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ABSTRACT The hot springs bacterium Litorilinea aerophila PRI-4131T (= ATCC BAA-2444T)
was found in Isafjardardjup, in northwest Iceland. In this paper, we present a draft genome
sequence for the type strain, with a total predicted genome length of 6,043,010 bp, 4,608
protein-coding sequences, 54 RNAs, 9 CRISPR arrays, and a G1C content of 64.61%.

The bacterial phylum Chloroflexi (1–3) (also Chlorobacteria or Chloroflexota) is a deep-
branching bacterial phylum with significant metabolic diversity, from green non-sulfur

photosynthesizers to anaerobic halogen metabolizers to aerobic chemoorganotrophs (4–9).
Thermophilic growth is common. The Chloroflexi are unusual in that cells stain as Gram neg-
ative but possess a single cell wall layer (i.e., they are monoderms) with no evidence of an
outer membrane, which is characteristic of most other Gram-negative bacteria (2, 3, 10–12).

Within the Chloroflexi class Caldilineae, most organisms are anaerobes, but two of these fila-
mentous thermophilic bacteria, including Litorilinea aerophila, have shown aerobic growth
(4, 9). In this work, we describe a draft genome sequence for the type strain of Litorilinea
aerophila, PRI-4131 (= DSM 25763 = ATCC BAA-2444). Litorilinea aerophila was isolated
from an intertidal hot spring (0.6% NaCl) in Iceland (9) but has since been found in other
environments, including in the human cervicovaginal microbiota (13), in waste treatment
and disposal sites/systems (14–16), in plant cultivation systems (17), and in mines (18).

Lyophilized Litorilinea aerophila ATCC BAA-2444T was purchased from ATCC (Manassas, VA,
USA), resuspended in marine broth 2216 (BD, Franklin Lakes, NJ, USA), and incubated at 50°C
for 5 days at 1 atm. It was then subcultured on marine agar (5 days at 50°C), from which a
single colony was inoculated into 2 mL marine broth. After growth at 50°C to log phase,
genomic DNA (gDNA) was purified using the QIAamp DNA minikit (Qiagen, Valencia, CA,
USA). Fragmentation of gDNA and adapter attachment were performed using the KAPA
HyperPlus kit v.3.16 (KR1145; Kapa Biosystems, Wilmington, MA, USA). An Illumina HiSeq
2500 instrument (Hubbard Center for Genome Studies, Durham, NH, USA) was used for
paired-end 250-bp fragment sequencing. Reads were trimmed using Trimmomatic v.0.38
(settings: paired-end mode with a window size of 4, quality requirement of 15, and mini-
mum read length of 36), and then 1,522,708 trimmed reads were assembled with SPAdes
v.3.13.0 (19, 20) with default bacterial assembly parameters. Small contigs (,500 bp) and
contigs with low coverage (,10�) were removed. QUAST (21) analysis of this assembly
showed 93 contigs (the largest one being 341,248 bp), with an N50 value of 180,513 bp.
Benchmarking universal single-copy orthologs (BUSCO) v.5.2.2 analysis (with default parame-
ters) showed that the assembly was 95.2% complete (22), and genome coverage of 112�
was calculated. The NCBI Prokaryotic Genome Assembly Pipeline (PGAP) (23) identified and
annotated genes in the L. aerophila genome. The assembled genome was 6,043,010 bp
in length, and PGAP revealed a total of 4,749 genes, 4,608 protein-coding sequences, 87
pseudogenes, 46 tRNAs, 5 partial or complete copies of the rRNA genes, including 1 complete
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copy of each, 3 noncoding RNAs, and a G1C content of 64.61%, close to the published
value of 64.7% for the species (9). Nine CRISPR arrays were identified, as well as the CRISPR-
associated genes encoding Cas1 to Cas3 and Cas5e (24). As predicted based on analysis of
the Chloroflexi (11, 12), Litorilinea lacks Gram-negative lipopolysaccharide (LPS) and lipid A
metabolic genes such as lpxC and also possesses teichoic acid and lipoteichoic acid transport
and synthesis genes (24), which are characteristic of monoderms.

Data availability. The Litorilinea aerophila ATCC BAA-2444T whole-genome shotgun
sequencing (WGS) project has been deposited in DDBJ/ENA/GenBank under accession num-
ber VIGC00000000. The raw Illumina data from BioProject PRJNA551245 were submitted to
the NCBI Sequence Read Archive (SRA) under accession number SRX6432641.
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