0.458, p= 0.499). These
findings suggested that MDD patients, despite sharing the same

diagnosis, may exhibit varying abnormal patterns of functional
deviations.

Subtype-specific representations in depression-related tasks
We further investigated whether there were any subtype-specific
neural representations in depression-related tasks. The MDD indivi-
duals in the independent cohort (n= 27, 5 males, Table 1) were also

Fig. 4 Multilevel functional connectivity deviation-based MDD subtypes and their neuroimaging differences. A Determination of the
optimal subtype number of MDD using the NbClust package. B The inter-subject similarity of functional deviations within MDD single subtype
and between MDD subtypes. C Distribution of the proportion of MDD subtype 1 in subtyping results. D Distribution of the overlap rates
between the subtyping result of leave-one-site-out validation and the main subtyping result. E, F Region-level and network-level functional
connectivity deviations in SFCS, DFCS and DFCV for each MDD subtype. * indicates that there was a significant difference on the network-level
deviation between MDD subtypes. G The between-group differences of the overall deviation indices in multilevel functional connectivity
among MDD subtypes and HCs. *p < 0.05, ***p < 0.001, nsp > 0.05, FDR corrected. SFCS static functional connectivity strength, DFCS dynamic
functional connectivity strength, DFCV dynamic functional connectivity variance, FPN frontoparietal network, DMN default mode network,
CON cingulo-opercular network, SMN sensorimotor network, ON occipital network, Cere cerebellar network. Error bars indicate 95%
confidence interval.

Q. Liu et al.

8

Translational Psychiatry          (2025) 15:199 



categorized into two subtypes (subtype 1= 8, subtype 2= 19) using
the KNN algorithm based on the subtyping results from Dataset 1 (see
Methods). This subtyping result also demonstrated high reliability, as
indicated by the substantial overlap rate (mean 97.8%, range:
92.6–100%, Table S6) between the subtyping result obtained with
different K values of the KNN algorithm and the primary subtyping
outcome. In addition, the two subtypes in the independent cohort did
not differ in age, sex, education, IRI total score and its subscales
(ps > 0.211, Table S7), while there was a significant difference in BDI
score (mean ± SD: subtype 1= 24.000 ± 7.597; subtype
2= 35.842 ± 7.869, pFDR= 0.013). For the pain empathy task, whole-
brain intergroup comparison analyses revealed higher activation in
the dorsolateral prefrontal cortex (dlPFC, MNI peak coordinate: −38,
26, 28, k= 90, pFWE-SVC= 0.029, Fig. 5A) for MDD subtype 2 than
subtype 1 during the affective pain > affective control condition.
There were no significant differences between two MDD subtypes for
other conditions in the pain empathy task or implicit face processing
task. Post-hoc t-tests, comparing this dlPFC activation between MDD
individuals and HCs, revealed that the activation for HCs was
significantly higher than MDD subtype 1 (t(37)= 2.169, pFDR= 0.037),
but significantly lower than MDD subtype 2 (t(48)=−3.041, pFDR=
0.006). However, there was no significant difference between the
entire MDD group and HCs (t(56)= 1.306, pFDR= 0.197) (Fig. 5B).
Finally, exploratory correlation analyses found that the activation of
dlPFC during the affective pain > affective control condition in
individuals with MDD was positively correlated with the burden of
depression (r= 0.392, pper= 0.022), IRI-personal distress scores
(r= 0.392, pper= 0.020), and IRI-fantasy scores (r= 0.437, pper= 0.012)
(Fig. 5C), with 10000 permutation tests. These findings suggest
subtype-specific neural patterns in depression-related social tasks and
potential links with depression severity and empathy-related traits.

DISCUSSION
This study combined normative modelling of a large multi-site R-
fMRI dataset of 765 HCs and 830 MDD patients with original data

from a sample of non-medicated well-characterized MDD patients to
characterize the developmental trajectory of brain multilevel
functional features and quantitatively map the individual deviations
in multilevel FC features in MDD. Notably, two reproducible MDD
subtypes were identified and validated in an independent cohort of
27 MDD patients, demonstrating opposing neural representations in
both R-fMRI and T-fMRI. Our findings emphasize the synergistic
contribution of static and model-based dynamic FC in delineating
the aberrant functional deviations in MDD individuals. Crucially,
although the two identified MDD subtypes did not differ in clinical
symptom severity, they displayed diametrically opposed patterns of
multilevel brain functional deviations and neural representations of
emotional empathy. This observation substantially advances our
understanding of the neurobiological heterogeneity of MDD, and
offers promising implications for the development of precise
neuroimaging-based diagnostic methodologies and personalized
therapeutic interventions.
The normative model provided a robust statistical framework

for quantitatively assessing individual deviations from the typical
neurobiological developmental patterns throughout life. With this
model, we were able to estimate individual functional deviations
and to identify extreme deviation features for each patient with
MDD, respectively. At the group level, we observed statistically
significant positive deviations across all three levels of FC features
in the FPN and DMN regions in MDD compared to HCs. These
hyperconnectivities in the FPN and DMN have been associated
with impaired cognitive functioning, difficulty concentrating, and
increased self-referential processing in MDD patients [26, 46, 47].
Conversely, significant negative deviations were observed in ON
and SMN regions in MDD, which may correspond to reduced
visual information processing and motor coordination difficulties
[46, 47]. Notably, MDD exhibited compound abnormalities in the
CON and cerebellum, characterized by both positive and negative
deviations compared to HCs. This bidirectional abnormality may
reflect the dual challenges of emotional and motor functioning in
MDD and the complex neural adaptations the brain undertakes in

Fig. 5 Subtype-specific representation in pain empathy task. A The differences between two MDD subtypes (subtype 2 > subtype 1) in
neural response of dorsolateral prefrontal cortex (dlPFC) to affective pain > affective control. B The post-hoc t-tests among two MDD subtypes
and HCs on the activation of dlPFC to affective pain > affective control. *p < 0.05, **p < 0.01, ***p < 0.001, FDR corrected. C Correlation analyses
revealed significant correlations the activation of dlPFC to affective pain > affective control and the BDI total score, IRI-personal distress, and IRI-
fantasy scale. The blue histogram represents the distribution of correlation coefficients obtained from 10,000 permutation tests, and the red line
represents the original correlation coefficient. HC healthy control, BDI Beck Depression Inventory II, IRI Interpersonal Reactivity Index-C.
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response to these challenges [48, 49]. At the individual level, a
higher proportion of MDD patients exhibiting dynamic hypercon-
nectivity compared to HCs were identified. This excessive
temporal variability in brain function has been associated with
increased frequencies of spontaneous, internally orientated
cognition processes in MDD [50–52]. Even more significantly, the
combination of model-based dynamic and static FC features
identified abnormal functional deviations in over 98% of MDD
patients, significantly outperforming static FC analysis alone,
which had an identification rate of only 58.7%. These findings
highlight complementary nature of these two approaches in
understanding brain function. However, the overlap between
these abnormal features was remarkably low, revealing the high
degree of neurobiological heterogeneity among MDD patients.
Using a functional deviation-based data-driven approach, we

identified two MDD subtypes characterized by homogeneous
deviation orientations at multilevel FC features: the FPN-DMN
dominant subtype and the ON-SMN dominant subtype. The FPN-
DMN dominant subtype exhibited a pattern of positive functional
deviations in the DMN and FPN, coupled with negative deviations
in the ON and the SMN. Conversely, the ON-SMN dominant
subtype showed an inverse pattern of deviations in these
respective regions. The observed divergence in brain function
between these two subtypes may elucidate the limited success of
neurostimulation treatments to fully ameliorate symptoms to
healthy levels in up to two-thirds of MDD patients [53, 54]. In
particular, the opposing functional representations of the DMN
and FPN in the two subtypes may potentially explain why only
around 50% of MDD patients respond favorably to transcranial
magnetic stimulation (TMS) interventions, as TMS primarily aims to
decrease the functional activity of these two networks
[22, 23, 55, 56]. This suggests that TMS may only be effective for
a subset of MDD patients, underscoring the need for subtype-
specific treatment approaches [28]. Consistent with previous
studies, we did not find differences in clinical symptoms between
the two identified subtypes, despite their notable variations in the
severity of brain functional deviations [26, 28]. This finding
indicates the possibility that homogeneous symptom representa-
tions can coexist alongside heterogeneous representations of
brain function. Future studies should incorporate more refined
behavioral and clinical assessments to better differentiate these
subtypes and identify potential distinctions that may be over-
looked by conventional measures. Moreover, although the ON-
SMN dominant subtype exhibited significant functional deviations,
the degree of these deviations was less extreme compared to HCs.
This observation is consistent with the contracted connectome
hierarchy observed in patients with MDD [57].
Subsequently, we were able to robustly classify individual

subtypes in the independent cohort as well. Unlike our above
findings that only indicated a trend in depression burden between
our defined two subtypes, this difference became statistically
significant in the independent cohort. Possible reasons for this
include the smaller sample size of the independent cohort
(N= 27) and the use of a self-report depression assessment scale
(i.e., BDI-II) in the independent cohort, which may have over-
estimated the difference between the two subtypes compared to
a professional, structured assessment instrument (i.e., HAMD)
[58–61]. Besides differences in functional representation on R-
fMRI, the two subtypes exhibited inverse representations com-
pared to HCs in the dorsolateral prefrontal cortex, during
emotional pain empathy. Notably, there was no significant
difference between the entire MDD group and HCs, highlighting
the significance of subtyping using the current models. Moreover,
exploratory analyses have shown that the activation of this region
is associated with depressive burden and empathic traits in
individuals with MDD. These findings echo the role of the dlPFC in
emotional reappraisal, impulse control, and emotion regulation
that are commonly impaired in MDD [62, 63]. Importantly, TMS

interventions targeting the dlPFC have been shown to enhance
pain empathy and reduce anhedonia in a subset of patients with
MDD [45, 64]. Thus, the future TMS interventions targeting the
dlPFC should take into account the neuroimaging-based subtype
to tailor the treatment strategy accordingly (increase vs. decrease).
Additionally, we did not find any differences in behavior or neural
activation between the two subtypes during the implicit face
processing task, which may be attributed to the implicit nature of
the present paradigm.

Limitations
Several limitations of the study should be acknowledged. Firstly,
we mapped the multilevel brain functional developmental
trajectories for individuals aged 18–65 due to the limited
availability of data for individuals outside this age range. Future
studies should incorporate data from a broader and more evenly
distributed age range to map functional developmental trajec-
tories across the entire lifespan. Secondly, the current study
identified two MDD subtypes with distinct resting-state and task-
based functional representations using exclusively Chinese
samples. However, due to the cultural homogeneity of the sample
and the limited amount of task-based fMRI data, future studies
should aim to replicate and extend these findings in larger task-
based datasets and more diverse populations. Thirdly, the effects
of neurostimulation and pharmacological treatments on these
neurobiological subtypes should be further evaluated to guide
personalized interventions. Finally, integrating more comprehen-
sive individual information, including brain imaging, genetic,
environmental, and cognitive-behavioral data, could provide a
more thorough understanding of MDD heterogeneity.

CONCLUSIONS
In summary, we employed a multilevel rather than single level
data-driven approach to identify neurobiological subtypes of MDD
that exhibited distinct resting-state and task-based functional
representations. This approach aimed to elucidate the critical
heterogeneity in MDD, despite similar symptoms among subtypes.
Our study highlights the importance of the multilevel FC analysis
framework for understanding the complex heterogeneity of brain
function in patients with MDD. Not only does this approach
provide valuable insights into the neurobiological underpinnings
of the disorder, but it also has implications for the development of
more personalized diagnostic and therapeutic approaches tailored
to the specific neurobiological subtype of each patient. Future
studies should further validate and generalize these findings to
diverse populations and evaluate the impact of different treat-
ments on these neurobiological subtypes.
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