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ABSTRACT: Genomic selection is routinely used 
worldwide in agricultural breeding. However, in 
Russia, it is still not used to its full potential par-
tially due to high genotyping costs. The use of 
genotypes imputed from the low-density chips 
(LD-chip) provides a valuable opportunity for re-
ducing the genotyping costs. Pork production in 
Russia is based on the conventional 3-tier pyramid 
involving 3 breeds; therefore, the best option 
would be the development of a single LD-chip 
that could be used for all of them. Here, we for the 
first time have analyzed genomic variability in 3 
breeds of Russian pigs, namely, Landrace, Duroc, 
and Large White and generated the LD-chip that 
can be used in pig breeding with the negligible 
loss in genotyping quality. We have demonstrated 
that out of the 3 methods commonly used for 
LD-chip construction, the block method shows 
the best results. The imputation quality depends 
strongly on the presence of close ancestors in the 

reference population. We have demonstrated that 
for the animals with both parents genotyped using 
high-density panels high-quality genotypes (allelic 
discordance rate < 0.05) could be obtained using 
a 300 single nucleotide polymorphism (SNP) chip, 
while in the absence of genotyped ancestors at 
least 2,000 SNP markers are required. We have 
shown that imputation quality varies between 
chromosomes, and it is lower near the chromo-
some ends and drops with the increase in minor 
allele frequency. Imputation quality of the indi-
vidual SNPs correlated well across breeds. Using 
the same LD-chip, we were able to obtain compar-
able imputation quality in all 3 breeds, so it may be 
suggested that a single chip could be used for all 
of them. Our findings also suggest that the pres-
ence of markers with extremely low imputation 
quality is likely to be explained by wrong mapping 
of the markers to the chromosomal positions.
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INTRODUCTION

The key step in animal breeding is the assess-
ment of the animal’s breeding value that in other 
words is the value of its genes to progeny, its gen-
etic potential, which allows to rank animals in the 
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population in order to select the best-performing 
ones for desired traits and to include them in the 
breeding programs. The estimated breeding value 
(EBV) is an estimate of the genetic merit of the 
animal which would be passed on to its progeny 
calculated using mathematical methods. The esti-
mation could be done based on the animal’s own 
phenotype, parent phenotypes, or the phenotypes 
of its progeny. Evaluation by parents is character-
ized by lower accuracy, while evaluation by progeny 
or by animal’s own phenotype is more accurate, but 
takes time and for terminal traits could be done 
only on slaughter (Liesbeth van der Waaij, 2014); 
thus, it appears to be challenging to obtain an ac-
curate EBV for animals while they are still young. 
To enable early and accurate evaluation, genomic 
methods are adopted worldwide. Genomic selec-
tion (GS), first proposed by Meuwissen et  al. in 
2001 (Meuwissen et al., 2001), is an approach under 
which associations are found between phenotypes 
and a large set of single nucleotide polymorphism 
(SNP) markers (often tens of thousand) closely 
spaced across the genome so as for most or all quan-
titative trait loci (QTLs) to be in linkage disequi-
librium (LD) with 1 marker in a sufficiently large 
reference population. The inferred associations are 
used further to calculate genomic EBVs in the ani-
mals genotyped for the large set of SNPs, but for 
which phenotypic data are absent (Goddard and 
Hayes, 2007; Ibáñez-Escriche et al., 2014; Samorè 
and Fontanesi, 2016). The implementation of GS 
makes it possible to assess the breeding values of 
young animals before they have progeny and reach 
maturity age, as well as breeding values for the 
traits associated with resistance/susceptibility to 
diseases, maternal traits, and the traits which are 
usually difficult or expensive to measure, or those 
which take a long time to be evaluated, or can be 
evaluated only on slaughter, thus promoting their 
efficient use in breeding programs (Lillehammer 
et al., 2011; Tribout et al., 2013; Abell et al., 2014; 
Ibáñez-Escriche et  al., 2014). Genomic selection 
may also be advantageous when crossbred perform-
ance needs to be predicted from the performance of 
purebred animals, which is important, in particular, 
for pig breeding (Knol et al., 2016).

In commercial pig breeding, a 3-layer breeding 
pyramid based on the use of a 3-way crossing 
scheme aimed to take advantage of heterosis and 
separate selection in dam and sire lines has been 
used since the 1960s to 1970s. The 3 layers are 
represented by the nucleus layer which include 
high-quality purebred animals, the multiplier level 
at which purebred animals from different lines are 

multiplied and crossed to obtain the F1 crossbred 
animals, and the production (commercial) level, at 
which F1 sows are crossed with purebred sires, the 
progeny of these crosses being used for pork pro-
duction. Selection takes place at the nucleus and 
partially at the multiplier levels (Visscher et  al., 
2000; Lopes, 2016; Lopez et al., 2016). The use of 
breeding programs of this kind leads to a certain 
genetic improvement lag, which is the time taken 
for genetic improvements achieved in the higher 
layer to reach the next layers (Bichard, 1971; See, 
1995), between the nucleus level at which selection 
and testing mostly occurs and the commercial level 
at which terminal (slaughter) hybrids are produced 
which should have the desired qualities. However, 
according to Bichard (1971), notwithstanding the 
improvement lag, genetic improvement achieved 
at the lower, multiplier and commercial, levels de-
pends directly on the rate of the genetic improve-
ment achieved in the nucleus. Therefore, a high 
rate of genetic progress at the nucleus layer will ac-
cordingly lead to a higher rate of progress on sub-
sequent levels. At the same time, it is known that 
genetic progress is affected both by the accuracy 
of breeding value prediction and the length of the 
generation interval (Falconer, 1989). Genomic se-
lection allows to considerably improve the former 
and decrease the latter (Lillehammer et  al., 2011; 
Baby et al., 2014), thus reducing the genetic lag size. 
Another point in which pig breeding may benefit 
from GS is the enhanced ability to predict cross-
bred performance based on purebred performance 
and to control inbreeding in purebred populations 
by including nonadditive effects in the estimations 
(Ibáñez-Escriche et  al., 2014; Esfandyari et  al., 
2016; Hidalgo et al., 2016; Christensen et al., 2019), 
which is of much relevance considering the specifi-
city of pig breeding schemes. Although, the prac-
tical implementation of GS in pig breeding has 
started relatively recently prompted by the devel-
opment of the first commercial high-density (HD) 
SNP panel for genotyping (Ramos et  al., 2009), 
the so far obtained results seem to be promising 
(Simianer, 2009; Lillehammer et al., 2011; Tribout 
et al., 2012; Ibáñez-Escriche et al., 2014).

While the development of GS was initially fue-
led by the introduction of high-throughput SNP 
genotyping using microarray beadchips, which 
harbor tens of thousands of markers, like those 
designed by Illumina or Affimetrix (reviewed in 
Samorè, 2016), high-throughput genotyping also 
appears to be a factor that in certain way obstructs 
the broader use of GS in animal breeding, in par-
ticular in pig breeding. This is due to the fact that 
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genotyping cost is still rather high, and, considering 
the large numbers of animals to be genotyped, rela-
tively short generation intervals in pig herds, and 
lower, compared to dairy cows, economic value of 
selection candidates, the process may be somewhat 
cost-intensive and in certain cases even come to 
be economically unprofitable (Tribout et al., 2013; 
Ibáñez-Escriche et al., 2014).

One of the possible ways of reducing genotyp-
ing costs is the use of low-density chips (LD-chip) 
and imputation to infer HD genotypes from the 
LD panel data (Abell et al., 2014) using such meth-
ods as FImpute (Sargolzaei et al., 2014) or Beagle 
(Browning et al., 2018). Ninety percent imputation 
accuracy is sufficient to obtain genomic evaluations 
almost identical to evaluations obtained using HD 
genomes (Wellmann et al., 2013). Recently, several 
attempts to create LD-chips for use in cattle (Zhang 
and Druet, 2010; Judge et al., 2016; Aliloo et al., 
2018; Korkuć et al., 2019), pig (Gualdrón Duarte 
et  al., 2013; Wellmann et  al., 2013; Xiang et  al., 
2015; Carillier-Jacquin et  al., 2018; Grossi et  al., 
2018), as well as sheep (Ventura et al., 2016; Raoul 
et  al., 2017; O’ Brien et  al., 2019), and chicken 
(Wang et  al., 2013; Herry et  al., 2018) breeding 
have been published. The previous studies ana-
lyzing the prospects of using imputation from LD 
panels suggested different approaches for marker 
selection for LD-chips: random, uniform, or based 
on LD (Gualdrón Duarte et al., 2013; Judge et al., 
2016; Grossi et al., 2018). It may also be useful to 
include the markers specific for a given population 
or associated with the traits or diseases important 
for local breeding programs among the markers 
in LD panel. It has been also pointed out that the 
most important factors that should be taken into 
account when designing an LD panel in order to in-
crease imputation accuracy are the reference popu-
lation size and the degree of kinship between the 
test and reference population, the rate of genotyped 
close relatives in the reference population, as well as 
the effects of minor allele frequencies (MAFs) for 
the imputed SNPs and LD threshold (Cleveland 
and Hickey, 2013; Grossi et al., 2018; Herry et al., 
2018). Another important factor to consider when 
developing LD-chips is SNP density on the LD 
panel. The results obtained so far by other authors 
have demonstrated that panels containing about 
3K SNP markers might be enough to impute HD 
genotypes with high confidence in multiple pig 
breeds (Wellmann et al., 2013; Grossi et al., 2018). 
Low-density panels may be also designed to include 
specific SNPs associated with desirable production, 
or reproduction traits, or disease susceptibility.

In Russia, pork constitutes an important com-
ponent of the population’s diet, being the second 
most popular source of animal protein (about a 
third of the total meat consumption) (Rosstat, 
2018). In recent years, a substantial increase in pork 
production has been observed. On the other hand, 
the efficiency of pork production is relatively low 
mainly due to the use of traditional pig breeding on 
farms, dependence on imported genetic material, 
imperfect recording systems, etc., thus reducing the 
pace of pork industry growth and imposing limi-
tations on further development. The implementa-
tion of modern genetic selection approaches which 
allow prediction of breeding values with higher ac-
curacy may significantly advance pig breeding, and 
as a consequence will aid in increasing the efficiency 
of the pork production industry, and the agricul-
tural industry on the whole. However, the poorly 
developed genotyping environment in Russia, high 
costs of genotyping procedures, and small sample 
sizes result in unreasonably high genotyping costs 
thus counterbalancing the positive effects of GS. 
Hence, the question of reducing genotyping costs is 
of special relevance in our country.

Three pig breeds are mainly used in Russian 
pork production based on conventional 3-cross 
breeding schemes, namely, Duroc, Landrace, and 
Large White, the latter being the most frequently 
used one. In the present study, we aimed to develop 
an LD-chip that can be further used to advance pig 
breeding in Russia by aiding in the development 
of low-cost strategies for GS implementation. To 
our knowledge, it is the first attempt made for the 
combination of these 3 breeds based on a Russian 
pig population. We assessed imputation quality de-
pending on the marker selection method, LD-chip 
size, and the presence of HD-genotyped relatives in 
the reference population. We have shown that with 
the block method, 300 markers are enough to ob-
tain good imputation quality when both parents of 
the animal have HD genotypes, while in other cases 
at least 2,000 markers are required. Additionally, as 
part of the present work we investigated the role of 
SNP chromosomal position and MAF on the im-
putation quality.

MATERIALS AND METHODS

Animals and Data

Animal Care and Use Committee approval 
was not obtained for this study because no experi-
mentation involving animals was part of the pre-
sent work. Pig ear tissue samples for the study were 
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obtained from the Unique Scientific Set (USS), the 
Gene Pool of Animal and Avian Genetic Material, 
ID-498808 (Dubrovitsy, Moscow Oblast, Russia). 
A  total of 807 Landrace, 1,227 Large White, and 
684 Duroc pig samples were taken into the study. 
The genealogy data for the animals used in the 
study as well as the data on sex, breed, and birth 
date were obtained from the breeders (OOO 
Breeding and Hybrid Center, Verkhnyaya Khava, 
Voronez Oblast, Russia). The complete animal data 
are provided in the e-Supplement (Supplementary 
Table S1).

DNA Isolation and SNP Genotyping

Genomic DNA was isolated from the pieces of 
pig ear tissue using the DNA Extran-2 kit (Syntol, 
Russia) based on the Proteinase K lysis and iso-
propanol precipitation technique according to the 
manufacturer’s instructions. About 10 mg of tissue 
was used for DNA isolation for each sample.

The integrity of the obtained DNA samples was 
assessed by electrophoresis in 1% agarose gel; the 
quality of the samples was estimated based on the 
OD 260/280 and OD 260/230 ratios obtained using 
NanoDrop100 (Thermo Fisher Scientific, United 
States), and DNA quantity in the sample was es-
timated using the Qubit fluorometer (Invitrogen, 
United States).

Genotypes for all animals included in the ana-
lysis were obtained using the GeneSeek-Neogen 
GGP Porcine HD (INF Porcine 80K) BeadChip 
(Illumina, United States) consisting of approxi-
mately 70,000 SNPs evenly distributed throughout 
the pig genome at the average distance of 25 kbp. 
Raw fluorescence intensity data were processes with 
the aid of the GenomeStudio Genotyping module 
(Illumina, United States). The threshold genome 
calling significance level (GC score) was set at 
20%, the other settings were as default. Genotypes 
quality control was performed using the PLINK 
2.0 software (Purcell et al., 2007).

Breed Verification

Principal component analysis (PCA) was per-
formed based on the genotype data to identify 
clusters (Fig. 1) using PLINK 2.0. Samples were 
clustered using the k-means method (k = 3). Clusters 
were annotated based on the most frequent breed. 
In total, 2,609 samples belonged to the correct 
cluster, but 43 Large White samples were located in 
the “Landrace” cluster, while 58 Landrace were in 
the “Large White” cluster, and also 1 Large White 

belonged to the “Duroc” cluster. All 102 samples 
that were not in the correct cluster were excluded 
from the subsequent analysis.

Parentage Verification and Discovery

Parentage verification was performed using 
custom Python3 scripts. To identify the potential 
relatives based on the genomic data, all possible 
pairs of genotypes were considered. For each pair, 
the proportion of positions where genotypes were 
different among the positions that were homozy-
gous in both compared samples was calculated. It 
was assumed that samples are in the parent–off-
spring relationship, if  the proportion was less than 
1% (Supplementary Fig. S2A). To exclude dupli-
cate samples, the proportion of positions where 
genotypes were different among the positions that 
were heterozygous in at least 1 species was also cal-
culated (Supplementary Fig. S2B). All pairs with 
the later proportion below 10% were considered 
as duplicates. In total, 2,270  “parent–offspring” 
pairs were identified. The 19 detected pairs of 
duplicates were removed from analysis. To iden-
tify who is parent within each pair, the birth dates 
were used. Assuming that the parent has to be at 
least 1 yr older than the offspring, 1,451 sire–off-
spring pairs and 795 dam–offspring pairs were as-
signed. In total, 1,643 samples had at least 1 parent 
(Table 1). The obtained pairs were compared with 
the pedigrees and for 1,427 animals, the pedigree 
was confirmed by genomic information, while for 
203 animals contradictory results were obtained 
(Supplementary Table S1). Additionally, 38 new 

Figure 1. Principal coordinate analysis (PCA) of high-density geno-
types of pigs from 3 breeds. One point corresponds to a single animal. 
Landrace, Large White, and Duroc pigs are shown in green, orange, 
and violet, respectively.

http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txz182#supplementary-data
http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txz182#supplementary-data
http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txz182#supplementary-data
http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txz182#supplementary-data
http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txz182#supplementary-data


268 Shashkova et al.

Translate basic science to industry innovation

parentages were discovered. The pedigrees identi-
fied based on the genotype data were used in the 
subsequent analyzes.

Test and Reference Populations

To assess the accuracy of imputation, which 
characterizes the quality of the LD-chip, the samples 
were subdivided into the reference and test popula-
tions. In total, 2,587 samples including 675 Duroc, 
737 Landrace, and 1,175 Large White were used. 
To perform the subsequent analyses, the test sam-
ples were assigned to 1 of the 5 groups according to 
whether or not the animals have genotyped ances-
tors in the reference population (relatives groups): 
1—“No relatives,” 2—“Both parents,” 3—“Dam or 
Sire,” 4—“One parent & grandsire from a second 
parent,” and 5—“Only grandsire.”

In the full data set there were present no samples 
falling into the groups 4 and 5, but there were sam-
ples with dam or sire with grandsire (4a) and with 
both parents (5a), where at least one had grand-
sire (ST 2). Thus, the groups 4 and 5 were obtained 
from the groups 4a and 5a by removing the corres-
ponding relatives from the reference set. Duroc pigs 
were represented only by groups 1 and 3.

Samples were distributed into the reference 
and test populations in accordance with the fol-
lowing considerations: samples in both popula-
tions should be equally represented by breed, and 
all relatives groups should be equally present in the 
test population, if  possible. As a result, ~600 sam-
ples were selected in the test (~200 per breed) and 
~1,500 samples (~500 per breed), in the reference 
populations (Supplementary Tables S2 and S3). 
The size of the reference set was limited by Duroc 
as the least represented breed. For Landrace and 
Large White, about 40 pigs were picked out into the 
test population from each of the 5 groups, and for 
the Duroc breed, all animals from the group 3 (32 
samples) were taken and other 168 samples were 
randomly selected. The corresponding parents and 
grandparents of the test animals were included in 

or excluded from the reference population with 
other animals being randomly selected to obtain 
500 samples from each analyzed breed.

LD-Chip Development

Single nucleotide polymorphism markers which 
passed the following filters: SNP genotype having 
been called in at least 90% of samples, Hardy–
Weinberg P-value > 10e−06 (test), and MAF > 2% 
in each breed separately were kept for the ana-
lysis. The 3 filters removed about 590, 61, and 
3,907 markers, respectively, for Landrace, 245, 78, 
and 5,274 markers, respectively, for Large White, 
and 380, 285, and 9,351 markers, respectively, for 
Duroc. Filtration was made using the PLINK 2.0 
software. Finally, the remaining 39,801 markers lo-
cated on autosomes with the known position which 
were common in all 3 breeds were used to design 
the LD panel.

The 3 commonly used algorithms to develop 
an LD-chip, namely, “Random,” “Uniform,” and 
“Block” were applied. The number of SNP per 
chromosome was proportional to the chromosome 
length and equal for each method. Eight virtual 
panels containing 100, 300, 600, 1,000, 2,000, 3,000, 
6,000, and 12,000 SNPs were constructed using 
each method. In total, 24 LD-chips were tested as a 
part of this work.

“Random” method.  Single nucleotide polymor-
phisms were selected per chromosome using 
random uniform distribution function by Python3.

“Uniform” method.  Chromosomes were divided 
into blocks, where each block contained an equal 
number of SNPs. Total number of blocks corres-
ponded to the panel density. Then, the central SNP 
for each block was selected.

“Block” method. This method is based on the one 
suggested in Judge et al. (2016) and implies the selec-
tion of representative SNPs based on LD (r2) struc-
ture and MAF. In more detail, each chromosome 

Table 1. Number of animals in the groups defined by the presence of genotyped parents for each breed

Breed Landraсe Large White Duroc With at 
least 1 
parent 
(total)

Parents  
genotyped Sire Dam

Dam 
and Sire

No 
parents Sire Dam

Dam 
and Sire

No 
parents Sire

No 
parents

By pedigree 266 72 271 128 589 98 330 158 29 647 1,655

By genotypes 285 91 252 138 568 77 351 163 32 644 1,643

Confirmed1 344 150 193 118 638 147 281 144 25 644 1,427

Total animals 737 1,175 676  

1Confirmed stands for the pedigree relationships confirmed by genomic data.

http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txz182#supplementary-data
http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txz182#supplementary-data
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was divided into n − 2 blocks, where n is equal to 
the predefined number of SNPs. This was made in 
order to include extra SNPs at the peripheries of 
the chromosomes. Minor allele frequency and the 
average r2 between target SNP and other SNPs in 
the same block were estimated and then were stand-
ardized within the block. To select the best SNP, 
the SNPs were ranked based on the sum of the 
standardized average r2 and MAF. Finally, SNPs 
with high indexes in the block were chosen. To se-
lect extra SNPs into the peripheral blocks, the par-
tial correlation between the already selected SNP 
and other SNPs in the block was calculated. The 
highest-ranking SNP for the MAF index plus the 
average partial correlations (standardized to have 
equal variances) was chosen as the second most 
informative SNP.

All LD panels were constructed using custom 
scripts written in Python3 using the pandas, numpy, 
sklearn packages.

Imputation

The quality of  LD panels was estimated by 
the imputation quality. Imputation was carried 
out with the aid of  FImpute version 2.2 using 
both scenarios: “Population” and “Population + 
Family,” with default settings. Imputation for each 
panel and breed was undertaken separately. The 
imputation quality was characterized by correl-
ation (r) between the imputed and real genotypes 
(Browning and Browning, 2009), and by allele dis-
cordance rate (ADR). Both values were estimated 
for SNPs not included in the LD panel. The r and 
ADR parameters were calculated using custom 
python scripts.

Detection of Misplaced SNPs

To detect possible SNP misplacement, R2 for all 
pairs of SNPs were estimated using the PLINK 2.0 
software. Marker with R2 < 0.3 with all SNPs within 
the 2,000 kbp window around the marker and with 
R2 > 0.5 with the SNPs in any other region were 
marked as SNPs with presumably wrong position.

RESULTS AND DISCUSSION

We genotyped 807 Landrace, 1,227 Large 
White, and 684 Duroc pigs using the GeneSeek-
Neogen GGP Porcine HD (INF Porcine 80K) 
BeadChip (Illumina, United States). Genotype call 
rates ranged from 0.69 to 0.95. Three animals for 
which the genotype call rates were below 0.9 were 

excluded from the analysis. After the quality con-
trol, 737, 1,175, and 675 Landrace, Large White, 
and Duroc pig samples, respectively, remained and 
were used in the subsequent analysis. Principal 
component analysis revealed clear separation of 
the obtained genotypes into 3 breeds (Fig. 1). The 
parental data were available for 83%, 87%, and 
4% of Landrace, Large White, and Duroc pigs, 
respectively; for 73%, 78%, and 4%, respectively, 
the sire was genotyped, and for 47%, 36%, and 
0%, respectively, the dam was genotyped (Table 1). 
We validated 86% parentages for the genotyped 
animals for which parent genotypes were avail-
able and discovered 216 new parentage relation-
ships (see Materials and Methods section and 
Supplementary Table S1).

Based on the previous works (Judge et al., 2016), 
we considered 3 different algorithms for marker se-
lection for the LD-chip: the random, uniform, and 
block (see Materials and Methods section). In the 
case of each method, we designed 8 virtual panels 
consisting of 100, 300, 600, 1,000, 2,000, 3,000, 
6,000, and 12,000 SNP markers (Supplementary 
Table S4).

The animals from each breed were divided into 
the reference and test sets. Test set was designed so 
as to include animals that have no relatives, 1 parent, 
both parents, only 1 parent and grandfather, and 
only grandfather in the reference set, with about 40 
animals per each indicated group (Supplementary 
Tables S2 and S3). Then, for each given LD-chip 
design, we masked all markers except those that 
belonged to the LD-chip in the test set, imputed 
them using FImpute, and assessed the imputation 
quality using ADR and allelic correlation. FImpute 
gives better results when run for each breed indi-
vidually than when combined data set is used, with 
the relative difference in ADR values being 1% to 
2%. Therefore, we used the former approach. For 
all breeds and all panel sizes larger than 100 SNP, 
the block method performed significantly better 
than the random method (t-test, P-value < 0.05), 
and significantly better than the uniform method 
(t-test, P-value < 0.05), so in our work, we focused 
on the block method (Fig. 2).

Next, we tested whether the presence of the 
dense genotypes of close relatives could assist im-
putation. We compared the results obtained using 
FImpute in the “Population” and “Population + 
Family” modes (Fig. 3). For animals which ances-
tors were not genotyped, the differences between 
the modes were negligible, but the presence of a 
single parent and grandsire resulted in the sig-
nificant improvement of imputation in the family 

http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txz182#supplementary-data
http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txz182#supplementary-data
http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txz182#supplementary-data
http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txz182#supplementary-data
http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txz182#supplementary-data
http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txz182#supplementary-data
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mode (from 0.08 to 0.06 ADR for 600 SNP panel, 
t-test, P-value < 10−10). We achieved more than 
95% allelic concordance rate and 0.93 correlation 
with the 600 SNP chip for Landrace and Large 
White breeds, when both parents had dense geno-
types, while in the absence of dense ancestral geno-
types the comparable imputation quality required 
the use of at least 2,000 SNP chip (Fig. 3D–F). In 
the case of Duroc, we had almost no animals with 

genotyped ancestors, so we were not able to assess 
the imputation quality for this breed in case when 
dense parental genotypes are present. But, taking 
into account that in the case of the animals without 
genotyped parents, imputation quality was similar 
in the 3 breeds, we expected that the presence of 
dense parental genotypes should have the similar 
effect in Duroc pigs as it had in the 2 other ana-
lyzed breeds.

Figure 2. Dependence of allele discordance rate (ADR) on the panel size. Mean ADRs (in log scale) for animals from the test set are shown. 
Only animals without ancestors in the reference set were used. Different breeds are shown on different panels; random, uniform, and block methods 
are shown by dotted, dashed, and solid lines, respectively. FImpute was run in the “Population + Family” mode. Horizontal dashed line corresponds 
to 0.05 ADR.

Figure 3. Imputation quality depending on the presence of genotyped ancestors in the reference set. Different breeds are shown on different 
panels: Landrace—A and D; Large White—B and E; Duroc—C and F. Test subsets are shown by different lines: dotted line—No relatives; dashed 
line—Only grandsire; densely dotted line with circle—Dam or Sire; densely dotted line with triangle—Parent & grandsire; solid line—Both parents. 
Horizontal dashed line corresponds to 0.05 ADR. (A–C) FImpute method: “Population,” (D–F) FImpute method: “Population + Family.”
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In the course of the work, we observed that 
imputation quality varied considerably across 
SNPs and exhibited strong correlation between 
breeds (Spearman correlation coefficient > 0.44; 
Fig. 4A–C). Hence, we assumed that there should 
exist some common factors that influence imput-
ation quality in all breeds. These factors might be 
the SNP chromosomal position, distance to the 
LD-chip markers, or correlation with them. While 
MAF also affected ADR (Fig. 4F), it exhibited 
very low between-breed correlation (Spearman cor-
relation coefficient varied from 0.01 to 0.05). To as-
sess the potential contribution of these factors, we 
compared ADR between different chromosomes, 
depending on the relative position of the SNP on 
the chromosome, depending on the distance to the 
LD-chip markers for the 3,000 SNP panel, and de-
pending on MAF (Fig. 4A–C; Supplementary Fig. 
S1). Allele discordance rate varied significantly 
between chromosomes (Supplementary Fig. S1, 
Kruskal–Wallis test, P-value < 3 × 10−38). We also 
observed that imputation quality decreased to the 
periphery of the chromosomes, notwithstanding 
that we selected extra SNPs at the periphery ac-
cording to the block algorithm (Fig. 4D, t-test, 

P-value < 2  × 10−13) similar observation having 
been made by Badke et al. (2013). At the same time, 
the distance to the informative SNP (the closest 
SNP from LD-chip) did not affect the imputation 
quality (Fig. 4E, t-test, P-value  =  1). Increased 
MAF resulted in the reduced imputation quality 
(Fig. 4F, t-test between MAF 0.0 and MAF 0.1 
groups, P-value < 1 × 10−5). We also compared the 
correlation of the markers with informative SNPs 
and ADR for the same markers (Fig. 5A–C). Most 
of SNPs with extremely high ADR exhibited al-
most no correlation with the informative SNP. Such 
low correlation could be explained either by recom-
bination hotspots or by wrong mapping of SNPs 
to chromosomal positions. To check the latter, we 
compared allelic correlation across all pairs of 
markers. We have found that 18% to 30% of SNPs 
with ADR > 0.1 exhibited higher correlation with 
the chromosomal region other than its own loca-
tion (Fig. 5E, see Materials and Methods section) 
and this proportion increased with increasing ADR 
threshold (Fig. 5D). Therefore, the conclusion was 
made that the majority of markers with the ex-
tremely high ADR (above 0.3) are likely to have 
wrong chromosomal positions.

Figure 4. Factors influencing the quality of imputation from low density chips. (A–C) Allele discordance rate relationship calculated for 
Landrace and Duroc (A), Landrace and Large White (B), and Landrace and Duroc (C). Correlation values are shown at the top of corresponding 
plots. (D) Allele discordance rate across relative chromosome positions, 0.5—is the center of the chromosome and 0.0—is the beginning of the 
end of the chromosome. (E) Allele discordance rate depending on the distance from the informative SNP, kbp. Single nucleotide polymorphisms 
were divided by bins with the same sample size. Labels of bins correspond to maximum distance (kbp) in the group. (F) Dependence of imputation 
quality on MAF. Minor allele frequency values divided into 5 equal sized bins. Different breeds are shown in different colors. Results were obtained 
using the LD panel with 3,000 SNP markers.

http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txz182#supplementary-data
http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txz182#supplementary-data
http://academic.oup.com/tas/article-lookup/doi/10.1093/tas/txz182#supplementary-data
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In such a way, we have made here the first at-
tempt to develop an LD-chip which could be util-
ized when making steps toward the implementation 
of GS approaches in pig breeding in Russia. The 
3 breeds commonly used in pork production in 
Russia, namely, Landrace, Duroc, and Large White 
were considered. The previous studies on geno-
type imputation from LD panels were mainly fo-
cused on the Yorkshire, Pietrain, and Landrace pig 
breeds (e.g., Wellmann et  al., 2013; Badke et  al., 
2014; Xiang et  al., 2015), while Duroc and Large 
White pigs have been directly considered only in a 
single study each (Grossi et al., 2018 and Carillier-
Jacquin, 2018, respectively). We concentrated on 
these breeds in our work since they play the cen-
tral role in Russian pork production, and we be-
lieve that the designed LD-chips may be of value 
for selection within these breeds on pig farms. 
Using same LD panels in our study we could ob-
tain almost similar imputation quality in all 3 stud-
ied breeds. Therefore, it appears possible to use a 
single LD-chip for all 3 breeds, which may be rather 
advantageous.

We have observed in our study that imputation 
accuracy for individual SNPs differed for different 
chromosomes, the observation which was also made 

previously in several studies (Badke et  al., 2013; 
Xiang et  al., 2015; Carillier-Jacquin, 2018) where 
imputation was performed both by the Beagle and 
FImpute software and which was explained by the 
difference in the average LD level for each indi-
vidual chromosome (Xiang et al., 2015).

Taken as a whole, the results obtained in 
the present work correspond well with those re-
ported previously. Similar to some earlier studies 
performed both in pigs and in other agricultural 
animal and poultry species (Badke et  al., 2013; 
Judge et  al., 2016; Herry et  al., 2018; O’Brien, 
2019), we have demonstrated  here that the block 
method for SNP maker selection performed much 
better that the random and uniform approaches. 
In agreement with Huang et al. (2012), Cleveland 
and Hickey (2013), and Wellmann et al. (2013), the 
presence of dense parental genotypes improved im-
putation accuracy, which was particularly so in the 
case of virtual LD panels containing very low SNP 
number (e.g., 300 SNP, 600 SNP). Similar to the re-
sults obtained recently by Grossi et al. (2018) the 
minimum panel size which allowed somewhat rea-
sonable imputation quality was the 300 SNP panel; 
however, sufficiently high imputation accuracy 
in this case could be achieved only when both 

Figure 5. Misplaced SNP markers lead to poor imputation quality. (A) The dependence of ADR on R2 between target and informative SNPs 
for Landrace imputed SNPs. (B) The dependence of ADR on R2 between target and informative SNPs for Large White imputed SNPs. (C) The 
dependence of ADR on R2 between target and informative SNPs for Duroc imputed SNPs. In (A–C), SNPs with wrong mapping are indicated with 
gray color. (D) Proportion of misplaced SNPs in ADR range per breed. (E) Manhattan plot for R2 between the target SNP WU_10.2_18_22299512 
located at the 22299512 bp position on the chromosome 18 and other SNPs across the whole genome. Position of the target SNP is shown by the 
vertical gray dashed line. Results were obtained using the LD panel containing 3,000 SNP markers.
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parents were genotyped using HD panels. It should 
be noted that in the previous studies, 450 SNP 
(Cleveland and Hickey, 2013) and 384 SNP (Huang 
et al., 2012; Wellmann et al., 2013) LD panels were 
regarded as the most low density ones. Grossi et al. 
(2018) suggested 3,000 SNP markers to be suffi-
cient to accurately impute HD genotypes; however, 
in the present work we observed that 2,000 SNP LD 
panel might be sufficient to obtain high imputation 
accuracies even when no HD-genotyped relatives 
were present. In general, the imputation quality for 
the corresponding panel sizes achieved in this work 
is similar to the results obtained using pig popu-
lations from other countries and/or for other spe-
cies (Zhang and Druet, 2010; Huang et al., 2012; 
Wellmann et al., 2013; Judge et al., 2016; Carillier-
Jacquin, 2018; Herry et al., 2018; Grossi et al., 2018; 
O’Brien et al., 2019).

CONCLUSIONS

We have demonstrated that in our data set, the 
block method for SNP marker selection outper-
forms the random and uniform methods. We have 
designed 2 virtual LD panels including 300 and 
2,000 markers. Based on our findings, we recom-
mend to use 300 SNP markers when both parents 
of the animal have HD genotypes and to use 2,000 
SNP markers in all other cases. We have shown that 
in both cases allelic concordance rate reaches about 
0.95. We have shown that while imputation quality is 
influenced by chromosomal position and MAF, the 
main factor that explains most SNPs with extremely 
bad imputation quality is mismapping of markers 
to the chromosomal positions in investigated ani-
mals. Hence, sufficient improvement in imputation 
quality could be achieved through the correction of 
chromosomal positions of these markers.

SUPPLEMENTARY DATA

Supplementary data are available at 
Translational Animal Science online.
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