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Abstract
Purpose: We aimed to establish radiotranscriptomics signatures based on serum 
miRNA levels and computed tomography (CT) texture features and develop nomo-
gram models for predicting radiotherapy response in patients with nonsmall cell lung 
cancer (NSCLC).
Methods: We first used established radioresistant NSCLC cell lines for miRNA se-
lection. At the same time, patients (103 for training set and 71 for validation set) 
with NSCLC were enrolled. Their pretreatment contrast-enhanced CT texture fea-
tures were extracted and their serum miRNA levels were obtained. Then, radiotran-
scriptomics feature selection was implemented with the least absolute shrinkage and 
selection operator (LASSO), and signatures were generated by logistic or Cox regres-
sion for objective response rate (ORR), overall survival (OS), and progression-free 
survival (PFS). Afterward, radiotranscriptomics signature-based nomograms were 
constructed and assessed for clinical use.
Results: Four miRNAs and 22 reproducible contrast-enhanced CT features were 
used for radiotranscriptomics feature selection and we generated ORR-, OS-, and 
PFS- related radiotranscriptomics signatures. In patients with NSCLC who received 
radiotherapy, the radiotranscriptomics signatures were independently associated with 
ORR, OS, and PFS in both the training (OR: 2.94, P < .001; HR: 2.90, P < .001; HR: 
3.58, P = .001) and validation set (OR: 2.94, P = .026; HR: 2.14, P = .004; HR: 2.64, 
P = .016). We also obtained a satisfactory nomogram for ORR. The C-index values 
for the ORR nomogram were 0.86 [95% confidence interval (CI), 0.75 to 0.92] in the 
training set and 0.81 (95% CI, 0.69 to 0.89) in the validation set. The calibration-in-
the-large and calibration slope performed well. Decision curve analysis indicated a 
satisfactory net benefit.
Conclusions: The radiotranscriptomics signature could be an independent bio-
marker for evaluating radiotherapeutic responses in patients with NSCLC. The 
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1 |  INTRODUCTION

Lung cancer has a high incidence worldwide, second only to 
prostate cancer in males and breast cancer in females.1 It is 
also the most lethal cancer type and causes one-quarter of all 
cancer deaths worldwide.1 The 5-year overall survival (OS) 
of lung cancer patients is less than 20% and that of patients 
with distant metastasis is only approximately 5%.2 More than 
50% of lung cancer patients receive radiotherapy for both tho-
racic disease and extra thoracic metastatic sites.3 In contrast 
to small cell lung cancer (SCLC), patients with nonsmall cell 
lung cancer (NSCLC) exhibit wide individual heterogeneity in 
radiotherapeutic effects. Therefore, it is of significant benefit 
to predict the prognosis of patients with NSCLC for optimal 
treatment.

Many efforts have been made to achieve this aim, and 
the most attention has been paid to molecular and image 
features. With the development of next-generation se-
quencing, many genomic biomarkers, such as DNA poly-
morphisms and RNA expression levels, have emerged in 
recent years in the field of “genomics”.4 These biomarkers 
have been used for both diagnosis and prognostic predic-
tion in many cancer types, including NSCLC.5 In addi-
tion, with the maturation of image-processing technology, 
including computed tomography (CT), magnetic reso-
nance Imaging (MRI), PET-CT, etc, “radiomics” has also 
emerged.6 It indicates that image features have a potential 
to influence clinical decision-making as well as therapy 
planning for radiation oncology.6,7 Of interest is that these 
two “-mics” could work together for this topic and may 
be related to each other. As a result, “radiogenomics” was 
created, which combines “radiomics” and “genomics” for 
both radiotherapy response modeling and prognostic impli-
cations in patients with NSCLC and other cancer types.8-10 
Radiotranscriptomics,11 a branch of radiogenomics, which 
combines “radiomics” and “transcriptomics” (like mRNA, 
miRNA, lncRNA expression levels), could also be used as 
tumor biomarkers. However, it has not yet been fully ex-
plored, especially regarding the combination and associa-
tion between miRNAs and CT image features in NSCLC.

In this study, we aimed to combine serum miRNA lev-
els and contrast-enhanced CT texture features to construct 
radiotranscriptomics signatures and related nomograms for 
predicting ORR, OS, and PFS in patients with NSCLC. We 

also preliminarily explored the relationship between serum 
miRNA levels and CT texture features.

2 |  MATERIAL AND METHODS

2.1 | Study design and patient collection

We performed a prospective study to identify potential radi-
otranscriptomics biomarkers to predict the radiotherapeutic 
response of patients with NSCLC (Figure 1). With approval 
of the institutional ethical committee, we enrolled 103 pa-
tients with NSCLC from November 2014 to October 2015 for 
the training set and 71 patients with NSCLC from November 
2015 to May 2016 for the validation set. The inclusion 
criteria were as follows: (a) patients with NSCLC who re-
ceived radiotherapy either combined or not combined with 
chemotherapy; and (b) availability of pretreatment serum 
and contrast-enhanced CT scans within 1 month as well as 
follow-up information for 40 months. The exclusion criteria 
were patients who received thoracic surgery before or after 
radiotherapy. All patients’ basic characteristics are summa-
rized in Table 1. The radiotherapy response of the primary 
sites was evaluated according to RECIST 1.112 (Additional 
file 1: Figure S1) and recorded as the objective response rate 
(ORR). For survival assessment, both overall survival (OS) 
and progression-free survival (PFS) were used as endpoints.

2.2 | MIRNA extraction, microarray 
analysis, and QRT-PCR

We established radioresistant (RR) cell lines (A549-R and 
PC9-R) according to the method described in a previous study 
(accepted for publication elsewhere). Total RNA from cells and 
serum was extracted by using TRIzol Reagent (Ambion, USA). 
The RNA concentration and purity were measured by a Model 
680 Microplate Reader (Bio-Rad, USA), while the integrity 
was assessed by electrophoresis on a denaturing agarose gel.

To obtain the differentially expressed (DE) miRNA profile, 
a microarray was carried out (under consideration for publica-
tion elsewhere) at the Beijing Bioassay Laboratory of CapitalBio 
Corporation by the Human MiRNA Microarray, Release 21.0, 
8 × 60K (Agilent Technologies) according to the manufacturer's 
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protocol. To verify the microarray results and identify potential 
clinical biomarkers, we ranked DE miRNAs according to the fold 
changes, q-value, and relative expression value. The top-ranked 
miRNAs with the greatest fold changes were selected, including 
miR-2861, miR-4298, miR-1290, miR-92a-1-5p, and miR-25-5p. 
Quantitative reverse transcription polymerase chain reaction 
(qRT-PCR) was performed by using SYBR Green Master Mix 
(GeneCopoeia, USA) on an LC480 system (Roche, Switzerland). 
The primers are listed in Additional file 10: Table S1. All sam-
ples were assayed three times independently with replicating 
each three times. The results were analyzed by the 2−ΔΔCt method 
and normalized against internal controls (U6).

2.3 | Cell culture and colony 
formation assays

Cells were seeded at a density of 1  ×  106  cells/60  mm 
culture dish with complete medium. Twenty-four hours 
later, we transfected miR-2861 and miR-1290 mim-
ics (GenePharma) into A549/PC9 cells with high levels 
of endogenous expression and miR-92a-1-5p and miR-
25-5p inhibitors (GenePharma) into A549/PC9 cells with 
high levels of endogenous expression. The survival frac-
tions (SFs) were calculated as follows: SF  =  Number of 
Colonies Counted/Number of Cells Seeded× (Plating 
Efficiency/100). The survival curve was derived using the 
L-Q model: SF = exp(−(α × D + β × (D2))).

2.4 | Exosome identification from cell-
conditioned medium (CCM)

The A549, PC9, A549-R, and PC9-R cell lines were cultured 
in serum-free media for at least 3  days and used for exo-
some isolation at 24, 48, and 72 hours. To remove detached 
cells, CCM was harvested and centrifuged at 10  000  ×  g 
at 48°C for 30  minutes. The supernatant was recycled and 
then centrifuged in a Beckman Coulter OptimaTM L80XP 
Ultracentrifuge at 100 000 × gavg at 4℃ for 120 minutes with 
a Type 90 Ti rotor (k-factor: 48) to pellet exosomes.

2.5 | CT image acquisition, 
segmentation, and texture feature extraction

Contrast-enhanced CT images were acquired at a tube poten-
tial of 120 kV with a tube current of 190-600 mA and recon-
structed at a slice thickness of 1.5-2.5 mm with a resolution 
of 0.98 × 0.98-1.17 × 1.17 mm2. The primary tumor site was 
contoured using both the soft tissue and lung windows, and 
two other radiation oncologists were invited to individually 
verify all contours. If a patient presented with more than one 
primary tumor site, the union of all sites would be analyzed.

LIFEx13 software was used for CT texture feature ex-
traction from delineated three-dimensional (3D) ROIs. 
Several categories of texture features were used to analyze 
the original images, including histogram, shape, GLCM 

F I G U R E  1  Flow diagram in this study. CT, computerized tomography; NSCLC, nonsmall cell lung cancer; PFS, progression-free survival; 
ROI, region of interest; OS, overall survival
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matrix, GLRLM matrix, NGLDM matrix, and GLZLM ma-
trix (Additional file 11: Table S2). For the GLCM matrix, 
three different distances of neighbors were used for analy-
sis. Their detailed description was previously reported.14

2.6 | Radiomics or radiotranscriptomics 
signature construction and validation

The intraclass correlation coefficient (ICC)15 was calculated to as-
sess feature reproducibility in repeated delineation (ICC < 0.40, 
poor; 0.40 ≤ ICC <0.60, moderate; 0.60 ≤ ICC <0.80, good; 

ICC ≥ 0.80, excellent). Pairwise correlations among the above-
selected features (ICC  ≥  0.80) were also considered. After 
obtaining the optimal CT texture features, the least absolute 
shrinkage and selection operator (LASSO) model was used for 
feature selection. Then, multivariable logistic regression analysis 
was conducted to develop ORR signatures while Cox regres-
sion was to develop OS and PFS signatures, for both radiom-
ics and radiotranscriptomics features. The radiotranscriptomics 
signatures along with basic clinical information were tested by 
multivariable analysis in both the training set and validation set.

2.7 | Nomogram development, 
calibration, and assessment

In screening factors to include in the nomogram, the follow-
ing aspects were considered. First, we used a multivariable 
logistic regression model to identify the independent predic-
tors for radiosensitivity and a Cox regression model for OS or 
PFS. Second, we referred to previous research on nomogram 
construction. Moreover, we also took our actual patients’ in-
formation and conditions as well as clinical practice into ac-
count. The C-index (discrimination), calibration-in-the-large, 
and calibration slope (calibration) obtained by plotting the 
actual probability and the nomogram-predicted probability 
were used to measure the performance of the nomograms in 
both the training and validation sets. Finally, decision curve 
analysis (DCA) was conducted to calculate the net benefits at 
different threshold probabilities for clinical use assessment.

2.8 | Statistical analysis

The areas under the receiver operating characteristic (ROC) 
curves (AUCs) were used to assess the efficacy of predicting 
ORR, while Kaplan-Meier (K-M) curves were used to assess 
the ability to discriminate OS or PFS. GraphPad Prism 7.0 
was used to perform statistical tests (independent t tests and 
χ2 test under the conditions described below) and image pro-
cessing. R software (version 3.5.1.) was used for signature 
feature selection, nomogram development, and assessment.

3 |  RESULTS

3.1 | Functional demonstration and 
origin exploration of mi RNAs related to 
radiosensitivity in NSCLC cells

The qRT-PCR results show that four miRNAs (miR-2861, 
miR-1290, miR-92a-1-5p, and miR-25-5p) are consistent 
with the microarray results (Additional file 12: Table  S3). 
The colony formation assay for the functional demonstration 

T A B L E  1  Basic characteristics of patients in the training set and 
validation set

Characteristics
Training set 
(n = 103)

Validation set 
(n = 71) Pa 

Age(yr)

≤60 48 (46.60%) 34 (47.89%) 0.867

>60 55 (53.40%) 37 (52.11%)

Sex

Women 40 (38.83%) 29 (40.85%) 0.790

Men 63 (61.17%) 42 (59.15%)

Pathology

AC 51 (49.51%) 38 (53.52%) 0.603

SCC 52 (50.49%) 33 (46.48%)

Differentiation

Well and 
Moderate

46 (44.66%) 31 (43.66%) 0.896

Poor 57 (55.34%) 40 (56.34%)

Stage

I ~ II 18(17.48%) 13(18.31%) 0.990

III 57 (55.34%) 39(54.93%)

IV 28 (27.18%) 19(26.76%)

T stage

T1 and T2 46 (44.66%) 33(46.48%) 0.748

T3 and T4 57 (55.34%) 37(53.52%)

N stage

N0 and N1 35 (33.98%) 24(33.80%) 0.981

N2 and N3 68 (66.02%) 47(66.20%)

M stage

M0 75 (72.82%) 52 (73.24%) 0.951

M1 28 (27.18%) 19 (26.76%)

Chemotherapy

N 45 (43.69%) 30 (42.25%) 0.851

P or NP 58 (56.31%) 41 (57.75%)

Note: Abbreviations: AC, adenocarcinoma; N, Nonplatinum drugs; NP, both 
nonplatinum and platinum drugs; P, platinum drugs; SCC, squamous cell 
carcinoma.
aCompared using χ2 test. 
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demonstrates that miR-2861 and miR-1290 decreased radio-
sensitivity, while miR-25-5p and miR-92a-1-5p increased 
radiosensitivity in NSCLC cell lines (Figure 2). The detailed 
data are presented in Additional file 13: Table S4.

Several previous studies have shown the potential of serum 
miRNAs as tumor biomarkers, and we preliminarily explored the 
origin of serum miRNAs in vitro. After a literature review, we 
hypothesized that the serum miRNAs came from exosomes that 
were secreted by tumor cells and wondered if there was a quantity 
difference between radioresistant and parent cell lines. Therefore, 
we collected CCM to isolate exosomes and detected miRNAs 
by qRT-PCR. The results show that the levels of miR-1290 and 
miR-2861 in A549 and PC9 cells are lower than those in A549-R 
and PC9-R cells, while the levels of miR-25-5p and miR-92a-
1-5p in A549 and PC9 cells are higher than those in A549-R and 
PC9-R cells (Additional file 2: Figure S2). Moreover, the levels 
of these four miRNAs increase in a time-dependent manner.

3.2 | Construction and validation of 
radiotranscriptomics signature

As listed in Additional file 11: Table  S2, we extracted 52 
CT texture features by using LifeX. After reproducible se-
lection, 22 image features, including 3 histogram features, 2 
shape features, 8 GLCM matrix features, 3 GLRLM matrix 

features, 1 NGLDM matrix feature, and 5 GLZLM matrix fea-
tures, remained for further analysis (Additional file 3: Figure 
S3). Along with the miRNA features mentioned above, 4 
radiotranscriptomics features with nonzero coefficients by 
LASSO regression (Figure 3A,B) in the training set were re-
lated to the ORR of patients with NSCLC who received ra-
diotherapy. The radiotranscriptomics signature constructed 
by the logistic regression model is represented by the follow-
ing the formula: ORR Score = 0.9442 + 0.01905 × GLCM_
Correlation − 0.00002623 × GLCM_Entropy + 0.2027 × miR-
1290 + 0.08879 × miR-2861. After calculating the ORR score 
of each patient in both the training and validation sets, we found 
that the ORR score was significantly lower in the radiosensitive 
group than in the radioresistant group (Figure 3C). ROC curves 
were also calculated, and the AUCs in the training and valida-
tion set were 0.83 [95% confidence interval (CI), 0.75 to 0.90] 
and 0.78 (95% CI, 0.67 to 0.89), respectively (Figure 3D).

Moreover, the OS- and PFS-related radiotranscriptom-
ics features were also selected by LASSO in the training 
set (Figure  4A,B, Additional file 4: Figure S4A,B), and the 
following signatures were generated by the Cox regres-
sion model as follows: OS Score  =  0.026080  ×  Histogram_
Energy  +  0.219230  ×  miR.1290  +  0.079503  ×  miR.
2861; PFS Score  =  −0.0076494  ×  GLCM_Contrast 
−0.0469175  ×  GLCM_Contrast.1  +  0.0003379  ×  GLZLM_
LZLGE −0.0886312 × miR.25.5p. We chose the median scores 

F I G U R E  2  MiRNAs increase or decrease NSCLC cells’ radiosensitivity in vitro. n = 3 per group. mim1 = miR-1290 mimics, mim2 = miR-
2861 mimics, inhib1 = miR-25-5p inhibitor, inhib2 = miR-92a-1-5p inhibitor
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as the cut-off values, and K-M curves were generated for both the 
training and validation sets. We found that the patients who had 
a lower OS score or PFS score had a longer OS (Figure 4C,D) 
or PFS (Additional file 4: Figure S4C,D) than patients who had 
higher OS scores. The predictive power of ORR-, OS-, and PFS-
related radiotranscriptomics signatures were superior to those of 
the radiomics signature (Additional files 5 and 6: Figures S5 and 
S6). It indicated that it is rational to combine transcriptomic s and 
radiomics features to predict radiotherapy response in patients 
with NSCLC. Multivariate analysis showed that these radiotrans-
criptomics signatures were independent factors for predicting pa-
tients’ ORR, OS, and PFS in both the training set (Additional file 
14: Table S5) and validation set (Additional file 15: Table S6).

3.3 | Development and assessment of 
individualized radiotranscriptomics signature-
based predictive nomograms

Then, we tried to construct nomograms to predict the ORR, OS, 
and PFS of patients with NSCLC who received radiotherapy. 
After substantial attempts, only the ORR nomogram performed 
well, which included age, sex, differentiation, T stage, N stage, M 
stage, chemotherapy, and ORR score (Figure 5A). The C-index 

values for the ORR nomogram were 0.86 (95% CI, 0.75 to 0.92) 
in the training set and 0.81 (95% CI, 0.69 to 0.89) in the validation 
set. The calibration curves showed good agreement between the 
nomogram-evaluated probabilities and the actual probabilities in 
both the training set (Figure 5B) and validation set (Figure 5C). 
The calibration-in-the-large was −0.06 (95% CI, −0.06 to 0.46) 
in the training set and −0.31 (95% CI, −0.87 to 0.25) in the vali-
dation set. The calibration slope was 1.15 (95% CI, 0.66 to 1.65) 
in the training set and 1.01 (95% CI, 0.49 to 1.54) in the valida-
tion set. Finally, we used DCA to evaluate the clinical use of the 
nomogram. DCA showed that the nomogram added more net 
benefit than both the “treat-all-patients” or the “treat-more” strat-
egies in most of the 0 to 1 threshold probabilities (Figure 5D) in 
both the training set and validation set. The nomogram including 
the radiotranscriptomics signature performed better than those 
that included clinical factors only (Additional file 16: Table S7).

3.4 | Statistical relationship exploration 
between serum miRNA levels and CT 
texture features

Finally, we used LASSO to select the CT texture features 
related to serum miRNA levels and used a logistic regression 

F I G U R E  3  Radiotranscriptomics features selection and validation for objective response rate (ORR). A, The least absolute shrinkage and 
selection operator (LASSO) coefficient profiles of the 22 most stable texture features and 4 miRNAs expression levels. B, Tuning parameter (λ) 
selection in the LASSO model used 10-fold cross-validation via minimum criteria. A λ value of 0.044 was chosen according to 10-fold cross-
validation. C, The radiotranscriptomics scores were calculated and classified into radiosensitive and radioresistant groups in both training and 
validation sets. Radsen = radiosensitive patients, Radres = radioresistant patients. D, Receiver operating characteristic (ROC) curve analysis of 
radiotranscriptomics scores in both training and validation sets. AUC, area under curve; CI, confidence interval
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model for signature generation in the training set. The results 
showed that the miR-1290-related image features formula was 
miR-1290 Score = 0.1775-1.1625 × GLCM_Dissimilarity.2; 
the miR-25-5p-related image features formula was miR-25-5p 
Score = 0.2603685 − 0.7268367 × GLCM_Dissimilarity.2-
0.0159088  ×  GLZLM_SZLGE  −  0.0007964  ×  GLZLM_
LZLGE; the miR-92a-1-5p-related image features formula 
was miR-92a-1-5p Score  =  −0.2085  +  1.34  ×  GLCM_Di
ssimilarity.2  −  0.00004615  ×  GLRLM_LRHGE. No miR-
2861-related image features were found in our cohort. Next, 
we evaluated the performance of the image-related features 
in discriminating differential miRNA levels by assess-
ing the ROC curves in both the training and validation sets 
(Additional file 7, 8, and 9: Figures S7-S9).

4 |  DISCUSSION

Our study provides evidence of the potential of radiotran-
scriptomic signatures to predict radiotherapeutic effects. We 
first tried to identify radiosensitivity-related miRNAs. Then, 
we combined miRNA levels and CT texture features to gen-
erate radiotranscriptomics signatures to predict the objective 
response rate (ORR), overall survival (OS) and progression-
free survival (PFS) in patients with NSCLC. After calibrating 
the efficiency of the signatures by univariate and multivari-
ate analyses, we constructed radiotranscriptomic signature-
based nomograms. Finally, we investigated the relationship 
between the CT texture features and serum miRNA levels.

miRNAs are naturally occurring small noncoding RNA 
molecules that are involved in almost all biological processes 

by regulating gene expression posttranscriptionally, and they 
play important roles in cellular homeostasis.16 Since miR-
NAs are relatively steady and widely exist in both intracel-
lular and extracellular fluid, they are possible biomarkers of 
disease.17 In particular, because of the noninvasive nature of 
collecting whole blood or blood components such as serum 
and plasma, miRNAs in serum and plasma are ideal candi-
dates.18 Compared to the significant efforts that have been 
devoted to the development of miRNAs as diagnostic bio-
markers, efforts focused on their function as predictors for 
therapeutic effects started late but are meaningful.19 In this 
study, we first took advantage of established radioresistant 
(RR) cell lines to identify differentially expressed miRNAs 
between RR cells and their parental cell lines, which could 
be regarded as potential biomarkers for predicting radiosen-
sitivity. After verification in vitro, a four-miRNA signature 
was selected for clinical study. We prospectively gathered an 
NSCLC cohort, collected patients’ information, including the 
levels of the four miRNAs in serum as well as their clinical 
characteristics and image features, to integrate them and es-
tablish predictive models for radiotherapy effects. We eval-
uated the short-term effect by radiosensitivity according to 
RECIST 1.1 and the long-term effect by OS or PFS.

Noninvasive methods and tumor radiological imaging, 
such as CT and magnetic resonance imaging (MRI), are in-
creasingly being used to correlate tumorigenesis, progression, 
and treatment response, using indicators such as lymph node 
metastasis, objective response rate, and survival.20-22 This 
led to the development of “radiomics.” In this work, we ob-
tained CT images from our NSCLC cohort and employed CT 
texture features. However, the resulting interpretation of the 

F I G U R E  4  Radiotranscriptomics 
features selection and validation for 
overall survival (OS). A, The LASSO 
coefficient profiles of the 22 most stable 
texture features and 4 miRNAs expression 
levels. B, Tuning parameter (λ) selection 
in the LASSO model used 10-fold cross-
validation via minimum criteria. A λ 
value of 0.135 was chosen according to 
10-fold cross-validation. C,D, Kaplan-
Meier curve analysis of OS based on 
radiotranscriptomics score in both training 
and validation sets. The green dots indicated 
censored observations
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radiomics signature was unsatisfactory. Based on previous 
experience, radiomics in combination with genomics seemed 
likely to be a better predictive tool,23 but there have been few 
attempts to combine the study of miRNAs with radiomics. 
To make the best use of our preliminary experimental results, 
we added the miRNA levels into the model building process, 
resulting in what we termed a radiotranscriptomic signature. 
This addition improved the predictive efficiency of the model.

Multiple clinical factors contribute to the treatment results 
in addition to molecular and radiological factors. Compared 
to traditional TNM stage prediction, nomograms have the 
advantages of integrating other clinical or statistically sig-
nificant predictive factors and provide easily understandable 
interfaces for personalized medicine.24 Therefore, after defin-
ing the radiotranscriptomics signature, we tried to integrate 
them with other clinical factors and construct a nomogram 

F I G U R E  5  Radiotranscriptomics based nomogram development, assessment, and clinical use for objective response rate (ORR). A, The 
nomogram was developed in the training set incorporating age (1: ≤60, 2:> 60), sex (1: Women, 2: Men), differentiation (1: Well and Moderate, 
2: Poor), T stage (1: T1 and T2, 2: T3 and T4), N stage (1: N0 and N1,2: N2 and N3), M stage(1:M0, 2:M1), chemotherapy (1: Nonplatinum drugs, 
2: Platinum drugs only or both nonplatinum and platinum drugs), and ORR score. C,D, Calibration curves of the nomogram in both training and 
validation sets. D, Decision curve analysis for the nomogram model in both training and validation sets
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to assist clinical decision-making as has been done for many 
other cancer types.25,26 Following nomogram construction, 
we evaluated the performance in both the training and vali-
dation sets by calibration curves and clinical utility by DCA. 
Hereto, we have completed the phased research task.

This research has some limitations as well as some promis-
ing future research directions. First, the sample size was inade-
quate, which may have led to selection bias and affected model 
building. Moreover, patients should be enrolled from multiple 
centers for more credible and generalizable results. Second, the 
current radiological analysis did not take into account intra-
tumoral heterogeneity; this is a widespread challenge that re-
quires a more sophisticated image-processing method.27 Third, 
although our work preliminarily explored the correlation be-
tween CT texture features and miRNA levels, the underlying 
mechanism and causal relationship deserve further in-depth 
study. Finally, the nomograms assumed that the data were static 
in time, and our observational indicators, either serum miRNA 
levels or CT texture features, occurred at one timepoint only. 
Thus, the results became less accurate with time. Further re-
search should use dynamic detection to overcome this problem.

5 |  CONCLUSIONS

In conclusion, we identified the possibility of a combination 
of serum miRNA levels and image features as a potential 
future research direction for radiogenomics. In the present 
work, we constructed and validated pretreatment radiotran-
scriptomics signatures to predict ORR, OS, and PFS in 
NSCLC patents who received radiotherapy. Furthermore, we 
developed a well-performing radiotranscriptomics signature-
based nomogram for ORR prediction. This nomogram pro-
vides a user-friendly digital interface for clinical use.
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