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Abstract: In addition to several well-established breast cancer (BC) susceptibility genes, the contribution
of other candidate genes to BC risk remains mostly undefined. BARD1 is a potentially predisposing
BC gene, however, the rarity of its mutations and an insufficient family/study size have hampered
corroboration and estimation of the associated cancer risks. To clarify the role of BARD1 mutations in
BC predisposition, a comprehensive case-control association study of a recurring nonsense mutation
c.1690C>T (p.Q564X) was performed, comprising ~14,000 unselected BC patients and ~5900 controls
from Polish and Belarusian populations. For comparisons, two BARD1 variants of unknown significance
were also genotyped. We detected the highest number of BARD1 variants in BC cases in any individual
BARD1-specific study, including 38 p.Q564X mutations. The p.Q564X was associated with a moderately
increased risk of BC (OR = 2.30, p = 0.04). The estimated risk was even higher for triple-negative BC
and bilateral BC. As expected, the two tested variants of unknown significance did not show significant
associations with BC risk. Our study provides substantial evidence for the association of a deleterious
BARD1 mutation with BC as a low/moderate risk allele. The p.Q564X was shown to be a Central
European recurrent mutation with potential relevance for future genetic testing.
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1. Introduction

Breast cancer (BC) is the most common cancer diagnosed in women worldwide, with over
1.5 million new cases diagnosed each year [1]. Most BCs occur sporadically, potentially as a
result of interactions between multiple environmental, lifestyle, hormonal and genetic factors.
However, approximately 5–10% of BCs present with a familial aggregation due to hereditary mutations
in highly penetrant genes. Familial BC frequently co-occurs and shares some genetic background
with epithelial ovarian cancer (OC). Other indicators of hereditary BC are younger age of onset,
bilateral disease, and triple-negative BC (TNBC). Mutations in high-risk genes, including BRCA1 [2]
and BRCA2 [3], as well as in a moderate-risk PALB2 gene [4], are responsible for approximately half
of familial BC cases. Mutations in CDH1 [5], PTEN [6], and TP53 [7], which are associated with
hereditary diffuse cancer, Cowden disease, and Li-Fraumeni syndrome, respectively, also contribute to
high-risk predisposition of BC but are very rare. Low-penetrance genes, common polymorphisms [8,9],
copy number variants [10–12], and epigenetic alterations [13,14] on familial BC risk are also suggested
as constitutive risk factors but do not explain the missing fraction of familial heritability.

Genes encoding proteins that interact with BRCA1 and BRCA2 in different DNA damage response
and tumor suppressor processes are among the candidate BC and/or OC susceptibility genes. One such
gene that has been intensively studied is BRCA1-associated RING domain 1 (BARD1) [15], because the
BARD1 protein shares both structural and functional similarities with BRCA1 and because the
interaction between BARD1 and BRCA1 plays an important role in maintaining the stability and
manifestation of the tumor suppressor function of BRCA1 [16].

In humans, the BARD1 gene spans a region of ~80 kb on the long arm of chromosome 2 (2q34-35)
and comprises 11 exons. The gene encodes a protein of 777 amino acids that contains one N-terminal
RING-finger domain, two C-terminal tandem BRCT domains (homologous to corresponding domains
in BRCA1), and three Ankyrin (ANK) repeat domains. BARD1 may act as a tumor suppressor in the
BRCA1-dependent pathways, which is associated with specific BRCA1/BARD1 heterodimer formation via
N-terminal RING-finger domains. The BRCA1/BARD1 heterodimer demonstrates ubiquitin ligase activity,
which functions in DNA damage response pathways, cell cycle regulation, and chromatin structural and
hormone signaling modulation (for review see [17,18]). Because BARD1 may interact with other molecules
implicated in genome integrity, a BRCA1-independent tumor suppressor functions for BARD1 have
also been suggested. Examples include the interaction between BARD1 and p53, which stabilizes p53,
facilitates p53 phosphorylation, and induces p53 apoptotic activity in response to DNA damage [19,20].

The hitherto reported BARD1 mutation screening studies of familial and unselected BC and/or OC
cases has led to the identification of numerous BARD1 sequence variants [21–54]. Additionally, BARD1
common variants have been associated with an aggressive subset of human neuroblastomas [55,56],
lung cancer [57] and colon cancer [58]. BARD1 mutations identified in BC cases include deleterious
and potentially deleterious mutations that lead to premature termination of translation, disruption
of protein structure/function, or alternative splicing. Some of these mutations have been shown to
cosegregate in families with cancer [22,24,33]. Despite these observations, none of the abovementioned
studies (including our own [36,37]) have provided strong, statistically supported data for the role of
BARD1 mutations in cancer predisposition. This lack of data is due mostly to the following limitations:
(i) most of the studies were not performed in a case-control manner (i.e., the control samples were either
not screened at all or not analyzed in the same way as the case samples), (ii) a relatively small group of
patients were analyzed (usually 100–300), and consequently, a small number of mutations were identified
in individual studies, preventing reliable risk estimates, and (iii) in cases of mutations identified in
families, the families were too small to perform formal linkage (mutation-cancer co-segregation) analysis.
More recently, several studies reporting results for targeted sequencing with cancer-predisposition
gene panels, including BARD1, have been published [35,39–52,59–73]. The large-scale and cumulative
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character of some of these studies, including our own meta-analysis [74], allowed us to estimate the
BARD1-attributed BC risk. However, in most of these studies, the risk was estimated by comparisons of
mutation frequency in BC cases to that in controls from publicly available databases, not well matched
in terms of the population studied (geographical region) and/or the methodology used. Such analysis
may be affected by population stratification, e.g., due to an unequal distribution of founder mutations,
which frequently occur in BC predisposition genes. Due to insufficient evidence of a BARD1 association
with BC risk, BARD1 was not included in the recently proposed consensus multigene panel by the UK
Cancer Genetics Group for BC testing [75]. Also, although BARD1 was included in the most recent
version of “The National Comprehensive Cancer Network (NCCN) Guidelines for Genetic/Familial
High-Risk Assessment: Breast and Ovarian” as a gene that may be linked with increased breast cancer
risk, still due to insufficient evidence, no management recommendations for women with a pathogenic
BARD1 variant was provided at this time.

To overcome the abovementioned limitations, we took advantage of a deleterious nonsense mutation,
namely, c.1690C>T (p.Q564X), identified in the Polish population in several independent studies [36,37,76],
to provide a reliable estimation of BC risk associated with BARD1 mutations. We performed an association
analysis of the mutation in two large cohorts recruited from the POLISH and closely related BELARUSIAN
populations, by genotyping ~14,000 BC patients and ~5900 control samples. Additionally, in the POLISH
group, we also analyzed two rare BARD1 variants of unknown significance (also recurring in the Polish
population), a missense variant c.1972C>T (p.R658C) and a synonymous variant c.1977A>G (p.R659R).
The analysis showed that the definitively deleterious BARD1 mutation is associated with low/moderate
BC risk (OR ~2) and that the risk is further increased in the group of patients with a risk for heritable BC
(OR ~3), including TNBC, bilateral BC, early diagnosis of BC, and familial BC/OC.

2. Results

2.1. Selection of BARD1 Variants

For our genetic association study, we selected three BARD1 sequence variants: (i) a deleterious
nonsense mutation p.Q564X, located in exon VIII, and two variants of unknown significance,
(ii) missense variant p.R658C, located in exon X, and (iii) synonymous variant p.R659R, located in exon
X. Based on preliminary results, we estimated the frequency of occurrence of each variant in the Polish
population to be ~0.3%, ~0.5%, and ~0.4%, respectively. The ClinVar status of the p.Q564X mutation
is defined as pathogenic, while both the p.R658C and p.R659R variants are listed as benign/likely
benign/uncertain significance [77]. At present, according to different databases, the frequency of these
variants in the European population ranges from 0.01–0.02%, 1.56–1.78%, and 0.59–1.02%, respectively
(Table 1). As shown in Table 1, the variants of unknown significance also occur in non-European
populations, while the frequency of the nonsense mutation is limited to European populations.
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Table 1. The frequencies of selected BARD1 variants in European and other populations.

Population Database
(Population)

p.Q564X
M+/N (%)

p.R658C
M+/N (%)

p.R659R
M+/N (%)

European

EVS
(European American)

0/4300
(−)

67/4300
(1.558)

28/4300
(0.651)

FLOSSIES
(European)

1/7325
(0.014)

130/7325
(1.775)

75/7325
(1.024)

ExAC
(European non-Finnish)

6/33,368
(0.018)

535/33,352
(1.604)

196/33,357
(0.588)

gnomAD
(European non-Finnish)

7/64,526
(0.011)

1078/64,546
(1.670)

397/64,564
(0.615)

Other

gnomAD
(All populations)

7/141,343
(0.005)

2302/141,376
(1.628)

575/141,400
(0.407)

gnomAD
(European Finnish)

0/12,543
(−)

316/12,557
(2.516)

33/12,559
(0.263)

gnomAD
(Ashkenazi Jewish)

0/5184
(−)

0/5183
(−)

81/5183
(1.563)

gnomAD
(East Asian)

0/9977
(−)

224/9977
(2.245)

0/9977
(−)

gnomAD
(South Asian)

0/15,307
(−)

124/15,306
(0.810)

1/15,306
(0.007)

gnomAD
(African)

0/12,481
(−)

59/12,481
(0.473)

9/12,484
(0.072)

gnomAD
(Latino)

0/17,719
(−)

444/17,718
(2.506)

30/17,719
(0.169)

gnomAD
(Other)

0/3606
(−)

57/3608
(1.580)

24/3608
(0.665)

EVS, Exome Variant Server; ExAC, Exome Aggregation Consortium; gnomAD, The Genome Aggregation Database;
M+, number of subjects with a particular variant; N, number of all analyzed subjects.

2.2. The Frequency of BARD1 Variants and BC Risk Estimates

All selected variants were screened in 12,476 BC cases and 4707 controls from the Polish population
(POLISH group). Additionally, the p.Q564X mutation was screened in 1459 BC cases and 1189 controls
from the Belarusian population (BELARUSIAN group). The size of the study predicted almost 100% and
~80% power to detect the effect of the mutation at the level of an OR of 3 and 2, respectively. The p.Q564X
mutation was identified in 34 cases (0.27%) and seven controls (0.15%) in the POLISH group (OR = 1.83,
95%CI: 0.81–4.14, p = 0.14) and in four cases (0.27%) and 0 controls (0%) in the BELARUSIAN group.

A cumulative OR equals 2.30 (95%CI: 1.03–5.15, p = 0.04), which classifies BARD1 as a low/moderate
BC susceptibility gene (Table 2). The stratification of BC patients into clinically defined BC subtypes
showed an even higher risk for TNBC (16.1% of BC patients; OR = 3.62, 95%CI: 1.21–10.78, p = 0.02) and
bilateral BC (4.4% of BC patients; OR = 5.10, 95%CI: 1.31–19.78, p = 0.02). The cumulative OR for the
group of patients with increased risk of hereditary BC, including TNBC, bilateral BC, early diagnosis,
and/or familial BC/OC, was 2.94 (95%CI: 1.21–7.14, p = 0.02) (Table 3). The indicators of hereditary BC,
namely, younger age at diagnosis (≤40 years) and positive family history for BC and/or OC, were also
associated with increased BC risk, though individually, these associations were not statistically significant
due to the low number of cases. As shown in Table 2; Table 3, adjustment for the studied cohorts did
not substantially change the statistical estimates. The frequencies of the missense variant p.R658C and
the synonymous p.R659R variant did not differ significantly between the analyzed the BC case and
control groups (80/12476, 0.64% vs. 26/4707, 0.55%, and 49/12476, 0.39% vs. 14/4707, 0.30%, respectively),
suggesting a lack of their association with BC (OR = 1.16 and OR = 1.32, respectively).
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Table 2. The frequencies and effect sizes of the three tested BARD1 variants.

Study
Population

Group p.Q564X p.R658C p.R659R

M + /N (%) OR 95%CI p-Value M+/N (%) OR 95%CI p-Value M+/N (%) OR 95%CI p-Value

Controls
P 7/4707 (0.15) - - - 26/4707 (0.55) - - - 14/4707 (0.30) - - -

B 0/1189 (0.00) - - - - - - - - - - -

P + B 7/5896 (0.12) - - - - - - - - - - -

All BC
patients

P 34/12,476 (0.27) 1.83 0.81–4.14 0.14 80/12,476 (0.64) 1.16 0.75–1.81 0.51 49/12,476 (0.39) 1.32 0.73–2.40 0.36

B 4/1459 (0.27) n.a. n.a. n.a. - - - - - - - -

P + B 38/13,935 (0.27)
2.30 1.03–5.15 0.04

-
- - -

-
- - -

2.24 * 0.99–5.03 * 0.05 * - - - - - -

2.12 ** 0.97–4.62 ** 0.06 ** - - - - - -
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Table 3. Prevalence of BARD1 variants and the associated BC risk in the groups of patients stratified by BC subtypes.

Feature Group p.Q564X p.R658C p.R659R

M+/N
(%) OR 95%CI p-Value M+/N

(%) OR 95%CI p-Value M+/N
(%) OR 95%CI p-Value

TNBC P 6/1120
(0.54) 3.62 1.21–10.78 0.02 6/1120

(0.54) 0.97 0.40–2.36 0.95 2/1120
(0.18) 0.60 0.14–2.64 0.50

Bilateral BC

P 2/447
(0.45) 3.02 0.63–14.57 0.17 4/447

(0.89) 1.63 0.56–4.68 0.37 0/447
(0.00) 0.36 0.02–6.07 0.48

P + B
3/498
(0.60)

5.10 1.31–19.78 0.02
-

- - -
-

- - -

4.85 * 1.24–18.93 * 0.02 * - - - - - -

5.22 ** 1.50–18.19 ** 0.01 ** - - - - - -

BC
diagnosed
≤40 y.o.

P 4/1286
(0.31) 2.09 0.61–7.17 0.24 7/1286

(0.54) 0.99 0.43–2.28 0.97 5/1286
(0.39) 1.30 0.47–3.64 0.61

P + B
5/1640
(0.30)

2.57 0.82–8.12 0.11
-

- - -
-

- - -

2.60 * 0.82–8.21 * 0.10 * - - - - - -

2.66 ** 0.88–8.03 ** 0.08 ** - - - - - -

≥1 BC/OC
relatives

P 5/2191
(0.23) 1.54 0.49–4.84 0.46 14/2191

(0.64) 1.16 0.60–2.22 0.66 3/2191
(0.14) 0.46 0.13–1.60 0.22

P + B
6/2620
(0.23)

1.93 0.65–5.75 0.24
-

- - -
-

- - -

1.88 * 0.63–5.60 * 0.26 * - - - - - -

1.92 ** 0.67–5.46 ** 0.22 ** - - - - - -

“Hereditary”
BC risk

patients ***

P 13/4130
(0.31) 2.12 0.85–5.32 0.11 30/4130

(0.73) 1.32 0.78–2.23 0.31 9/4130
(0.22) 0.73 0.32–1.69 0.47

P + B
16/4600
(0.35)

2.94 1.21–7.14 0.02
-

- - -
-

- - -

2.93 * 1.20–7.19 * 0.02 * - - - - - -

2.77 ** 1.18–6.49 ** 0.02 ** - - - - - -

Table 2 & Table 3: P: POLISH group; B: BELARUSIAN group; P + B: POLISH and BELARUSIAN GROUP; M+: number of patients with a particular variants; N: number of all genotyped
patients; y.o.: years old; *: adjusted for the origin of the study; **: a Mantel-Haenszel method under the fixed effects model (please note that this analysis may be biased due to no
mutations in the BELARUSIAN control group); ***: TNBC# and/or bilateral BC and/or BC diagnosed ≤40 y.o. and/or ≥1 BC/OC relative; #: TNBC status was not determined in the
BELARUSIAN group.
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None of the analyzed subjects was a carrier of more than one of the tested variants. Validation of
the genotyping results performed with alternative techniques in the limited number of positive and
negative subjects confirmed all detected variants and proved 100% sensitivity and specificity of the
genotyping results (see Section 4 and Figure 1).

Figure 1. Validation of BARD1 variants. (A) Validation of p.Q564X BARD1 mutation in randomly
selected carriers and noncarriers with the tetra-primer ARMS-PCR assay [BC: breast cancer patients; C:
controls; M: marker, GeneRuler 100 bp Plus DNA Ladder (Thermo Fisher Scientific, Waltham, MA,
USA)] and (B) with Sanger sequencing. (C) Validation of p.R658C and p.R659R BARD1 variants in
randomly selected carriers and noncarriers with Sanger sequencing. See the Materials and Methods
section for details.

2.3. Predictive Value of BARD1 Variants

In the next step, we compared the frequencies of selected variants in the different BC subgroups.
Carriers and noncarriers of the p.Q564X mutation have a similar average age at diagnosis (54.8 and
54.1 years, respectively). As shown in Table S1, there was only a small nonsignificant increase in the
mutation frequency in patients with vs. without a family history of BC and/or OC (0.23% vs. 0.30%,
respectively). In the assessment of the molecular BC subtype, a higher incidence of the mutation was
found in the patients with a progesterone receptor-negative (PR−) BC (0.55% vs. 0.24%, p = 0.03),
estrogen receptor-negative (ER−) BC (0.43% vs. 0.29%) and TNBC (0.54% vs. 0.33%) than in the
corresponding patients with a receptor-positive BC. However, due to the low number of cases in the
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subgroups, only the difference between the PR− and PR+ BC patients was significant. There was also
no difference in p.Q564X mutation prevalence between the human epidermal growth factor receptor
2-positive (HER2+) and HER2-negative (HER−) BC patients.

There were no evident changes in the p.R658C and p.R659R prevalences after stratifying BC
patients in terms of different clinical features (Table S2). The exceptions were a higher frequency of the
p.R659R variant in patients with PR+ than in patients with PR- BC (0.44% vs. 0.17%, 0.07) and a higher
frequency of p.R659R in patients with tubulolobular BC than in patients with other histological types
of BC (1.72% vs. 0.30%, p = 0.05), however, these results were only borderline significant and may be
accidental due to the small number of patients in each group. We also noticed a higher incidence of
p.R658C variants among deceased patients than in those who were still alive (1.02% vs. 0.57%, p = 0.03).

Besides the presented data on population frequency and case-control study, we analyzed functional
significance of the selected variants with the use of a wide panel of bioinformatics tools evaluating
a potential effect of the particular variants on evolutionary conservation of an altered amino acid,
RNA structure, or structure/function of a protein (Table S3).

3. Discussion

Since the discovery of BARD1 about 20 years ago [15], many studies have been carried out to try
to understand its role in cancer. Because BARD1 functions in the same molecular pathways as BRCA1,
BARD1 is considered a good candidate as a BC susceptibility gene.

The identification of recurrent BARD1 variants in the Polish population [36,37,76] motivated us to
thoroughly examine the association between BARD1 and BC, as a founder-mutation-based study is
likely to be successful in the search for and confirmation of infrequently mutated BC susceptibility
genes. Similar approaches have been applied previously to investigate the contributions of recurrent
variants to conferring cancer risk. The examples include the genotyping of c.5932G>T (p.E1978X) in
ATM [78], c.1667_1667+3delAGTA in RECQL [79], c.509_510delGA [80,81], and c.172_175delTTGT in
PALB2 [81], for which the studies revealed associations with an elevated BC risk, and c.576+1G>A
in RAD51D [82], which was associated with OC risk. To our knowledge, this is the first study of BC
risk attributed to individual BARD1 variants. It is important as the type and location of a particular
mutation may alter the cancer risk estimate, as was previously shown for BRCA1/2 mutations [83–87].

Considering the interaction between BARD1 and BRCA1 and the similarities in their structures,
it is surprising that BARD1 mutations are relatively rare in BC patients compared to BRCA1 mutations.
In spite of this, some of the studies for identified BARD1 mutations suggested a weak association with
BC, although individual studies have been largely unsuccessful to provide convincing and statistically
supported proof of this association. This may due to an insufficient sample/study size and a lack of a
geographically matched population controls, complicating the interpretation of the results. For rare
mutations of lower penetrance, which have a “low/moderate” effect on phenotype, it is especially
difficult to demonstrate their causative nature and thereby confirm their contributions to BC, therefore,
a very large case-control analysis should be performed. As whole exome or even whole gene analysis
can be expensive for a sufficient number of cases and controls, the analysis of founder mutations may
be the more cost-efficient solution.

In this large case-control study, we provided strong evidence that BARD1 is a low/moderate
cancer susceptibility gene. The large collection of BC cases and controls allowed us to uncover an
approximately two-fold increase in BC risk (OR = 2.3, p = 0.04) associated with the presence of the
p.Q564X mutation. The analysis also showed that p.Q564X is recurrent, potentially a founder mutation,
at least in Polish and Belarusian populations. It has to be noted, however, that further haplotype analyses
are needed to prove the founder effect of the Q564X mutation. The p.Q564X frequency determined
here was 25× and 14× higher in the Polish BC patients and controls, respectively, than in the gnomAD
Non-Finnish European population [88] (0.27% and 0.15% vs. 0.011%, respectively) (see Tables 1 and 2).
The mutation seems to be less frequent (was not detectable) in other control populations. Additionally,
the recent conference report of the German Consortium for Hereditary Breast and Ovarian Cancer
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revealed the p.Q564X mutation in 6 out of 14 BARD1 mutation carriers in Germany [89]. This suggests
that p.Q564X may have been spread in the wider Central European population.

The cumulative loss-of-function mutation frequency of BARD1 was reported to range between
0.12% and 0.49% in other studies analyzing at least 1000 BC patients with multigene panels (screening the
whole coding sequence of BARD1) [42,43,45,51,59,61,74]. These results emphasize the frequent
occurrence of a single p.Q564X mutation (0.27%) in the tested populations. Although other estimates of
BC risk associated with BARD1 mutations were either statistically underpowered or used imperfectly
matched controls, they are largely in line with the risk estimates of this study. Thompson et al.
suggested that BARD1 mutations were associated with moderate BC risk (OR = 3.0, p = 0.62) by
comparing 2000 BRCA1/2-negative BC patients with geographically matched controls, though not
reaching statistical significance [45]. Similar results were obtained in cumulative large-scale analyses
performed by Couch et al. (OR = 2.2, p = 0.002) [59] and Slavin et al. (OR = 3.2, p = 0.012) [43], as well
as in our own recently published meta-analysis (OR = 2.3, p < 0.0001) [74].

Some evidence for a higher effect size of p.Q564X in BC (OR = 2.9, p = 0.02) was obtained for
BC patients characterized by features associated with hereditary BC, including TNBC, bilateral BC,
early diagnosis (under 40 years old) and a positive BC/OC family history. More specifically, mutation
carriers have a higher risk (OR = 3.6, p = 0.02) of TNBC, a tumor phenotype associated with a hereditary
disease cause, a more aggressive disease course, an increased recurrence risk and a poor five-year
survival rate than patients with other BC subtypes. Our results are in line with the previous study
by Buys et al. [61], which demonstrated that BARD1 mutation prevalence was higher among women
with TNBC (3.3%) than among women with other BC subtypes (1.7%). Also, Shimelis et al. [90]
reported that pathogenic variants in BARD1 were enriched by more than threefold in TNBC patients
(0.67%) compared to non-TNBC patients (0.18%), suggesting that BARD1 is a predominantly TNBC
predisposition gene. An even higher effect sizes for the association of BARD1 mutations with TNBC
were reported in Shimelis et al. [90] (OR = 5.92) and Castera et al. [91] (OR = 11.27), although the
estimates by the latter study were based on a low number of mutation carriers.

Our study also indicated a likely contribution of BARD1 mutations to bilateral BC (OR = 4.85,
p = 0.02), which is another indicator of hereditary BC, in addition to TNBC. This tendency was also
noticed in a study by Castera et al. [91] (OR = 6.92), however, the result did not reach statistical
significance. The results of our study add to previous evidence that the contributions of particular
genes to the development of specific subtypes of BC may differ. The differences may not be noticeable
in an overall analysis, therefore, stratification BC tumor type (e.g., bilateral BC, TNBC) should be
performed to reliably estimate BC risk.

Although the prevalence of the synonymous and missense variants analyzed in our study
was slightly increased in the BC group, there was no significant association, which supports their
benign/likely benign/uncertain significance status in the ClinVar database. We tested these variants
in addition to p.Q564X as they had been suggested to have some functional or pathological effects.
For example, p.R659R was shown to impair several exonic splicing enhancer motifs in exon 10, resulting
in a transcript lacking exons 2–9 (r.[=,159_1903del], p.Cys53_Trp635delinsfsX12) [36]. However, aberrant
splicing occurs only in a fraction of transcripts. Also, the p.R658C variant, which affects conserved
amino acids, was detected before in BC patients [33,37,76], and a partial co-segregation of the variant
with BC/OC in two small families was shown [33]. Additionally, the p.R658C variant, has been shown
to correlate with a risk of lung cancer (OR = 1.55) [57]. From our results, we cannot definitively assess
the role of p.R659R and p.R658C in BC predisposition, however more than three-fold increases in risk
would be safely excluded from the upper confidence limits in our study.

Because the BARD1 contribution to BC risk has been determined by us to be at the borderline of
low and moderate levels, it may suggest that BARD1 mutations contribute to a polygenic model [92,93],
like for mutations of lower penetrance in other genes, including CHEK2 or ATM.

The number of identified BARD1 mutation carriers is, to our knowledge, the highest reported
to date in an individual BARD1 mutation-specific study. Even though, it has to be noted that the
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risk estimates are only borderline significant, and more research data from large sequencing studies
will be useful to validate these findings. However, as discussed above, the results obtained from our
case-control study in founder populations should be very helpful to corroborate the role of BARD1 as a
breast cancer susceptibility gene.

4. Materials and Methods

4.1. Study Population

The genetic association study for the selected BARD1 variants was performed in two Slavic
populations, the POLISH group and the BELARUSIAN group. The POLISH group comprised
12,476 BC cases (unselected for familial history of the disease) and 4707 cancer-free adult female
controls from the International Hereditary Cancer Center (IHCC) cohort (Szczecin, Poland). Patients
were diagnosed with invasive BC between 1996 and 2012 at one of 18 different hospitals in Poland.
Patients diagnosed with ductal or lobular carcinoma in situ were excluded, with the exception of
patients diagnosed with ductal carcinoma in situ with microinvasion. The average age of BC diagnosis
was 54 years. Information regarding family history was collected at the time of enrollment for 92.7% of
IHCC patients, and 18.9% of them had at least one first- or second-degree relative with BC and/or OC.
Additionally, data on the tumor histological and molecular type, disease bilaterality, and lymph node
status were collected, when possible.

The BELARUSIAN group comprised 1459 BC patients unselected for familial history of the
disease and 1189 cancer-free female controls from the Hannover-Minsk Breast Cancer Study (HMBCS).
BC patients from the HMBCS were diagnosed during the years of 1998–2008 at the Belarussian
Institute for Oncology and Medical Radiology Aleksandrov N.N. in Minsk or at one of the regional
oncology centers in Gomel, Mogilev, Grodno, Brest, or Vitebsk, Belarus [87]. The average age of BC
diagnosis was 48 years, and 29.4% of BC patients had a family history of BC and/or OC (first- or
second-degree relatives). All subjects were Caucasians of European ancestry and ethnic Poles or
Belarusians in the POLISH or BELARUSIAN group, respectively. Written informed consent was
obtained from all subjects, and the study was approved by the appropriate local ethics committees,
namely, the Institutional Review Board of Pomeranian Medical University, Szczecin, Poland; the Ethics
Commission of the State Organization ‘Institute for Hereditary Diseases’, Ministry of Health, Republic
of Belarus; and the Institutional Review Board at Hannover Medical School, Hannover, Germany.
The ethical approval for: (i) the POLISH group has the identifier no. BN-001/33/04 (23 February
2004; Pomeranian Medical University, Szczecin, Poland) and for (ii) the BELARUSIAN group has the
identifier no. 6079 (last renewal 9 February 2016; Hannover Medical School, Hannover, Germany).
More detailed characteristics of the BC patients and tumors in both the POLISH and BELARUSIAN
groups are provided in Table 4.
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Table 4. Clinical characteristics of the BC patients.

Feature
POLISH Group n = 12,476 BELARUSIAN Group n = 1459

n of Cases in Which
Feature Status was

Determined

n and (%)
of Positive

Cases

n of Cases in Which
Feature Status was

Determined

n and (%)
of Positive

Cases

Age at diagnosis (years)

≤40 12,459 1286 (10.3) 1459 354 (24.3)

41–50 12,459 4394 (35.3) 1459 520 (35.6)

51–60 12,459 3248 (26.1) 1459 329 (22.5)

61–70 12,459 2226 (17.9) 1459 176 (12.1)

≥71 12,459 1305 (10.5) 1459 80 (5.5)

Number of relatives with BC

0 11,564 9593 (83.0) 1459 1214 (83.2)

1 11,564 1508 (13.0) 1459 236 (16.2)

2 11,564 344 (3.0) 1459 9 (0.6)

≥3 11,564 119 (1.0) 1459 0 (0.0)

Numbers of relatives with OC

0 11,564 11,263 (97.4) 1459 1457 (99.9)

≥1 11,564 301 (2.6) 1459 2 (0.1)

Histological type of BC

Ductal, grade 3 8670 1998 (23.0) 525 42 (8.0)

Ductal, grade 1–2 8670 4057 (46.8) 525 179 (34.1)

Ductal, grade unknown 8670 664 (7.7) 525 165 (31.4)

Medullary 8670 287 (3.3) 525 10 (1.9)

Lobular 8670 1243 (14.3) 525 108 (20.6)

Tubulolobular 8670 116 (1.3) 525 21 (4.0)

DCIS with microinvasion 8670 305 (3.5) 525 0 (0.0)

Molecular type of BC

Oestrogen receptor-positive 8572 5970 (69.6) 875 676 (77.3)

Progesterone receptor-positive 8270 5885 (71.2) n.d. n.d.

HER2-positive 7215 1270 (17.6) n.d. n.d.

TNBC 6937 1120 (16.1) n.d. n.d.

Size (cm)

<1 7909 914 (11.6) n.d. n.d.

1–1.9 7909 3204 (40.5) n.d. n.d.

2–4.9 7909 3462 (43.8) n.d. n.d.

≥5 7909 329 (4.2) n.d. n.d.

Other features

Bilateral BC 9787 447 (4.6) 1459 51 (3.5)

Lymph node-positive 8162 3551 (43.5) n.d. n.d.

Vital status (deceased) 12,349 2066 (16.7) n.d. n.d.

HER2, human epidermal growth factor receptor 2; n.d., not determined.

4.2. Variant Screening

Genotyping of the BARD1 variants in the POLISH group was performed with the TaqMan
assay, according to general recommendations, utilizing the LightCycler® Real-Time PCR 480 System
(Roche Life Science, Penzberg, Germany). Genotyping of the p.Q564X mutation in the BELARUSIAN
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group was accomplished using allele-specific SNP-type assays and Dynamic Arrays on a Fluidigm
Biomark platform (Fluidigm, South San Francisco, CA, USA). The TaqMan primer and probe sets are
shown in Table S4.

4.3. Validation of Genotyping Results

A small group of samples, which were either positive or negative for the presence of a particular
variant, from both the BC and control series, were reanalyzed with alternative methods. The p.Q564X
mutation identified in POLISH samples was validated with the tetra-primer amplification refractory
mutation system PCR (tetra-primer ARMS-PCR) assay, designed and performed according to previously
published guidelines [94]. The analysis was performed in 18 randomly selected carriers (13 from
the BC group and 5 from the control group) and 20 noncarriers from the control group. The results
were independently validated by Sanger sequencing analysis on an ABI Prism 3130 genetic analyzer
(Applied Biosystems, Carlsbad, CA, USA) according to the manufacturer’s general recommendations.
The BELARUSIAN p.Q564X mutation carriers were validated by Sanger sequencing. The p.R658C
and p.R659R variants were reanalyzed in 10 carriers (for each mutation) and 10 noncarriers by Sanger
sequencing. The primer sets used for confirmation of selected BARD1 variants are shown in Table S5.

4.4. Statistical Analysis

The association between BARD1 variants and BC risk was assessed using odds ratios (ORs) and
95% confidence intervals (CIs) derived from univariate logistic regression models. When combining
the POLISH and BELARUSIAN groups, appropriate OR adjustments were applied. The significance of
the differences between the variant carrier and noncarrier groups was determined using Fisher’s exact
test and the X2 test, as appropriate for category size. All statistical tests were two-sided, and a p = 0.05
was considered to be the significance threshold. Analyses were performed using MedCalc Statistical
Software version 18.11 (MedCalc Software bvba, Ostend, Belgium; http://www.medcalc.org).

5. Conclusions

This is the first study of individual BARD1 variants in the context of BC risk. It shows that
deleterious BARD1 mutations contribute to low/moderate BC risk, thus confirming the role of BARD1
in BC predisposition. An even higher effect size of the BARD1 mutations was observed for TNBC
and bilateral BC, i.e., subgroups attributed to hereditary BC. Our results also indicate that the
BC-predisposing role of variants of unknown significance should be interpreted with caution and that
effect of these mutations need to be proven individually before consideration in BC risk evaluations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/6/740/s1,
Table S1: Characteristics of BC patients in terms of different clinical features and the status of the p.Q564X BARD1
mutation (carrier vs. noncarrier), Table S2: Characteristics of BC patients in terms of different clinical features
and the status of p.R658C and p.R659R BARD1 variants (carriers vs. noncarriers), Table S3: The computational
analyses of the BARD1 variants selected for the analysis, Table S4: Primers and probes used for BARD1 variants
genotyping with the TaqMan assay, Table S5: Primers used for validation of BARD1 variants.
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