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Abstract

Genome-wide association studies often collect multiple phenotypes for complex diseases. Multivariate joint analyses
have higher power to detect genetic variants compared with the marginal analysis of each phenotype and are also
able to identify loci with pleiotropic effects. We extend the unified score-based association test to incorporate
family structure, apply different approaches to analyze multiple traits in GAW20 real samples, and compare the
results. Through simulation studies, we confirm that the Type I error rate of the pedigree-based unified score
association test is appropriately controlled. In marginalanalysis of triglyceride levels, we found 1 subgenome-wide
significant variant on chromosome 6. Joint analyses identified several suggestive genome-wide significant signals,
with the pedigree-based unified score association test yielding the greatest number of significant results.

Background
The increasing availability of high-density genomic data
with thousands of samples enables the identification of
single-nucleotide polymorphisms (SNPs) contributing to
complex traits on a genome-wide scale. Research studies
often collect data on multiple related phenotypes to bet-
ter understand disease structure; however, genome-wide
association studies (GWAS) commonly analyze each
trait independently. For example, body mass index
(BMI) and waist-to-hip ratio (WHR) are both proxy
traits for obesity and commonly collected in an
obesity-related study. The standard approach usually an-
alyzes each phenotype separately and reports the corre-
sponding findings of each analysis, ignoring the
dependency among traits. Approaches considering joint
analyses have been proposed to tackle multiple pheno-
types. Yang and Wang [1] and Ott and Wang [2] de-
scribed a number of approaches elaborately, including
multivariate regression models, variable reduction
methods such as principal component analysis, and ca-
nonical correlation analysis. However, there is no single
approach that is uniformly the most powerful across all
situations. The sum of squared score (SSU) test does not

explicitly incorporate trait correlation, and multivariate
analysis of variance (MANOVA) could fail to detect plei-
otropy when a strong trait correlation exists and the
traits have thesame direction of association [3]. Consid-
ered to be an optimally weighted combination of MAN-
OVA and SSU, the unified score-based association test
(USAT) by Ray et al. [3] may provide higher power, es-
pecially for detecting pleiotropy.
We aimed to study the performance of various ap-

proaches for jointly analyzing multiple phenotypes. We
first reviewed existing methods. We then expanded
USAT to related samples as a pedigree-based USAT
(pUSAT). We found that the Type I error rate of
pUSATwas well preserved through simulations. Finally,
we analyzed GAW20real data using multiple phenotype
methods and compared the results.

Methods
Assume K correlated phenotypes Y1,…, YK in N individ-
uals. Let Yk be the N × 1 vector of kth phenotype and Y
be the N × K matrix for all individuals. The test of inter-
est is the association of a single variant with the K phe-
notypes. Suppose Gi is the genotype score (ie, count of
the minor allele as 0, 1, or 2) for a SNP of interest i, and
G is the N × 1 vector of genotypes for all individuals.
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Moreover, define C = (c1,…, cq) as the N × q matrix of a
set of q-adjusted covariates for all samples.

Marginal linear mixed model
The linear mixed model (LMM) is frequently used to ac-
count for the sample relatedness or the cryptic related-
ness due to population structure. For a given SNP, the
standard LMM is:

Yk ¼ αþ Gβk þ Cγk þ Qk þ ϵk ; ð1Þ

where α refers to the overall mean of kth phenotype, βk
is the regression coefficient representing the linear fixed
genetic effect on the kth phenotype, and γk is a q × 1 vec-
tor of fixed covariate effects on the kth phenotype. Qk

and ϵk are random effect and error, respectively, as-
sumed to follow normal distributions Qk � Nð0;Φσ2gÞ
and ϵk � Nð0; σ2e IÞ, where σ2g and σ2

e are genetic and en-

vironmental components of variance, I is an N ×N iden-
tity matrix and Φ is an N ×N matrix of pairwise
measures of genetic relatedness.To handle multiple phe-
notypes, the most intuitive and simplest approach is to
implement marginal LMM to test each SNP against 1
phenotype at a time. For the kth marginal model, the null
hypothesis is that the given SNP is not associated with
the kth phenotype (H0k : βk = 0). The estimation of pa-
rameters can be obtained through the maximum likeli-
hood estimator (MLE) or the restricted MLE (RMLE)
[4], and test statistics are constructed thereafter. Because
multiple tests are conducted for each SNP, a modifica-
tion of local significance level should be used to control
the overall Type I error, such as Bonferroni correction.
The marginal LMM completely ignores the correlation
among traits, possibly reducing power, especially in the
case of highly correlated phenotypes.

SSU test
The results from the marginal test can be combined to
simultaneously test the association of a given SNP to the
multiple phenotypes. Yang and Wang [1] extended Pan’s
[5] test statistic for the association between multiple rare
or common variants and a single phenotype, and devel-
oped the well-known approach of the SSU test. The SSU
test statistic is:

Ssq ¼ TTT ¼
XK
k¼1

t2k ð2Þ

where tk is the association statistic for the kth phenotype
with a given marker from a marginal model, for ex-
ample, from eq. (1). The distribution of eq. (2) can be
approximated as a scaled noncentral chi-squared distri-
bution aχ2d þ b with
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where ck’s are the eigenvalues of the variance–covariance
matrix Σ of tk [6]. The SSU test is derived from marginal
modelsand does not consider the correlation structure
explicitly; therefore, the power is not highly affected by
increasing the degree of dependency among the traits.
However, the SSU test suffers from power loss with a
small proportion of associated traits.

Multivariate linear mixed model
MANOVA considers the trait correlation directly in the
test statistics and corresponding distributions [7]. For
family data, the multivariate LMM (mvLMM) has been
developed as a compelling method for testing multiple
phenotypes. An mvLMM for the association of K pheno-
types and a given SNP is:

Y ¼ αþ GβT þ Cγk þQþ ϵ

where β is a K × 1 vector of the SNP genetic effect sizes
for the K phenotypes; γk is an q × K matrix of the corre-
sponding coefficients for the covariates; Q is an N × K
matrix of random effects with MVN distribution
Q~MVNN ×K(0,Φ,Vg), where Φ is the row covariance
matrix for relatedness,Vg is the K × K column covariance
matrix for the genetic variance component; ϵ is an N × K
matrix of errors with ϵ~MVNN × K(0, IN × N,Ve), where
IN × N is the row covariance matrix, and Ve is the K × K
column covariance matrix of the environmental variance
component. The null hypothesis of interest is that the
SNP effect sizes for all phenotypes are zero: H0 : β1 =…
= βK = 0. These parameters can be estimated through ei-
ther MLE or RMLE [8]. The mvLMM typically has good
performance when a few of phenotypes are associated
with a SNP, but lacks power with high correlations
among traits and the genetic effect sizes of the traits are
similar in magnitude and in same direction.

USAT and pUSAT
The true genetic sizes and the direction of associations
are usually unknown a priori and therefore one would
not know which approach is the best for the study. Ray
et al. [3] proposed the USAT approach, which combines-
MANOVA and SSU. USAT takes the advantages of
MANOVA and SSU while not requiring the prior know-
ledge of true effect sizes or correlations among traits.
The method was originally designed for independent
samples. Let Tw be the weighted statistic Tw =wTM + (1
−w)TS, where w is a weight from 0 to 1, TM is the
MANOVA test statistic, and Ts is the SSU test statistic
combining the marginal results. TM and TS are the

Deng et al. BMC Proceedings 2018, 12(Suppl 9):55 Page 140 of 258



statistics from the analyses assuming the independence
among samples. Under the null, Tw is approximately a
linear combination of chi-squared distributions and the
p value pw of Tw can be calculated using Liu et al. [6].
The optimal USAT test statistic is:

TUSAT ¼ min
0≤w≤1

pw

and w can be considered from a grid of {w1 = 0,w2 = 0.1,
…,w11 = 1}.
Here, we expand their method to related samples. Spe-

cifically, we define the proposed pUSAT as Tw, pUSAT =
wTmvLMM + (1 −w)Ts, LMM, where TmvLMM is the
mvLMM test statistic, and Ts, LMM is the SSU test statis-
tic combining the marginal LMM results. In this way,
the relatedness among study participants is taken into
consideration in the test statistic. Then, the optimal
pUSAT test statistic is defined as:

TpUSAT ¼ min
0≤w≤1

pw;pUSAT

where pw, pUSAT is the p value of Tw, pUSAT. An approxi-
mated p value for TpUSAT using numerical integration is
[3]:

ppUSAT ¼ Pr TpUSAT ≤ tpUSAT
� � ¼ 1− Pr TpUSAT ≥ tpUSAT

� �

¼ 1− Pr Tw1 < qmin w1ð Þ;…;Tw11 < qmin w11ð Þð Þ

≈ 1−
Z

FTS δw wð Þjxð Þ f TM
xð Þdx

where tpUSAT is the observed value, qmin(wb) is the (1-
tpUSAT)th percentile of the distribution of Twb for w =
wb, FTS ð∙Þ is the cumulative distribution function of

TS, LMM, δwðxÞ ¼ min
w∈fw1;…;w11g

qminðwÞ−wx
1−w

and f TM
ð∙Þ is

the probability density function of TmvLMM. The details of
this calculation can be found in Ray et al. [3]. The pUSAT
is an application-directed approach and does not require
knowledge of the underlying association. Weights to
mvLMM can change according to the SNP being tested.

pUSAT may be powerful in detecting pleiotropy for a large
number of traits with weak correlation or a few of highly
correlated phenotypes.

Phenotypic and genotypic data
GAW20 provides the dense genome-wide SNPs from
the 821 pedigree-based individuals with triglyceride
(TG) and high-density lipoprotein cholesterol (HDL-C)
levels measured. We used the log-transformed average
of pretreatment values at visits 1 and 2 of TG and
HDL-Clevels and investigated the pleiotropic variants
involved in blood lipids. The GAW20 data has been
genotyped using the Affymetrix Genome-wide Human
SNP Array 6.0. SNPs were excluded with a call rate <
95%, minor allele frequency < 5%, and failure of the
Hardy-Weinberg equilibrium test (p value<10e-6),
which results in a total of 587,358 variants. Individuals
with more than 5% missing genotypes were also
excluded from analysis.

Results
Simulation study
To evaluate Type I error rate of the proposed pUSAT
approach, we conducted simulation studies consider-
ing 2 correlated phenotypes. The phenotype data were
simulated from the following model:

Y � MVN2 0;Φ;Vg
� �þMVN2 0; IN�N ;Veð Þ ð3Þ

where Vg = h2B(ρ), Ve = (1 − h2)E and h2 is the heritability
varying from 0 to 1. For the genetic covariance matrix B(ρ)
and the environmental covariance matrix E, we used acom-
pound symmetry (CS) correlation structure with B(ρ)ij=Eij
= ρ, where a single parameter ρ can control the model and

Table 1 Estimated Type I errors of pUSAT for K = 2 phenotypes
(α = 0.0)

Type I
error

Correlation ρ

0 0.25 0.5 0.75

pUSAT 0.027 0.032 0.036 0.038

Table 2 Descriptive statistics of variables in the analysis

Men(N = 407) Women(N = 414) Total(N = 821)

Log of TGa 4.86 (0.59) 4.70 (0.56) 4.78 (0.58)

Log of HDL-Ca 3.69 (0.23) 3.92 (0.26) 3.80 (0.27)

Agea 48.29 (15.93) 48.38 (15.84) 48.34 (15.87)

Field centerb Minnesota 206 (50.6%) 205 (49.5%) 411 (50%)

Utah 201 (49.4%) 209 (50.5%) 410 (50%)

Smoking statusb Never Smoker 268 (65.8%) 298 (72.0%) 566 (68.9%)

Past Smoker 106 (26.0%) 82 (19.8%) 188 (22.9%)

Current Smoker 33 (8.1%) 34 (8.2%) 67 (8.2%)
amean (SD); bcount (frequency)
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define the correlation among the phenotypes. We used the
kinship matrix Φ ofGAW20 data and considered h2 as
0.5%. The different correlation ρ ‘s (ρ = 0, 0.25, 0.5, 0.75)
were assessed in the simulation. We evaluated the Type I
error rate using 1000 null phenotype data setssimulated
from eq. (3) and variants on chromosome 21 fromGAW20
individuals, with minor allele frequencyvarying from 0.052
to 0.500. TheType I error rate is well controlled for the
pUSATapproach (Table 1) although slightly conservative.

Real data analysis
The Pearson correlation coefficient, ignoring the family
structure, between TG and HDL-Clevels (on log-scale) in

the data set, is − 0.45. The empirical genetic relatedness
matrix was calculated before conducting analyses. Besides
SSU, mvLMM, USAT, and pUSAT, the univariate analyses
were also performed and shown. All statistical models were
adjusted for age, sex, indicators of field center, and smoking
status, and implemented in GEMMA (genome-wide effi-
cient mixed-model analysis) [4, 8]. Table 2 lists the descrip-
tive statistics for the variables used in the model.
Figure 1 shows the Manhattan plots for the univariate

analysis using marginal LMM. The horizontal line indicates
the subgenome-wide significance level (p value = 1 × 10− 7).
We observed no genome-wide significant SNPs for either
phenotype; however, we did identify1 subgenome-wide

Fig. 1 Manhattan plots of the univariateanalyses (TG and HDL-C) for chromosomes 1 to 22. The black horizontal line indicated the subgenome-wide
significance threshold (p value = 1 × 10− 7)

Table 3 SNPs that are suggestive as being of genome-wide significance (p < 5 × 10− 6) in univariate and joint analysis*

SNP Chr:Pos Univariate analysis (LMM) Joint analysis

TG HDL-C SSU mvLMM USAT pUSAT

rs90513 1:3189344 3.33E-02 1.20E-06 1.30E-05 7.18E-06 2.36E-05 9.88E-06

rs11940232 4:138953336 6.32E-05 1.98E-05 1.47E-06 8.56E-06 2.65E-06 2.58E-06

rs17058802 4:173880215 5.66E-07 4.56E-03 2.23E-06 3.39E-06 4.13E-06 2.60E-06

rs708010 6:37071350 1.86E-04 4.69E-06 1.01E-06 5.48E-06 2.19E-06 2.12E-06

rs17619780 6:40472303 7.58E-08 2.22E-01 4.95E-06 1.59E-07 9.60E-06 3.01E-07

rs12533593 7:147451966 6.69E-03 2.28E-06 7.72E-06 1.22E-05 1.48E-05 1.01E-05

rs7300117 12:130266575 2.24E-05 8.66E-01 5.60E-04 3.92E-06 9.99E-04 8.58E-06

rs2880301 13:18998534 9.66E-01 7.29E-02 1.95E-01 1.19E-01 1.69E-13 2.22E-01

rs17464499 22:26221715 3.20E-02 4.48E-06 3.02E-05 2.67E-05 6.30E-05 3.29E-05

*pValues of different approaches that reach suggestive genome-wide significance level are in bold
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significant locus on chromosome 6 (rs17619780 with ap
valueof 7.2 × 10− 8 in gene LRFN2) as associated with TG
levels. LRFN2is related to TGs in the suggestive
genome-wide significance level (p < 5 × 10− 6) [9]; however,
more exploration of this gene is needed. Interestingly, the
heterozygous deletion of the LRFN2 is reported to be

associated with working memory deficits [10], a
well-known complication of high TG levels. Furthermore,
both USAT and pUSAT performed similarly (Table 3) ex-
cept one genome-wide association (GWA)-significant vari-
ant, rs2880301, identified by the regular USAT. The
reported p value of 1.69 × 10− 13 from USAT is suspicious

Fig. 2 Manhattan plots of the multivariateanalyses (SSU, mvLMM, USAT, and pUSAT) for chromosomes 1 to 22. The black horizontal line indicated
the subgenome-wide significance threshold (p value = 1 × 10− 7)
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as no other approach (neither univariate nor joint
analysis) reports even nominal significance signal. In
addition, USAT analysis ignored the dependency among
the individuals, which could potentially lead to the inflated
signals. In addition, we did not identify any signals that
reached GWAsignificance by another multivariate
approach (SSU, mvLMM, or pUSAT), as shown in Fig. 2.
Some suggestive genome-wide significant signals were
detected on chromosomes 4, 6, and 12. Most of the identi-
fied SNPs in Fig. 2 are in linkage disequilibrium, therefore,
we kept 1SNP with the smallest p value as representative
within ± 500 kb (Table 3). From Table 3, we found that
the joint analysis is able to identify most variants that were
significant in either marginal analysis and also catches 1
variant (rs7300117) missed in the univariate analysis,
emphasizing the importance of multivariate joint analyses.
pUSAT provides comparable results with slightly smaller
p values by integrating information from SSU and
mvLMM. Closer investigation shows that some SNPs are
outstandingly noticeable for pUSAT, but not for
SSUormvLMM, especially on chromosomes 2,3,4, and 6.

Discussion and conclusions
The explosion in datacollection and the increasing
evidence that some loci affect multiple traits require more
complex statistical models for analyses to better under-
stand the properties of association. Here, we reviewed
several different methods for multiple phenotypes in
GWAS, and expanded the USAT approach to related sam-
ples as pUSAT. The proposed method can provide insight
into the underlying associations, and help the researchers
to identify pleiotropic loci especially when prior informa-
tion is unavailable. The simulation studies demonstrate
that the Type I error rate of pUSAT is conservative under
different correlations. We also applied various methods to
the GAW20 data with TG and HDL-C as the phenotypes.
One suspicious locus was identified as GWA-significant
by the regular USAT, which assumes independent individ-
uals, whereas other multivariate analyses missed this
locus. Several suggestiveGWA loci were detected by the
joint multivariate analyses; however, pUSAT highlights the
importance of joint analysis for multiple phenotypes and
yields smaller p values for most SNPs.

Funding
Publication of this article was supported by NIH R01 GM031575.

Availability of data and materials
The data that support the findings of this study are available from the
Genetic Analysis Workshop (GAW), but restrictions apply to the availability of
these data, which were used under license for the current study. Qualified
researchers may request these data directly from GAW.

About this supplement
This article has been published as part of BMC Proceedings Volume 12
Supplement 9, 2018: Genetic Analysis Workshop 20: envisioning the future of
statistical genetics by exploring methods for epigenetic and

pharmacogenomic data. The full contents of the supplement are available
online at https://bmcproc.biomedcentral.com/articles/supplements/volume-
12-supplement-9.

Authors’ contributions
All authors contributed to the overall study. XD, BW and VF conducted all
analyses and XD drafted the manuscript. GMP, LAC and CTL provided
constructive advice and revised the manuscript critically. All authors
approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Published: 17 September 2018

References
1. Yang Q, Wang Y. Methods for analyzing multivariate phenotypes in genetic

association studies. J Probab Stat. 2012;2012:652569.
2. Ott J, Wang J. Multiple phenotypes in genome-wide genetic mapping

studies. Protein Cell. 2011;2(7):519–22.
3. Ray D, Pankow JS, Basu S. USAT: a unified score-based association test for

multiple phenotype-genotype analysis. Genet Epidemiol. 2016;40:15.
4. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for

association studies. Nat Genet. 2012;44:5.
5. Pan W. Asymptotic tests of association with multiple SNPs in linkage

disequilibrium. Genet Epidemiol. 2009;33:11.
6. Liu H, Tang Y, Zhang HH. A new chi-square approximation to the

distribution of non-negative definite quadratic forms in non-central normal
variables. Comput Stat Data Anal. 2009;53:4.

7. Muller KE, Peterson BL. Practical methods for computing power in testing the
multivariate general linear hypothesis. Comput Stat Data Anal. 1984;2(2):143–58.

8. Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms
for genome-wide association studies. Nat Methods. 2014;11(4):407–9.

9. Comuzzie AG, Cole SA, Laston SL, Voruganti VS, Haack K, Gibbs RA, Butte
NF. Novel genetic loci identified for the pathophysiology of childhood
obesity in the Hispanic population. PLoS One. 2012;7:e51954.

10. Thevenon J, Souchay C, Seabold GK, Dygai-Cochet I, Callier P, Gay S, Corbin
L, Duplomb L, Thauvin-Robinet C, Masurel-Paulet A. Heterozygous deletion
of the LRFN2 gene is associated with working memory deficits. Eur J Hum
Genet. 2016;24(6):911–8.

Deng et al. BMC Proceedings 2018, 12(Suppl 9):55 Page 144 of 258

https://bmcproc.biomedcentral.com/articles/supplements/volume-12-supplement-9
https://bmcproc.biomedcentral.com/articles/supplements/volume-12-supplement-9

	Abstract
	Background
	Methods
	Marginal linear mixed model
	SSU test
	Multivariate linear mixed model
	USAT and pUSAT
	Phenotypic and genotypic data

	Results
	Simulation study
	Real data analysis

	Discussion and conclusions
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

