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Abstract

The inference of a genetic network is a problem in which mutual interactions among genes are inferred from time-series of
gene expression levels. While a number of models have been proposed to describe genetic networks, this study focuses on
a mathematical model proposed by Vohradský. Because of its advantageous features, several researchers have proposed
the inference methods based on Vohradský’s model. When trying to analyze large-scale networks consisting of dozens of
genes, however, these methods must solve high-dimensional non-linear function optimization problems. In order to resolve
the difficulty of estimating the parameters of the Vohradský’s model, this study proposes a new method that defines the
problem as several two-dimensional function optimization problems. Through numerical experiments on artificial genetic
network inference problems, we showed that, although the computation time of the proposed method is not the shortest,
the method has the ability to estimate parameters of Vohradský’s models more effectively with sufficiently short
computation times. This study then applied the proposed method to an actual inference problem of the bacterial SOS DNA
repair system, and succeeded in finding several reasonable regulations.
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Introduction

With the rapid advancement of technologies such as RNA-seq

using next generation sequencers, it has become possible to

measure the expression levels of thousands of genes. These data

implicitly contain enormous amounts of information on biological

systems. In order to exploit these high-throughput technologies, we

must develop a way of extracting hidden information from the

observed data. The inference of genetic networks is considered a

promising approach for extracting useful information from these

data. In the genetic network inference, the information is extracted

by inferring mutual interactions among genes from the time-series

of the gene expression levels. The inferred model of the genetic

network is conceived of as an ideal tool to help biologists generate

hypotheses and facilitate the design of their experiments. Many

researchers have thus taken an interest in the inference of genetic

networks, and the development of this methodology has become a

major topic in the field of bioinformatics and systems biology.

Numerous models for describing genetic networks have been

proposed, and numerous algorithms based on individual models

have been developed for the inference of genetic networks [1–14].

Among these models, this study focuses especially on sets of

differential equations, as they can capture the dynamic behavior of

gene expression. When we use the set of differential equations to

describe a genetic network, its inference is generally defined as a

problem of estimating the model parameters that produce time-

series data consistent with the observed gene expression levels.

A linear model is one of the best-studied models based on a set

of differential equations. Several inference methods based on the

linear model have therefore been proposed [13,15]. The

computation times of these methods are reportedly very short.

As the linear model requires that the system is operating near a

steady state, however, it is unsuitable for analyzing the time-series

of gene expression levels [13]. An S-system model is another well-

studied model based on a set of differential equations [16,17]. As

several fundamental properties of biochemical systems are

inherent in this model, a number of inference methods based on

it have been proposed [18–28]. However, the number of

parameters in the S-system model is larger. The number of the

parameters in the linear model is N(Nz1), where N is the

number of genes contained in the target network. On the other

hand, the number of the parameters in the S-system model is

2N(Nz1). To obtain reasonable results, therefore, we should give

the inference methods based on the S-system model a larger

amount of the gene expression data.

When trying to infer genetic networks, we should use a

mathematical model that has the ability to approximate actual

biochemical reactions. As it is generally difficult to measure a

sufficient amount of gene expression data, moreover, the model

should contain a fewer number of the parameters. Vohradský

proposed a model that is capable of representing the process of the

gene expression [29]. The number of the parameters of the

Vohradský’s model, i.e., N(Nz3), is comparable to that of the
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linear model. Because of its advantageous features, several

researchers have proposed the inference methods based on this

model [30–32]. However, these methods try to estimate all of the

model parameters simultaneously. When inferring genetic net-

works consisting of many genes, therefore, they must solve high-

dimensional non-linear function optimization problems. In order

to overcome this high-dimensionality in the canonical methods,

this study proposes a new approach that defines the estimation of

the model parameters as two-dimensional function optimization

problems. Although the defined problems are still non-linear, their

low-dimensionality enhances the probability of obtaining reason-

able results. Finally, we confirm the effectiveness of the proposed

method by applying it to artificial and actual genetic network

inference problems.

Methods

Vohradský’s model
This study uses a mathematical model proposed by Vohradský

[29] to describe genetic networks. The Vohradský’s model is a set

of differential equations of the form

dXn

dt
~anf

XN

m~1

wn,mXmzbn

 !
{bnXn, (n~1,2, � � � ,N), ð1Þ

where

f (x)~
1

1ze{x
,

and an (w0), bn (w0), bn and wn~(wn,1,wn,2, � � � ,wn,N )
(n~1,2, � � � ,N) are model parameters. In the genetic network

inference, Xn is the expression level of the n-th gene and N is the

number of genes contained in the target network. When we use the

Vohradský’s model to describe genetic networks, our purpose is to

estimate all of the model parameters that produce time-series data

consistent with the observed gene expression levels.

The discrete form of the model (1) is equivalent to a recurrent

neural network. We can thus use learning algorithms for recurrent

neural networks, such as a back-propagation through time [33], in

order to estimate the parameters of this model [29]. The canonical

inference methods based on the Vohradský’s model [30–32] have

been designed on the basis of the back-propagation through time.

In contrast to these methods, on the other hand, the proposed

method estimates the parameters by solving simultaneous equa-

tions, as described below.

Parameter estimation
The proposed method divides the inference problem of the

Vohradský’s model of a genetic network consisting of N genes into

N subproblems, each of which corresponds to each gene. By

solving the n-th subproblem, our method estimates the parameters

corresponding to the n-th gene, i.e., an, bn, bn and

wn~(wn,1,wn,2, � � � ,wn,N ). This section will describe the method

to solve the n-th subproblem.

Concept
In the n-th subproblem corresponding to the n-th gene, the

proposed method estimates the model parameters, an, bn, bn and

wn~(wn,1,wn,2, � � � ,wn,N ), by solving the following simultaneous

equations.

dXn

dt

����
t1

~anf
XN

m~1
wn,m Xmjt1zbn

� �
{bnXnjt1 ,

dXn

dt

����
t2

~anf
XN

m~1
wn,m Xmjt2zbn

� �
{bnXnjt2 ,

..

.

dXn

dt

����
tK

~anf
PN

m~1 wn,m XmjtK zbn

� �
{bnXnjtK ,

ð2Þ

where Xmjtk is the expression level of the m-th gene at time tk,

dXn

dt

����
tk

is the time derivative of the expression level of the n-th gene

at time tk, and K is the number of measurements. In the proposed

approach, Xmjtk ’s are measured using technologies such as RNA-

seq, and
dXn

dt

����
tk

’s are estimated directly from the observed time-

series of the gene expression levels using a smoothing technique

such as spline interpolation [34], local linear regression [35],

neural networks [28], or a modified Whittaker’s smoother [36].

Based on an idea similar to the method proposed here, several

genetic network inference methods have already been proposed

[8,13,23,28,37].

It is not always easy to solve the simultaneous equations (2),

since they are non-linear. In order to resolve the difficulty in

solving these equations, this study uses a feature arisen from the

transformation of them. By rearranging the k-th member of the

equations (2), we have

Yk~f
XN

m~1

wn,mXmjtkzbn

 !
, ð3Þ

where

Yk~

dXn

dt

����
tk

zbnXnjtk
an

:

By applying f (x)~
1

1ze{x
to the equation (3), then, we obtain

Yk~
1

1z exp {
PN

m~1 wn,mXmjtk zbn

� �h i ,

1{Yk

Yk

~ exp {
XN

m~1

wn,mXmjtk zbn

 !" #
: ð4Þ

By taking the logarithms of both sides of the equation above, we

finally have

log
Yk

1{Yk

� �
~
XN

m~1

wn,mXmjtk zbn: ð5Þ

Inference of Vohradsky Models of Genetic Networks
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Note that, although the transformed equation (5) is non-linear

with respect to the parameters an and bn, it is linear with respect to

the parameters bn and wn~(wn,1,wn,2, � � � ,wn,N ). This fact

suggests that, when the parameters an and bn are given, the other

parameters bn and w n are easily estimated. The proposed method

uses this feature for solving the simultaneous equations (2), as

described below.

Solving the simultaneous equations
As mentioned just before, we can easily estimate the parameters

bn and wn, when the parameters an and bn are given. In this

study, the set of algebraic equations (2) is thus solved by estimating

the parameters an and bn. As this study uses a least-squares

method to solve the simultaneous equations, the estimation of the

parameters an and bn is defined as a problem of minimizing the

following two-dimensional function.

Sn(an,bn)~
XK

k~1

dXn

dt

����
tk

{Rk(an,bn,b�n, w �n)

" #2

, ð6Þ

where

Rk(an,bn,bn, w n)~anf
XN

m~1

wn,m Xmjtk zbn

 !
{bnXnjtk ,

and b�n and w�n are the optimal values for bn and wn, respectively,

under given an and bn. In the next section, we will describe a

method for obtaining b�n and w�n.

Any function optimization algorithm can be used to minimize

the objective function (6). When we used the local search for

optimizing this function, however, several local optima were

found. As this optimization problem seemed to be multimodal, this

study uses an evolutionary algorithm, REXstar/JGG (see Support-

ing Information) [38], to solve it. Because the parameters an and

bn are positive, this study searches for them in a logarithmic space.

Estimation of b�n and w�n
In order to compute a value for the objective function (6), we

must provide values for b�n and w�n. In the proposed method, they

serve as the solution of a set of the transformed equations (5) under

given an and bn. Note that, when the parameters an and bn are

given, these equations are linear with respect to the unknown

parameters, i.e., bn and w�n. We can thus easily obtain b�n and w�n.

The proposed method estimates these parameters by optimizing

the following constrained function minimization problem.

minimize
bn, w n,jz

k
,j{

k

XN

m~1

Dwn,mDz
C

C

XK

k~1

cz
k jz

k zc{
k j{

k

� �
, ð7Þ

subject to

PN
m~1 wn,m Xmjtkzbn{Lkƒjz

k , (k~1,2, � � � ,K),

jz
k §0, (k~1,2, � � � ,K),PN

m~1 wn,m Xmjtkzbn{Lk§{j{
k , (k~1,2, � � � ,K),

j{
k §0, (k~1,2, � � � ,K),

8>>>><
>>>>:

where

Lk~ log
Zk

1{Zk

� �
,

Zk~

Yk, ( if d ƒ Yk ƒ 1 { d ),

d, ( if Yk v d ),

1{d, (otherwise),

8><
>:

C~
1

2

XK

k~1

(cz
k zc{

k ),

jz
k and j{

k are slack variables, and cz
k , c{

k , d and C are constant

parameters. In this problem, we treat the parameters an and bn as

constants. Note that, whenever trying to compute a value for the

objective function (6), we must always solve the problem (7) (see

Figure 1).

When the n-th gene is not regulated by the m-th gene, the

parameter corresponding to this regulation, i.e., wn,m, is zero in the

Vohradský’s model. Because genetic networks are known to be

sparsely connected [39], most of wn,m’s should be zero. The first

term of the objective function of the problem (7), i.e.,
PN

m~1 Dwn,mD,
introduces this a priori knowledge into our parameter estimation.

The second term of the objective function is, on the other hand, a

sum of the differences between the left and right hand sides of the

equations (5).

Note that, only when the condition 0vYkv1 is satisfied, we

can transform the equation (2) into the equation (5). However, the

observed gene expression data are generally polluted by noise.

Even when the optimum values are set for an and bn, some Yk’s

might not satisfy the condition above. This study thus introduces a

threshold parameter d, and sets its value to 10{10. On the other

hand, we should note that, when Yk approaches 0 or 1, the term

log
Yk

1{Yk

� �
contained in the equation (5) approaches {? or

z?, respectively. When Yk is approximately equal to 0 or 1,

therefore, the transformation of the equation (2) into the equation

(5) would amplify the noise contained in the measurement data. It

is thus inadvisable to rely too much on the equations transformed

under this condition. In order to introduce this notion into our

estimation, this study sets the constant parameters cz
k and c{

k to

cz
k ~

1{4 Zk{
1

2

� �2
" #1

2

, ( if 0 ƒ Zk ƒ

1

2
),

1{4 Zk{
1

2

� �2

, (otherwise),

8>>>>><
>>>>>:

c{
k ~

1{4 Zk{
1

2

� �2

, ( if 0 ƒ Zk ƒ

1

2
),

1{4 Zk{
1

2

� �2
" #1

2

, (otherwise):

8>>>>>><
>>>>>>:

We can transform the optimization problem (7) to a linear

programming problem. Thus, the proposed method easily solves

this problem by using an interior point method [40].

Inference of Vohradsky Models of Genetic Networks
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Remarks
As mentioned before, this study proposes to define the

estimation of the model parameters corresponding to the n-th

gene as a problem of solving the simultaneous equations (2). The

proposed method effectively solves them by minimizing the two-

dimensional function optimization problem (6). We can however

solve the simultaneous equations simply by using a least-squares

method. In this case, for example, the parameters corresponding

to the n-th gene are estimated by minimizing

Tn(an,bn,bn, wn)~

XK

k~1

dXn

dt

����
tk

{Rk(an,bn,bn, w n)

" #2

zClsq

XN{I

m~1

jWn,mj,
ð8Þ

where Wn,m’s are given by rearranging wn,m’s in descending order

of their absolute values, i.e., DWn,1DƒDWn,2Dƒ � � �ƒDWn,N D. Clsq is

a constant parameter, and I is a maximum indegree. The

maximum indegree determines the maximum number of genes

that affect the n-th gene directly. The second term of the objective

function (8) is a penalty term that introduces the sparseness into

the inferred network. Similar terms have been used in several

genetic network inference methods [21,22,24].

As mentioned before, the existing inference methods based on

the Vohradský’s model try to estimate all of the model parameters

simultaneously [30–32]. It is therefore difficult for them to analyze

genetic networks with many genes because of the high-dimen-

sionality in the parameter estimation. For the computational

simplicity, moreover, they limit the model to being an~bn. This

study thus compared the proposed method chiefly with a method

that minimizes the objective function (8). In this study, we refer to

the method of optimizing this function as the least-squares

approach. As same as the proposed method, the least-squares

approach also uses REXstar/JGG [38] as a function optimizer.

The following recommended values were used for the parameters

of REXstar/JGG applied in the least-squares approach; the

population size np is 20s, the number of children generated per

selection nc is 3s, and the step-size parameter t is 2:5, where s is

the dimension of the search space. Each run was continued until

the best objective value did not improved over 1000 generations.

Results and Discussion

This section shows that the proposed method has an ability to

estimate parameters of Vohradský’s models more effectively.

Inference of a small-scale network
This experiment confirms that the proposed method is capable

of estimating reasonable values for the parameters of the

Vohradský’s model.

Experimental setup: We used the Vohradský’s model with 4

genes (N~4), that was introduced by the reference [32], as a

target network. The model parameters of this system are given in

Table 1. Note that, as this network consists of 4 genes, the

proposed method solves 4 individual two-dimensional function

optimization problems to estimate all of the model parameters.

The observed gene expression patterns, 3 sets of time-series

data, each covering 4 genes, were computed from the differential

equations (1) on the target model. The sets began from initial

values randomly generated in ½0:0,1:0�, and 50 sampling points for

the time-series data were assigned to each gene in each set. The

number of observations K is therefore 3|50~150. For a practical

application, these sets would be obtained by actual biological

experiments under different experimental conditions. This exper-

iment simulated no measurement noise in the computed data. The

Figure 1. A framework of the algorithm for solving the n-th subproblem. Note that the proposed method divides the inference of the
Vohradský’s model of a genetic network consisting of N genes into N subproblems. By solving the n-th subproblem, we have the model parameters
corresponding to the n-th gene, i.e., an , bn , bn and wn~(wn,1,wn,2, � � � ,wn,N ):
doi:10.1371/journal.pone.0083308.g001

Inference of Vohradsky Models of Genetic Networks

PLOS ONE | www.plosone.org 4 December 2013 | Volume 8 | Issue 12 | e83308



time derivatives of the gene expression levels were thus directly

computed from the target model. In this study, we estimated the

parameters of the target model only from the gene expression

levels and their derivatives.

We performed 10 trials, each with different sets of gene

expression data. We considered the model parameters to be

successfully estimated only when the value of the objective

function (6) dropped to less than 1:0|10{6. As the parameters

an and bn of our objective function (6) are both positive, this study

searched for them in the logarithmic space. Their search area was

set to ½{3:0,3:0�2. Based on the preliminary experiments, we set

the constant parameter C contained in the constrained function

minimization problem (7) to 2000. This study used the following

recommended values for the parameters of the optimization

algorithm, REXstar/JGG (see Supporting Information) [38]: the

population size np is 40, the number of children generated per

selection nc is 6, and the step-size parameter t is 2:5. Each run of

REXstar/JGG was continued until the maximum number of the

generation alternation reached 250. All of the computation were

carried out on personal computers using Linux (Fedora release 12).

The program was written in C++, and the compiler was gcc 4.4.2.

Results: The proposed method succeeded in estimating the

parameter values with precision in 7 trials. Even in the rest of the

trials, most of the parameters were correctly estimated. Table 2

shows a sample of the model parameters estimated in one of the

failed trials. As mentioned before, the proposed method divided

the parameter estimation problem of the target network here into

4 subproblems, each of which is defined as a two-dimensional

function optimization problem. In this experiment, our method

therefore solved 4|10~40 subproblems and failed to find the

optimum solutions for only 3 of these 40 subproblems. While the

averaged objective value (6) of the 3 failed subproblems was

1:590|10{3+2:120|10{3, that of the other subproblems was

4:607|10{9+1:622|10{8. In order to estimate all of the model

parameters for this network, our method took about 10:4+0:1
minutes on a single-CPU personal computer (Pentium IV

2.8 GHz).

The discrete form of the Vohradský’s model can be viewed as a

recurrent neural network. The existing inference methods [30–32]

have therefore designed on the basis of the learning algorithm for

the recurrent neural network, i.e., the back-propagation through

time [33]. For the computational simplicity, however, these

methods limit the search space to an~bn. For making a fair

comparison, thus, this study constructed two inference methods

based on the back-propagation through time, i.e., BPTTLS and

BPTTGA, that do not limit the search space. As function

optimization algorithms, BPTTLS and BPTTGA used a local

search, i.e., the conjugate gradient method [34], and an

evolutionary algorithm, i.e., REXstar/JGG [38], respectively. In

Supporting Information, readers can find more detailed informa-

tion on these inference methods. We then compared the proposed

method with BPTTLS and BPTTGA. The computational costs of

these methods were both lower in the small-scale problem

described here. They were however unable to estimate the model

parameters with precision. In order to estimate all of the model

parameters, BPTTLS and BPTTGA required about 0:06 seconds

and 9:3 minutes, respectively, on the single-CPU personal

computer (Pentium IV 2.8GHz). The averaged objective values

of BPTTLS and BPTTGA were 6:381|100+5:520|100 and

5:987|10{3+1:062|10{2, respectively. The objective values of

BPTTLS were much worse than those of BPTTGA. Note here

that, when we set the model parameters to their optimal values, its

objective value is better than those of BPTTGA. These facts

indicate that the objective function defined by the back-

propagation through time has a lot of local optima. A typical

sample of the model parameters estimated by BPTTGA was

shown in Table 3. Although the existing inference methods [30–

32] limit the search space, on the other hand, they were reportedly

still unable to estimate the model parameters with precision.

Inference in noisy environment
Next, we checked the performance of the proposed method in a

real-world setting by conducting an experiment with noisy data.

Experimental setup: In the second experiment, we used the

Vohradský’s models consisting of 10, 20 and 30 genes (N~10, 20
and 30) as target networks. As the inference ability of our method

might depend on the structure of the target network, we generated

the target networks of different structures by changing the model

parameters. When trying to determine the model parameters

corresponding to the n-th gene, we randomly chose an integer k
from a power-law distribution with a cutoff of 5. Then, k genes

Table 3. A typical sample of the parameters estimated by
BPTTGA.

n wn,1 wn,2 wn,3 wn,4 bn an bn

1 20.559 219.907 0.396 20.309 0.079 0.098 0.100

2 13.422 28.879 20.633 1.296 24.593 0.190 0.189

3 27.843 0.037 22.923 21.354 20.728 3.000 0.000

4 20.079 20.016 7.516 210.387 0.022 0.161 0.188

BPTTGA is the parameter estimation method of Vohradský’s models, that is
designed on the basis of the back-propagation through time [33]. As a function
optimizer, BPTTGA used an evolutionary algorithm, REXstar/JGG [38]. Readers
can find more detailed information on BPTTGA in Supporting Information.
doi:10.1371/journal.pone.0083308.t003

Table 1. The model parameters for the small-scale target
network.

n wn,1 wn,2 wn,3 wn,4 bn an bn

1 20.0 220.0 0.0 0.0 0.0 0.1 0.1

2 15.0 210.0 0.0 0.0 25.0 0.2 0.2

3 0.0 28.0 12.0 0.0 0.0 0.2 0.2

4 0.0 0.0 8.0 212.0 0.0 0.2 0.2

doi:10.1371/journal.pone.0083308.t001

Table 2. A sample of the parameters erroneously estimated
by the proposed method in the experiment using the small-
scale network.

n wn,1 wn,2 wn,3 wn,4 bn an bn

1 2.745 20.662 0.090 20.189 21.667 0.730 0.457

2 15.002 210.002 0.000 0.000 25.000 0.200 0.200

3 0.043 28.095 11.958 0.072 0.017 0.200 0.200

4 0.000 0.000 8.000 212.000 0.000 0.200 0.200

Note that the proposed method succeeded in estimating the parameter values
with precision in 7 of the 10 trials.
doi:10.1371/journal.pone.0083308.t002

Inference of Vohradsky Models of Genetic Networks

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e83308



were randomly selected from all of the genes contained in the

network. The weight parameters wn,m’s corresponding to the

regulations of the n-th gene from the selected genes were randomly

chosen from ½{10:0,{5:0�|½5:0,10:0�, and the rest of the weight

parameters were set to 0:0. We also randomly selected the

parameters an and bn from ½1:0,3:0�. The parameter bn was set to

{
PN

m~1 wn,m. This study changed the network structure on every

trial.

As the performance of the inference method might also depend

on the amount of time-series data given, different numbers of time-

series datasets were used for the experiments. The time-series

datasets were obtained by solving the differential equations (1) on

the target networks. The initial values of these sets were selected

randomly from ½0:0,3:0�. Each dataset consisted of the expression

levels at 11 time points with 0:2 time intervals. The measurement

noise was simulated by adding 10% Gaussian noise to the

computed time-series data. To estimate the time derivatives of the

gene expression levels from the given time-series datasets, this

experiment used the local linear regression [35], an interpolation

technique.

In order to check the performance of the proposed method, this

study constructed and then solved 10 genetic network inference

problems of each available size with each available number of

time-series datasets. In this experiment, we set the constant

parameter C to 20. All of the other experimental conditions were

the same as those used in the previous experiment.

Results: In the noisy environment, the proposed method was

unable to estimate the parameter values with precision. In this

experiment, therefore, we only checked whether or not our

method infers the structures of the target networks correctly. Note

that the Vohradský’s model represents the positive and negative

regulations from the m-th gene to the n-th gene as positive and

negative values, respectively, of the weight parameter wn,m. On the

other hand, when the m-th gene has no influence on the n-th gene,

the value of the parameter wn,m is zero. This study thus extracted

the structures of the networks from the estimated model

parameters according to the following rules: when wn,m§Tn and

wn,mƒ{Tn, we conclude that the m-th gene positively and

negatively, respectively, regulates the n-th gene, where Tn is a

threshold; otherwise, we infer no regulation from the m-th gene to

the n-th gene. This study set the threshold Tn to

Tn~0:05| max Dwn,1D,Dwn,2D, � � � ,Dwn,N D,10{3
	 


:

Figure 2 (a), (b) and (c) show the recalls, the precisions and the

specificities of the proposed method on the experiments of solving

the inference problems for different sizes with different amounts of

gene expression data. The recall, the precision and the specificity

are defined as

recall~
TP

TPzFN
, precision~

TP

TPzFP
,

specificity~
TN

FPzTN
,

where TP, FN, FP and TN are the numbers of true-positive,

false-negative, false-positive and false-negative regulations, respec-

tively. The figures show that the performances of the proposed

method improved with increasing the amount of the given data. A

similar experiment has been performed to confirm the perfor-

mance of the inference method based on the S-system model [23].

These results indicate that the proposed method has the ability to

infer a more reasonable network even with a smaller amount of

gene expression data. This advantageous feature is due to the

smaller number of the parameters of the Vohradský’s model. On

Figure 2. The performances of the proposed method on the
experiments of genetic networks consisting of (a) 10 genes, (b)
20 genes, and (c) 30 genes, respectively. Solid, dotted and dashed
lines represent the recall, the specificity and the precision, respectively.
doi:10.1371/journal.pone.0083308.g002
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the other hand, the computation time required by the proposed

method was not always short. The computation times of our

method on the single-CPU personal computer (Pentium IV

2.8 GHz) are shown in Figure 3.

The existing inference methods based on the Vohradský’s

model try to estimate all of the model parameters simultaneously

[30–32]. Because of the high-dimensionality in their parameter

estimation, it is difficult for them to analyze genetic networks

consisting of dozens of genes. When we applied BPTTGA

mentioned before to the inference problem of 20 genes with 20

sets of time-series data, therefore, its computation did not finish

within 72 hours. Although the computational cost of BPTTLS was

still low, on the other hand, its recalls, precisions and specificities

were much worse. We thus compared the proposed method only

with the least-squares approach described before. Figure 4 shows

the precision-recall curves of the proposed method and the least-

squares approach on the genetic network inference problems of 20

genes with 20 sets of noisy time-series data. The least-squares

approach was performed under different hyper-parameter settings,

i.e., I~0 and I~5. These curves were obtained by changing the

hyper-parameter of our method, i.e., C, and that of the least-

squares approach, i.e., Clsq. The figure indicates that our method

outperforms the least-squares approach with respect to inference

ability. However, the computation time of the proposed method

was much longer. While the least-squares approach required

20:1+0:6 minutes on the single-CPU personal computer (Pentium

IV 2.8 GHz) to infer each network, the proposed method required

182:1+1:2 minutes on the same computer. In the future work, we

must therefore develop a way to reduce the computational cost of

the proposed method.

In the proposed method, the number of the inferred regulations

depends on the value of the hyper-parameter C. Figure 4

indicates, on the other hand, that the quality of the network

inferred by the proposed method was quickly degraded with

decreasing the number of the inferred regulations. When trying to

analyze an actual genetic network, therefore, we should set the

hyper-parameter C so that the inferred network contains a larger

number of regulations.

Analysis of actual data
We then checked the performance of the proposed method in

an experiment using actual gene expression data.

Experimental setup: In this experiment, we analyzed the

SOS DNA repair regulatory network in E.coli [41]. More than 30

genes are known to be involved in this system. This study however

analyzed the expression data of six genes, i.e., uvrD, lexA, umuD,

recA, uvrA and polB, which had been measured by Ronen and

colleagues [42] (N~6). These data have often been used to

confirm the performances of the inference methods [7–

9,18,19,23,31,32]. The original expression data contain four sets

of time-series data. This study however used only two sets (the

third and fourth sets), since those two had been measured under

the same experimental conditions. Each set of time-series data

consisted of 50 measurement values including the initial concen-

trations of zero. In the experiment, we removed the initial

concentrations from both of the sets, as models based on a set of

differential equations cannot produce different time-courses from

the same initial conditions. The number of measurements K is

thus 2|49~98. According to our previous work [9], we

normalized the data corresponding to each gene against its

maximum expression level. The normalized data were then

Figure 3. The computation times of the proposed method for noisy experiments. Solid, dotted and dashed lines represents the averaged
computation times required for solving the inference problems for 10, 20 and 30 genes, respectively.
doi:10.1371/journal.pone.0083308.g003
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Figure 4. The precision versus the recall for the genetic network inference problems of 20 genes with 20 sets of time-series data. A
solid line represents the performances of the proposed method. Dotted and dashed lines represent the performances of the least-squares approach
with I~0 and I~5, respectively.
doi:10.1371/journal.pone.0083308.g004

Figure 5. The network structure obtained for the SOS DNA repair system in E.coli. Bold lines represent biologically plausible regulations
mentioned in the ‘Analysis of actual data’ section.
doi:10.1371/journal.pone.0083308.g005
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smoothed by the local linear regression [35]. We assigned a value

of 10{6 to expression levels with values of less than 10{6, as the

gene expression levels must not be negative.

In this experiment, we set the hyper-parameter C to 2000. All of

the other experimental conditions were the same as those

described before.

Results: Figure 5 shows the structure of the network inferred

by the proposed method. Although we performed 10 trials in this

experiment, all of the inferred networks had the same structure. A

sample of the parameters estimated by the proposed method is

listed in Table 4. As shown in the figure, our method removed few

regulations from all of the candidate regulations. Most of the

inferred regulations would therefore be false-positive. However,

the negative regulations of all of the genes from lexA are

reasonable, since LexA is known to repress the SOS genes. The

negative regulation of lexA from recA also appears to be reasonable,

as RecA senses the damage of DNA and mediates LexA

autocleavage. Moreover, the regulation of umuD from recA, inferred

by the proposed method, has been contained in a network now

known [15].

As mentioned above, our method seemed to find a number of

false-positive regulations. In a future work, therefore, we should

find a way to reduce these erroneous regulations.

Experiments on a DREAM3 network
In the experiments described before, we focused on whether the

proposed method has an ability to estimate parameters of the

Vohradský’s models more effectively. Therefore, our experiments

have chiefly used the Vohradský’s models as the target networks.

In the experiments described here, on the other hand, we applied

the proposed method to an inference problem whose target

network is described as a set of differential equations of the form

different from the Vohradský’s model.

Experimental setup: The proposed method was applied to

one of the artificial genetic network problems obtained from

DREAM3 in silico challenges [43]. These problems have been

often used to check the performances of genetic network inference

methods. This study analyzed the third network, i.e., Yeast1,

which consists of 100 genes.

46 sets of time-series data, that were obtained by solving a set of

differential equations of the form different from the Vohradský’s

model, were given as the observed gene expression levels. The

given data were polluted by noise. 21 sampling points for time-

series data were assigned on each gene in each set. The number of

observations K was therefore 46|21~966.

In this experiment, we checked the performances of the

proposed method by changing a value for the hyper-parameter

C from 20 to 2000. All of the other experimental conditions were

the same as those described before.

Results: The performances of the proposed method on the

DREAM3 problem are shown in Table 5. The network inferred

by the proposed method tells us whether the regulation of the n-th

gene from the m-th gene is positive or negative. As the correct

network given by the DREAM3 does not have the information

about the types of the regulations, however, we omitted to check

the types of the regulations. Compared with the champion

algorithm of the DREAM3 challenges [44], the performances of

our method were worse. Note however that this study confirmed

the effectiveness of the proposed method through the experiments

on the actual genetic network inference problem. Thus, the

experimental results shown here do not always prove the inability

of the proposed method in analyzing actual gene expression data.

The Vohradský’s model would be unsuitable to capture the

features of the DREAM3 network. One of the reasons of the

unsuitability would be that, while the model used in the DREAM3

problem considers the effect of the intrinsic noise [45], the

Vohradský’s model does not consider it. The intrinsic noise is

unavoidable in biological processes, and the analysis of it would be

important to understand biological systems. However, the current

technologies generally measure the gene expression levels aver-

aged over a lot of cells. As we think that the averaged gene

expression levels weaken the effect of the intrinsic noise, the

method proposed in this study infers genetic networks without

considering it.

Table 4. A sample of the parameters estimated by the proposed method in the experiment with actual gene expression data.

n wn,1 wn,2 wn,3 wn,4 wn,5 wn,6 bn an bn

1(uvrD) 4.412 26.461 20.354 0.000 5.900 20.028 24.183 0.336 0.055

2 (lexA) 6.056 214.288 0.000 27.567 19.773 1.668 24.769 0.163 0.050

3 (umuD) 3.291 211.751 7.892 25.101 9.328 0.475 24.997 0.604 0.095

4 (recA) 4.173 214.738 6.996 23.642 11.510 0.000 25.195 0.464 0.069

5 (uvrA) 5.230 220.042 9.914 27.364 19.515 0.180 24.307 0.259 0.246

6 (polB) 20.368 24.866 217.080 10.910 15.702 7.342 22.536 0.094 0.110

The parameters written in boldface type correspond to biologically plausible regulations mentioned in the ‘Analysis of actual data’ section.
doi:10.1371/journal.pone.0083308.t004

Table 5. The performances of the proposed method on the
third problem of the DREAM3 in silico challenges [43].

C FP FN TP TN recall precision specisificy

20 15 153 13 9719 0.078 0.464 0.998

50 78 131 35 9656 0.211 0.310 0.992

100 312 112 54 9422 0.325 0.148 0.968

150 632 95 71 9102 0.428 0.101 0.935

200 876 91 75 8858 0.452 0.079 0.910

500 1948 84 82 7786 0.494 0.040 0.800

2000 4009 69 97 5725 0.584 0.024 0.588

The performances were checked by changing the hyper-parameter of the
proposed method, C. FP, FN, TP and TN are the numbers of false-positive, false-
negative, true-positive, true-negative regulations, respectively.
doi:10.1371/journal.pone.0083308.t005
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Conclusion

This study proposed a new method for the inference of

Vohradský’s models of genetic networks. The proposed method

resolves the difficulty in the estimation of the model parameters by

defining it as two-dimensional function optimization problems.

The experimental results indicated that our method has an ability

to estimate reasonable values for the parameters of the

Vohradský’s model. However, the computation time of the

proposed method is not always short. In the future work,

therefore, we must develop a technique to reduce its computa-

tional cost.

A variety of inference methods based on a variety of

mathematical models have been proposed. However, we still do

not know which method is the most suitable for the inference of

genetic networks. In order to obtain a reliable network, therefore,

it will be important to analyze the measurement data using

multiple inference methods based on models different from each

other. The inference method proposed in this study may be a

promising choice for this purpose.
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