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Abstract
Skeletal muscle regeneration is a finely tuned process involving the activation of various cellular and molecular processes. 
Satellite cells, the stem cells of skeletal muscle, are indispensable for skeletal muscle regeneration. Their functionality is 
critically modulated by intrinsic signaling pathways as well as by interactions with the stem cell niche. Here, we discuss the 
properties of satellite cells, including heterogeneity regarding gene expression and/or their phenotypic traits and the contribu-
tion of satellite cells to skeletal muscle regeneration. We also summarize the process of regeneration with a specific emphasis 
on signaling pathways, cytoskeletal rearrangements, the importance of miRNAs, and the contribution of non-satellite cells 
such as immune cells, fibro-adipogenic progenitor cells, and PW1-positive/Pax7-negative interstitial cells.
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Introduction

Skeletal muscle fulfils multiple functions in the body includ-
ing voluntary locomotion, breathing, and postural behaviour. 
It possesses a remarkable ability to regenerate and to adapt 
to physiological demands such as growth or training [1]. 
Muscle stem cells—also termed satellite cells (SCs)—are 
a prerequisite for regeneration of skeletal muscle, as shown 
by previous studies using a diphtheria toxin (DTA)-based 
approach to deplete satellite cells [2–4]. Under resting con-
ditions, satellite cells are quiescent and reside under the 
basal lamina of the myofiber [5]; this position, between the 
myofiber and the surrounding extracellular matrix (ECM), 
was responsible for their naming in 1961 by Alexander 
Mauro [6]. While quiescent under resting conditions, satel-
lite cells become activated, expand and differentiate dur-
ing skeletal muscle regeneration, a process controlled by 
sequential expression of transcription factors, resembling 
the differentiation program of embryonic myogenesis 
[1, 7] (Fig. 1). The paired box transcription factor Pax7 
is expressed in all satellite cells, and is required for their 

postnatal maintenance and regeneration of skeletal muscle 
[8–10]. Upon activation, satellite cells co-express Pax7 and 
MyoD—an early marker for myogenic commitment— leave 
the quiescent state and further differentiate into myocytes, 
before maturing to myofibers. Notably, a subset of activated 
satellite cells downregulates MyoD and resists the differen-
tiation process, thereby maintaining a mitotically inactive 
state similar to quiescence, a process depending on Sprouty1 
[11–13]. Satellite cells have an enormous myogenic poten-
tial, which mostly depends on the expression of Pax genes 
and subsequent expression of myogenic regulatory factors 
(MRFs: MyoD, Myf5, Myogenin, and MRF4) [7]. Interest-
ingly, ablation of satellite cells under homeostatic condi-
tions in the adult does not seem to lead to muscle atrophy 
or myopathies without induced injury, suggesting that their 
main function in the adult is the regeneration of skeletal 
muscle [14, 15].

Although skeletal muscle can fully regenerate multiple 
times in healthy adult mice and men, the functionality of 
satellite cells declines in the course of various degenera-
tive diseases or states such as aging resulting in impaired 
regeneration of skeletal muscle [16–21]. Such impaired 
functionality results from an altered extracellular matrix 
composition, misbalanced cell–cell interactions with resid-
ing cells of the skeletal muscle or changes of systemic fac-
tors such as loss of the anti-aging hormone Klotho [22–25]. 
It was recently demonstrated that soluble Klotho protein 
counteracts canonical Wnt3a signaling in satellite cells [22]. 
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Importantly, Wnt3a signaling is upregulated in aged skeletal 
muscle, thereby impairing satellite cell function, resulting in 
disturbed regeneration [26]. The functional deficits of aged 
satellite cells can be partially overcome by systemic delivery 
of Klotho protein [27].

Identification and characterization 
of satellite cells

Satellite cells were first characterized by their unique locali-
zation under the basal lamina of myofibers [6]. Recently, 
satellite cells have also been termed muscle stem cells 
(MuSCs), probably due to the fact that the term satellite cell 
also refers to specific glial cells in the brain. Satellite cells 
can self-renew, thereby maintaining the satellite cell pool, 
but also give rise to more differentiated myogenic progeni-
tor cells, which then contribute to regeneration of myofibers 
after injury. These characteristics demonstrate that satellite 
cells are bonafide muscle stem cells. In adult skeletal mus-
cle, all satellite cells express the paired box transcription 
factor Pax7, being essential for satellite cell function [8–10, 
28], while subsets also express Pax3 [29] or myogenic 
regulatory factor 5 (Myf5) [30]. Other markers for satel-
lite cells are located at the plasma membrane making them 

good candidates for satellite cell isolation via flow cytom-
etry. Amongst others, these markers include α7-Integrin and 
β1-Integrin, M-Cadherin, Syndecan-4, Calcitonin-Receptor 
(CALCR), C-X-C Chemokine Receptor type-4 (CXCR4), 
Vascular Cell Adhesion Molecule 1 (VCAM1), and CD34 
[31]. Of the genetic markers listed above, Pax7 is the canoni-
cal biomarker for satellite cells, since it is expressed in qui-
escent and activated satellite cells in most model species 
including mice, men, zebrafish, and chicken [32].

Adult satellite cells: a heterogeneous cell 
population

The satellite cell population is heterogeneous. The individ-
ual subpopulations can be discriminated by different means, 
including gene expression or phenotypic traits such as divi-
sion rate. Pulse-chase experiments using a Tg:Pax7-GFP 
mouse line demonstrate that satellite cells with a relatively 
high expression of Pax7 (Pax7High) are less primed for com-
mitment and need a longer time to undergo the first mitosis 
compared to satellite cells with a relatively low expression 
of Pax7 (Pax7Low) [33]. Furthermore, those cells segregate 
their DNA asymmetrically, so that daughter cells receiving 
the template strand also maintain expression of stem cell 

Fig. 1   Myogenic lineage progression and expression profile of key 
myogenic regulators. a Schematic illustration of the myogenic lineage 
progression. Satellite cells are activated, e.g., due to injury, start to 
proliferate, thereby generating myogenic progenitor cells. Upon dif-

ferentiation, myogenic progenitor cells differentiate into myocytes, 
which fuse to form myotubes and mature to become myofibers, the 
contractile unit of skeletal muscle. b Expression profile of key modu-
lators of myogenic lineage progression
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markers [34, 35]. Another subset of satellite cells defined by 
phenotypic traits was identified and termed label-retaining 
cells (LRCs) using a TetO–H2B–GFP mouse line, in which 
administration of doxycycline marks rarely dividing or non-
cycling cells by retention of the expression of the H2B–GFP 
reporter [36]. Further evidence for phenotypic heterogene-
ity within the satellite cell pool arises from a recent study 
by Tierney et al., who investigated the clonal dynamics of 
satellite cells following injury and found that, after multi-
ple rounds of injury, the clonal complexity is reduced when 
using a multicolour lineage tracing approach [37].

Another approach for investigating satellite cell het-
erogeneity is based on genetic analysis using a Myf5-Cre 
reporter mouse line (R26R-YFP/Myf5-Cre). Here, approxi-
mately 10% of satellite cells have never expressed myf5, as 
demonstrated by the absence of the reporter YFP (yellow 
fluorescent protein) in Pax7-positive cells [30]. Interestingly, 
YFP− satellite cells are able to engraft into the satellite cell 
niche after transplantation, while YFP+ satellite cells give 
rise to new myofibers and do not home to the satellite cell 
niche. However, upregulation of myf5 and induction of the 
YFP reporter gene were demonstrated in YFP− satellite 
daughter cells, further suggesting that Pax7+/YFP− cells 
are a rare stem cell sub-population of satellite cells, while 
Pax7+/YFP+ cells are more committed progenitor cells [30]. 
Yet, following activation of satellite cells—for instance after 
injury—both populations of satellite cells (YFP+ and YFP−) 
are proliferating and undergo planar cell divisions, thereby 
generating two identical daughter cells (identical in terms of 
YFP expression). Multiple signaling pathways are driving 
the symmetric division of YFP− cells, among them Wnt7a 
in concert with its receptor Fzd7 and the ECM molecule 
Fibronectin, as well as JAK/STAT signaling [17, 19, 38, 39].

Asymmetric divisions of satellite cells

Asymmetric stem cell divisions are a prerequisite for proper 
stem cell renewal, concomitant with generation of progeni-
tor cells. The first evidence for asymmetric satellite cell 
divisions emanated from a study by Shinin and colleagues. 
With the help of BrdU (bromodeoxyuridine) incorporation 
experiments, they demonstrated that the cell fate determi-
nant Numb, a Notch signaling inhibitor, was segregated to 
the same daughter cell as the BrdU label during mitosis, 
suggesting a role for Numb in self-renewal [35]. Asymmet-
ric satellite cell divisions are controlled by various signal-
ing pathways, including Notch signaling [40]. Of interest is 
that Notch signaling seems to be responsible for asymmetric 
divisions of YFP− satellite cells when using the R26R-YFP/
Myf5-cre reporter mouse line, since the Notch effectors 
Notch3 and Delta1 are asymmetrically distributed in the 
daughter cells [30], the YFP− satellite cells are expressing 

the Notch ligand Delta1, while the YFP+ satellite cells 
express the Notch receptor Notch3 [30]. The importance 
of Notch signaling for asymmetric satellite cell divisions 
is further supported by the fact that the Notch antagonist 
Numb is also asymmetrically distributed in different mouse 
models used to discriminate the different satellite cell sub-
populations [34, 41, 42]. Besides asymmetric distribution 
of signaling molecules and receptors, DNA strands are also 
asymmetrically segregated during satellite cell division. The 
daughter cell retaining the template DNA strand shows more 
stemness characteristics, thereby attenuating the accumula-
tion of replication errors in the parental DNA and the trans-
mission to further daughter cells [33]. In addition, control 
of cell polarity plays an important role in the regulation of 
asymmetric satellite cell divisions. For instance, the Par 
complex, an evolutionary well-conserved complex located 
at the apical membrane, is a prerequisite for the asymmetric 
initiation of myogenic differentiation [43]. Activation of the 
Par complex leads to the selective activation of the p38α/β 
MAPK pathway, which, in turn, directly regulates MyoD 
transcription [44]. Dystrophin, a protein mostly known for 
its function in stabilization of the myofiber, is an essential 
cofactor for regulating cell polarity during asymmetric satel-
lite cell division [45], suggesting that Duchenne muscular 
dystrophy is not only affecting the myofiber, but also the 
satellite cells. This is especially important, since skeletal 
muscle undergoes constant regeneration under dystrophic 
conditions, in both mice and humans.

Regeneration of skeletal muscle

The process of skeletal muscle regeneration can be divided 
into three phases: the inflammatory phase, the phase of sat-
ellite cell activation/differentiation phase, and the matura-
tion phase, when remodeling of the newly formed myofibers 
occurs (Fig. 2).

The muscle degenerates after injury, starting with the 
necrosis of damaged myofibers. This is accompanied by an 
increased calcium influx and release of calcium from the 
sarcoplasmic reticulum of the damaged myofiber, leading 
to proteolysis and degeneration of the damaged tissue [32]. 
Inflammatory responses (phase 1 of regeneration) are trig-
gered by necrosis of myofibers, including the recruitment of 
circulating leucocytes [32, 46]. The first inflammatory cells 
to be recruited to the damaged muscle are the neutrophils. 
Recruitment occurs within the first 6 h after muscle dam-
age [47]. Subsequently, macrophages infiltrate the damaged 
muscle. The macrophage population consists of two distinct 
populations, the early macrophages infiltrating the muscle 
are the pro-inflammatory CD68+/CD163− macrophages, 
followed by the anti-inflammatory CD68−/CD163+ mac-
rophages [48–50]. The early infiltrating macrophages peak 
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around 24 h after injury and are responsible for phagocyto-
sis of damaged tissue parts and secrete pro-inflammatory 
cytokines such as TNFα and IL-1. The secondary wave of 
macrophages secretes anti-inflammatory cytokines such as 
IL-10 and is known to facilitate proliferation and differentia-
tion of satellite cells [51–53]. Their greatest abundance can 
be observed 2–4 days after injury [25].

The second phase of regeneration of skeletal muscle 
is characterized by the activation and differentiation of 
satellite cells, a highly orchestrated process concomitant 
with morphological changes (Fig. 2). Quiescent under nor-
mal resting conditions, satellite cells are characterized by 
the expression of Pax7, but do not express MyoD [1, 54], 
although they may enter a G (alert) state priming them 
for rapid entry into the cell cycle, for instance in response 
to injury [55]. Upon injury, quiescent satellite cells enter 
the cell cycle and begin to express MyoD, migrate to the 
site of injury, and either fuse with damaged myofibers or 
become myogenic progenitor cells. Migration of satellite 
cells is controlled by signals from the myofibers, including 
signaling through Ephrin and Wnt7a [56, 57]. Myogenic 
progenitor cells are a highly proliferative transient ampli-
fying cell population characterized by the expression of 
MyoD and Myf5, and are often referred to as myoblasts 
[5, 58]. The transcription factors Pax7 and Pax3 induce 
expression of genes responsible for promoting prolifera-
tion and commitment to the myogenic lineage and repress 
genes driving differentiation. The myogenic regulatory 
factors (MRFs) comprised of Myf5, MyoD, Myogenin, 

and MRF4 are downstream of Pax7 and Pax3, and pro-
mote myogenic differentiation [7, 59, 60]. Myogenin, a 
direct target of MyoD, initiates the terminal differentia-
tion of myogenic progenitor cells, which is accompanied 
by downregulation of MyoD expression [1, 7, 60]. Mor-
phologically, myogenic progenitor cells become elon-
gated myocytes, which then fuse to form multinucleated 
myotubes. Newly formed myofibers are characterized by 
centrally located nuclei and the expression of devMHC 
(developmental myosin heavy chain), a myosin heavy 
chain which is, otherwise, only expressed during embry-
onic development [1, 32, 54]. This process is followed by 
maturation into myofibers (phase 3 of regeneration), which 
are the contractile units of skeletal muscle.

A highly orchestrated interplay between the stem cell 
niche and the satellite cell and other supporting cells is 
essential for proper regeneration of skeletal muscle. In con-
ditions of perturbed homeostasis—such as aging—func-
tional regeneration is hampered. Examples for changes in 
the satellite cell niche and changes in interactions with the 
satellite cell niche during aging include the loss of Fibronec-
tin, altered β1-Integrin activity, or reduced levels of the 
anti-aging hormone Klotho, all of which result in impaired 
regeneration of skeletal muscle [22–24, 27]. A finely tuned 
balance between extrinsic cues and activation of intrinsic 
signaling pathways is required to accurately control satellite 
cell function. Multiple signaling pathways coordinate skel-
etal muscle regeneration. Below, a brief overview of how 

Fig. 2   Regeneration of skeletal muscle. Time course of changes in 
cellular composition during skeletal muscle regeneration follow-
ing cardiotoxin (CTX) injury. Satellite cells (in green) are quiescent 
in resting skeletal muscle. Five days after CTX injury, regenerating 
muscles are reduced to mostly mono-nuclear cells (satellite cells, 

immune cells, etc.), but are able to form new myotubes at day 7, 
which mature to multinucleated myofibers. Of note, the nuclei of 
intact myofibers are located at the periphery, while newly regenerat-
ing myofibers are characterized by centrally located myonuclei. Dur-
ing the maturation process, the myonuclei migrate to the periphery
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signaling pathways affect satellite cell function and regen-
eration of skeletal muscle is given.

Wnt signaling during regeneration 
of skeletal muscle

Wnt signaling drives development of skeletal muscle and 
is one of the key signaling pathways involved in regen-
eration of skeletal muscle. [58]. Multiple Wnt ligands 
are expressed during regeneration of skeletal muscle in a 
temporally controlled manner. During the early phase of 
regeneration Wnt5a, Wnt5b, and Wnt7a are upregulated, 
while Wnt4 expression decreases. The later phases of 
regeneration are characterized by the expression of Wnt3a 
and Wnt7b [26, 61]. In adult skeletal muscle, canonical 
Wnt signaling—mainly through the ligand Wnt3a—drives 
differentiation of satellite cells, while non-canonical Wnt 
signaling through the ligand Wnt7a is responsible for 
promoting symmetric satellite cell divisions, migration of 
satellite cells, and growth of myofibers [26, 38, 39, 56, 
62–65] (Fig. 3). In skeletal muscle, Wnt7a always signals 
through the Frizzled receptor Fzd7. Interestingly, several 
signaling pathways in satellite cells and myofibers are acti-
vated by the interaction of Wnt7a and Fzd7, namely the 
planar cell polarity pathway (PCP) and the AKT/mTOR 
pathway [58]. This makes Wnt7a a promising candidate 
for ameliorative treatment of muscle wasting diseases 
such as muscular dystrophy [66]. A recent publication 
describes the importance of R-spondin, a known modula-
tor of canonical Wnt signaling for proper differentiation 
of myogenic progenitor cells during regeneration, further 

emphasizing the importance of proper Wnt signaling for 
regeneration of skeletal muscle [64, 67, 68]. The impor-
tance of balanced canonical Wnt signaling for regeneration 
of skeletal muscle is further highlighted by a recent study 
from Rudolf et al., who demonstrated that disruption or 
activation of β-catenin in adult satellite cells impairs the 
regeneration process [69].

Notch signaling in satellite cells

A fine balance between signaling pathways and their pre-
cise activation is a prerequisite for effective regeneration 
of skeletal muscle—a good example is the temporal switch 
from Notch to canonical Wnt signaling required for proper 
differentiation (Fig. 3). Canonical Wnt signaling antago-
nizes the effects of Notch signaling, thereby allowing the 
progression of the myogenic commitment and differentia-
tion [26]. The Notch receptor on the signal-receiving cell 
is expressed on the cell surface as a heterodimer, while the 
ligands are located on the opposing signal-sending cell. The 
Notch ligands are sequestered to the surface of the myofib-
ers, thereby controlling satellite cell proliferation and differ-
entiation [26, 40–42, 70]. The interplay between Notch and 
the transmembrane receptor Syndecan3 expressed in satel-
lite cells controls the maintenance of the satellite cell pool 
and myofiber size after regeneration [71]. The importance of 
proper Notch signaling for satellite cell maintenance is fur-
ther emphasized by two studies, demonstrating that expres-
sion of the downstream effector Recombination Signal Bind-
ing Protein for Immunoglobulin Kappa J Region (RBPJ) in 
satellite cells is a prerequisite for maintaining satellite cell 

Fig. 3   A switch from Notch to Wnt signaling is required for proper 
satellite cell differentiation. Satellite cells express high levels of 
Notch to retain them in a quiescent state, upon activation canonical 
Wnt signaling increases. The non-canonical Wnt7a drives the sym-

metric expansion of satellite stem cells and migration of satellite cells 
in general. Upon return to quiescence, satellite cells switch to Notch 
signaling, while Wnt7a drives the growth of already existing myo-
tubes and myofibers, thereby inducing hypertrophy
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quiescence [70, 72]. In mice lacking Notch1 and Notch2 in 
satellite cells, an inability to maintain quiescence can be 
observed, resulting in precocious entry into the cell cycle 
and in the end to a loss of satellite cells [73]. Cross talk of 
Notch signaling with the vascular niche is also important for 
regulating satellite cell quiescence—reminiscent of the role 
of cell adhesion molecules such as Cadherins, which control 
the transition from quiescence to activation through interac-
tion with the myofiber niche [74, 75]. The importance of the 
interaction of Notch with the niche is further highlighted in 
a recent study by Baghdadi and colleagues who show that 
Notch-1/RBPJ controls expression of the extracellular matrix 
(ECM) molecule Collagen-V [76].

Regulation of satellite cell function 
by miRNAs

miRNAs are controlling multiple signaling pathways in sat-
ellite cells. For instance, posttranscriptional regulation by 
miRNAs has been associated with maintenance of quies-
cence, activation, and differentiation of satellite cells [77, 
78]. The biogenesis of miRNAs involves transcription by 
Polymerase II and several processing steps of the hairpin 
containing primary transcript that require the Ribonuclease 
III enzymes Drosha and Dicer to generate a double-stranded 
miRNA precursor. Loading of the miRNA precursor to 
Argonaute (Ago) protein family forms the RNA-induced 
silencing complex (RISC) that facilitates the final matura-
tion towards a 22 nucleotide short single-stranded miRNA 
and recruitment to target messenger RNAs [79]. The bind-
ing of a miRNA to its target mRNA leads to inhibition of 
translation followed by mRNA de-capping, de-adenylation, 
and degradation [80]. The general importance of miRNAs 
in mouse development was demonstrated by a global Dicer 
deletion which results in embryonic lethality at embryonic 
day 7.5 (ED7.5) [81]. In the adult, genetic deletion of Dicer 
in Pax7-CreER mice revealed a critical role for miRNAs in 
regulating satellite cell quiescence. Dicer-deficient satellite 
cells leave quiescence and enter the cell cycle, but are also 
prone to cell death [82]. Although knowledge of miRNA 
function in satellite cells and their progeny remains lim-
ited, the functions of particular miRNAs have recently been 
unravelled.

About 351 miRNAs are differentially expressed when 
comparing quiescent and activated satellite cells, underscor-
ing their importance for activation of satellite cells [82]. 
For instance, it has been shown that myf5 mRNA is targeted 
by miR-31, which is highly expressed in quiescent satellite 
cells. In response to injury, miR-31 is quickly downregulated 
to allow a rapid translation of the Myf5 protein [83]. Fur-
thermore, the cell cycle-promoting genes Dek, Ccnd2 (Cyc-
lin D2), Cdc25a (Cell division cycle 25A), and Cdc25b1/2 

(Cell division cycle 25B) are transcribed in quiescent satel-
lite cells, but their translation is repressed by miR-489, miR-
195, and miR-497 [82, 84]. Interestingly, transplantation of 
cultured satellite cells treated with miR-195/497 contrib-
uted more efficiently to regeneration of Dystrophin-deficient 
mice, suggestive of an increased ability to self-renew and 
to repopulate the stem cell compartment [84]. Surprisingly, 
only a few miRNAs have been identified, that are down-
regulated during differentiation, amongst them miR-125b 
targeting Insulin-like growth factor II (IGF-II) in myoblasts 
and miR-221 and miR-222 controlling cell cycle exit [85, 
86]. Some microRNAs seem to be largely restricted to the 
skeletal muscle lineage and are, therefore, called myoMiRs. 
Of these, miR-1, miR-133 and miR-206 are muscle-specific 
miRNAs, which are strongly induced during differentiation. 
Their expression is directly regulated by the MRFs Myf5, 
MyoD, Myogenin, and Mef2, as well as Serum Response 
Factor (SRF) [87–90]. Expression of miR-1 is induced by 
MyoD and directly represses HDAC4 (Histon deacetylase 4), 
a negative regulator of skeletal muscle gene expression such 
as Mef2, thereby promoting myogenic differentiation [91]. 
Although miR-1 and miR-133 are transcribed as a bicis-
tronic transcript, they exert different functions, e.g., miR-133 
promotes proliferation of myoblasts by targeting SRF [91]. 
miRNAs control several signaling pathways important for 
satellite cell functionality. It has been demonstrated recently 
that components of the Sonic Hedgehog signaling pathway 
are controlled by miR-133, guiding the myogenic program 
during development [92]. Since the miR-206 has a very 
similar sequence to miR-1, it is assumed that they share the 
same targets. Consistently miR-206 also promotes differ-
entiation in the myoblast cell line C2C12 cells by targeting 
HDAC4 [93]. The impact of miRNAs on cell fate decisions 
is further reflected by the function of miR-133 through the 
transcriptional regulator Prdm16 (PR domain containing 
16), to regulate cell fate choices between the closely related 
muscle progenitors and brown adipocytes. Antagonism of 
miR-133 induces active brown adipocytes within regenerat-
ing skeletal muscle [94].

Changes in the cytoskeleton of myogenic 
cells during regeneration

Cytoskeletal rearrangements are essential for proper regen-
eration of injured skeletal muscle. In resting skeletal muscle, 
quiescent SCs express high levels of α7- and β1-Integrin, 
which interact with the extracellular matrix (ECM) and regu-
late satellite cell fate [95, 96]. Furthermore, the large protein 
superfamily of Integrins is essential for migration, assembly 
of the ECM and is mostly associated with focal adhesion 
sites [97–99]. The importance of proper signaling via Inte-
grins can also be appreciated by the fact that β1-Integrin 
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(Itgb1) signaling is required for activation of satellite cells 
via the fibroblast growth factor 2 (FGF2) interaction in aged 
and dystrophic mice [24]. Vice versa, depletion of Itgb1 
from satellite cells results in a phenotype resembling aging 
of satellite cells including deficits in self-renewal and func-
tionality [20, 100, 101]. Integrin-mediated signaling is trans-
mitted by focal adhesion kinases (FAK) at focal adhesion 
sites, whereas Integrin heterodimers themselves serve as an 
adaptor for connecting the ECM with the actin cytoskeleton 
[102]. Binding of FAK to Integrins leads to autophospho-
rylation of FAK at Tyr397, which, in turn, creates docking 
sites for other proteins such as Talin [103]. Besides Integ-
rins, work on the Dystroglycan complex revealed important 
functions of Dystrophin and Dystroglycan in activated sat-
ellite cells and asymmetric satellite stem cell divisions in 
concert with Par1b [45]. In 2002, Cohn et al. demonstrated a 
functional role for Dystroglycan in satellite cell maintenance 
and self-renewal [104]. In addition, binding of members of 
the Dystrophin-associated Glycoprotein Complex (DGC) to 
Laminin induces the interaction of the small GTPase Rac1 
with the DGC, particularly with Syntrophin [105, 106]. Rac 
activity is important for satellite cell migration by improving 
motility of satellite cells, thereby enhancing muscle strength 
after regeneration. Notably, Rac1 activity is also regulated 
by non-canonical Wnt7/Fzd7 signaling and induces the 
assembly of the mitotic spindle to drive asymmetric divi-
sion by interaction with the Par complex [56, 107].

Several studies showed that remodeling of the actin 
cytoskeleton is pivotal for myoblast fusion and myotube for-
mation, processes crucial for skeletal muscle regeneration 
[108–110]. FAK has an essential role in myoblast fusion and 
differentiation through interaction with β1-Integrin in Inte-
grin clusters associated with Vinculin and the actin-binding 
protein Talin [111–113]. The adaptor protein Paxillin is 
subsequently recruited to focal adhesion sites [114–117], 
followed by recruitment of the actin-bundling protein 
α-Actinin, leading to an increased number of focal adhesion 
sites [118]. Similar to the actin cytoskeleton, several studies 
have revealed the importance of microtubule dynamics for 
the maintenance and formation of skeletal muscle also in 
human patients [119–121].

Non‑myogenic cells involved in regeneration 
of skeletal muscle

Although skeletal muscle regeneration is mainly driven by 
satellite cells and their ablation results in a failure to regener-
ate [2–4], several other cell types support the regeneration 
process. Those can be divided into two groups, those hav-
ing myogenic potential such as myoendothelial cells, Pax7-
negative Pw1+ interstitial cells (PICs) (PW1+/Pax7− inter-
stitial cells) and Twist2+ cells, contributing directly to the 

generation of new muscle fibers and those indirectly sup-
porting regeneration. The latter group includes the immune 
cells and the Fibro-Adipogenic-Progenitors (FAPs).

As described above, immune cells are the first cells 
attracted to the site of injury in skeletal muscle. They are 
involved in preparation for regeneration by clearing the skel-
etal muscle environment from cell debris. To date, several 
types of immune cells have been shown to be important for 
proper regeneration of skeletal muscle, e.g., eosinophils, 
neutrophils, and M1 and M2 macrophages, with the eosino-
phils being the major source of IL-4 [32, 46]. Knockdown 
of IL-4 impairs regeneration of skeletal muscle by affect-
ing the fate of FAPs, thus affecting regeneration indirectly 
[52]. Neutrophils are also recruited within the first hours 
after injury. Noteworthy, their depletion leads to severely 
impaired regeneration, since they are important for regulat-
ing macrophage function [46, 122–124], which are found 
in close proximity to blood vessels in resting muscle [125, 
126]. Macrophages can be separated into two functional 
categories, M1 and M2 macrophages. The cytolytic activ-
ity of M1 macrophages is promoted by signals from the 
neutrophils [46, 122–124]. During disease, e.g., chronic 
infection, the switch from inflammatory M1 towards anti-
inflammatory M2 macrophages is prolonged, contributing 
to impaired muscle regeneration [127]. Depletion of mac-
rophages restrains clearance of necrotic tissue and hampers 
regeneration by impairing proliferation and differentiation 
of satellite cells [51, 128].

The other non-myogenic cells important for regeneration 
of skeletal muscle are the FAPs, which are located in the 
interstitium and can be identified by expression of PDGFRα 
(platelet-derived growth factor receptor-α). These are qui-
escent in healthy muscle, but proliferate upon injury. FAPs 
are a bipotent cell population, capable of differentiation into 
adipocytes and fibroblasts. Differentiation into adipocytes is 
controlled by different factors such as nitric oxide (NO) [129]. 
However, undifferentiated FAPs can have positive effects on 
activated myoblasts. In vitro and in vivo studies show that 
undifferentiated FAPs can induce differentiation of activated 
myoblasts by secreting molecules like IL-6, IGF-1, Wnt1, 
Wnt3a, and Wnt5a [130, 131]. In addition, FAPs also control 
satellite cell activation and proliferation in vitro in fiber culture 
assays [132]. The positive effect of undifferentiated FAPs is 
controlled by signals from intact muscle fibers under homeo-
static conditions preventing differentiation of FAPs into adipo-
cytes [131, 133]; while differentiation of FAPs into adipocytes 
is inhibited during regeneration by secretion of IL-4 by the 
eosinophils [52]. Besides differentiating into adipocytes, FAPs 
contribute to disturbed regeneration in disease or during aging 
by differentiating into fibroblasts, leading to increased fibro-
sis through secretion of collagen type I [131]. Interestingly, 
under disease or chronic injury conditions, more PDGFRα+ 
cells are present in skeletal muscle, with some of them already 
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differentiated into myofibroblasts [134]. The increased number 
of myofibroblasts might be due to changes in the expression 
profile of macrophages. This is supported by the finding that 
macrophages express TGFβ (transforming growth factor beta), 
thereby inducing differentiation of FAPs into fibroblasts under 
disease conditions, while, in healthy muscle, apoptosis is initi-
ated through expression of TNFα (tumor necrosis factor alpha) 
in macrophages [135, 136].

The group of non-satellite cells with myogenic potential 
includes myoendothelial cells, PICs and Twist2+ cells. PW1+/
Pax7− interstitial cells (PICs) were identified as a new popula-
tion of cells having myogenic capacity [137]. In vitro studies 
showed that they start expressing Pax7/MyoD prior to for-
mation of MHC-positive myotubes through fusion with other 
PICs or through fusion to satellite cell-derived myotubes [137, 
138]. When transplanted into a regenerating muscle, PICs 
contribute to the formation of new muscle fibers at a level 
comparable to transplanted satellite cells [137, 139]. Not only 
do they contribute to muscle fiber formation during regen-
eration of skeletal muscle, but also secrete factors such as 
FGF-2 and IGF-1, known to promote satellite cell functional-
ity [140]. Hence, PICs contribute to regeneration both directly 
and indirectly.

The Twist2+/Pax7− cells are located in the interstitium of 
the skeletal muscle. In vitro analyses showed that Twist2+ 
cells lose Twist2 expression and start to express Pax7 when 
differentiation is induced. These cells are able to fuse with 
each other and with satellite cells in vitro. In vivo experiments 
further demonstrated that they contribute to regeneration of 
skeletal muscle by fusing to existing myofibers, as well as ini-
tiating myofiber formation. However, during embryogenesis, 
Twist2+ cells do not contribute to development of skeletal 
muscle [141].

Concluding remarks and future perspectives

Satellite cells are the main drivers of skeletal muscle regen-
eration. The finely tuned balance between the states of qui-
escence, activation, and differentiation is a prerequisite for 
proper regeneration. Alongside cell intrinsic signaling, interac-
tions with other cell types and the extracellular matrix play an 
important role in controlling these processes. In the future, the 
biggest challenge will be to gain a comprehensive understand-
ing of how those processes interact and how they are altered 
in age and disease.
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