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ABSTRACT Temperature variation—through time and across climatic gradients—
affects individuals, populations, and communities. Yet how the thermal response of
biological systems is altered by environmental stressors is poorly understood. Here,
we quantify two key features—optimal temperature and temperature breadth—to
investigate how temperature responses vary in the presence of antibiotics. We use
high-throughput screening to measure growth of Escherichia coli under single and
pairwise combinations of 12 antibiotics across seven temperatures that range from
22°C to 46°C. We find that antibiotic stress often results in considerable changes in
the optimal temperature for growth and a narrower temperature breadth. The direc-
tion of the optimal temperature shifts can be explained by the similarities between
antibiotic-induced and temperature-induced damage to the physiology of the bacte-
rium. We also find that the effects of pairs of stressors in the temperature response
can often be explained by just one antibiotic out of the pair. Our study has implica-
tions for a general understanding of how ecological systems adapt and evolve to
environmental changes.

IMPORTANCE The growth of living organisms varies with temperature. This depend-
ence is described by a temperature response curve that is described by an optimal
temperature where growth is maximized and a temperature range (termed breadth)
across which the organism can grow. Because an organism’s temperature response
evolves or acclimates to its environment, it is often assumed to change over only ev-
olutionary or developmental timescales. Counter to this, we show here that antibiot-
ics can quickly (over hours) change the optimal growth temperature and tempera-
ture breadth for the bacterium Escherichia coli. Moreover, our results suggest a
shared-damage hypothesis: when an antibiotic damages similar cellular components
as hot (or cold) temperatures do, this shared damage will combine and compound
to more greatly reduce growth when that antibiotic is administered at hot (or cold)
temperatures. This hypothesis could potentially also explain how temperature
responses are modified by stressors other than antibiotics.

KEYWORDS Escherichia coli, antibiotic resistance, antibiotics, climate change,
environmental microbiology, microbial ecology, multiple stressors, systems biology,
temperature, thermal response

Many environments experience daily and seasonal temperature fluctuations that
affect rates of physiological processes. These changes in turn affect biological

and ecological traits and ultimately impact the behavior of communities (1–10). In this
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manner temperature fluctuations can drive the evolution of organisms through varia-
tion in thermal sensitivity—the ability to function and survive at different temperatures
(2, 11–16).

Measuring the growth of a living organism at different temperatures yields a tem-
perature response curve (Fig. 1a). Typically, temperature response curves have a single
peak, corresponding to an optimal temperature where growth is maximized (2). As the
temperature changes away from the optimum in either direction, the growth rate
decreases, with an especially steep decline at higher temperatures. The range of tem-
peratures in which an organism can grow to a certain extent (e.g., at least half of the
maximum growth) is termed the temperature breadth. Living organisms are said to ex-
perience either cold or heat stress at extreme temperatures where growth is substan-
tially less than optimum.

Thermal response curves are fundamental to grasping the variability of physiologi-
cal and ecological traits in response to temperature changes in different taxonomic
groups and habitats. Because shifts in the thermal response curves are representative
of average fitness performance and temporal niches (17), optimal temperature and
thermal breadth are indicative of evolution and acclimation patterns based on how
species’ performance contributes to survivorship or fecundity (15). For instance, sea-
sonal variation in temperature could lead to an evolution of different attack and
escape speeds that would allow individuals to perform best when they are predator or
prey (18). Another example is given by the Micromonas genus of marine phytoplank-
ton, where niche partitioning has been observed, with various thermal responses
according to their geographic location (19).

At a cellular level the performance of an organism across different temperatures
can lead to various genetic and physiological adaptation mechanisms. For example, in
bacteria thermal sensitivity is related to many physiological and genetic modulations
in metabolism, including outer membrane rigidity (20, 21), chemotaxis (22, 23), enzy-
matic thermostability (24, 25), and other general adaptive responses (26, 27).

FIG 1 Temperature response curves change under antibiotic stress. (a) An example of a left shift of
optimal temperature with antibiotic GEN. (b) An example of a right shift of optimal temperature with
antibiotic ERY. (c) Optimal growth temperature (middle marker) and temperature niche (thin line
joining the half-maximal growth temperatures, left and right markers) observed under each antibiotic
used in this study. Point estimates for the optimal and half-maximal growth temperatures are shown
as markers (circles or triangles). To show the uncertainty in the estimates, 95% credible intervals (CIs;
see Materials and Methods) are drawn as thick lines. The CIs for the no-drug condition are shaded in
the plot to facilitate comparison. The markers indicate whether the CI under the corresponding
antibiotic overlaps the CI of the control condition (circles) or not (triangles). When the marker is a
triangle, it points upward if the estimated parameter is higher than the control condition and
downward if it is lower.
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Moreover, the heat shock response—a cellular mechanism to deal with the deleterious
effects of high temperatures, such as protein misfolding and aggregation—is highly
conserved in both prokaryotes and eukaryotes (27, 28). Understanding responses to
temperature changes is important to infer general patterns of how organisms, species,
communities, and ecosystems are adapting to fluctuations in climate patterns and dif-
ferent environmental conditions.

Any environmental feature that kills a living organism or reduces its growth can be
considered a stressor. Temperature can interact with other environmental stressors
such as light, precipitation, pH, and salinity. Exposure to different stressor types and
intensities can lead to phenotypic variation in an organism’s ability to respond to tem-
perature changes (29, 30). Nevertheless, how the effects of environmental stressors
interact with temperature responses is not well understood. Therefore, insights on
whether temperature responses—as described by optimal temperatures and tempera-
ture breadths—can change rapidly and plastically in the presence of other environ-
mental stressors have been lacking. In fact, it has been commonly assumed that ther-
mal responses are not altered in the presence of other stressors (31–33).

A systematic approach that informs how optimal temperatures and temperature
breadths are shifted by stressors (Fig. 1) is needed to uncover these ambiguities and
provide additional insights on fitness tradeoffs and thermal adaptation strategies.
Here, we use a combined empirical-theoretical approach to study if the characteristics
of thermal response curves change in response to additional environmental stressors.
In particular, we use an experimental system of Escherichia coli and antibiotics as stres-
sors in order to investigate how a physiological trait—growth of the bacterium—

responds to variation in temperature in the presence of different stressor conditions.
We obtain temperature response data for E. coli in 12 single-drug and 66 two-drug
combination environments, where antibiotics are chosen to cover a wide range of
mechanisms of action (Table 1). We then quantify both the optimal temperature and
the temperature breadth of E. coli in the presence of these different environments.

We first show that individual stressors can have a substantial impact on the optimal
temperature and temperature breadth. Next, we evaluate if the directions of the
shifted thermal responses are related to the mechanism of action of the antibiotics.
Previously, we determined that some specific classes of antibiotics have similar physio-
logical effects as either heat or cold stress in E. coli (34). This classification was based
on comparing the experimentally determined interaction profile (synergies and antag-
onisms with other stressors) of antibiotics and various growth temperatures (Table 1).
We find that in most cases the direction of the shifts in the thermal responses under
antibiotic stress can be explained through these groups. Lastly, we investigate how
pairs of stressors move optimal temperatures in different directions compared to the
optimal temperatures under single-stressor conditions. In particular, we evaluate the
extent to which the optimal temperatures result from integrated effects of both stres-
sors, or whether a single stressor is the key driver of the temperature response. We
infer from our results that a single drug often plays a dominant role in determining the
optimal temperature response of a combined treatment.

Our experimental and theoretical framework on temperature response curves of E.
coli presented here allows us to better understand how thermal sensitivities change in
response to stressors. Therefore, our analysis will shed light on fundamental features
shaping the ecological and evolutionary responses of organisms facing complex envi-
ronmental conditions. By using antibiotics as stressors and a bacterium as a model or-
ganism, our study system is particularly valuable for its experimental tractability and
reproducibility.

(This article was submitted to an online preprint archive [35].)

RESULTS

In this paper we investigate how different stressors (antibiotics) alter an organism’s
response to temperature, both in isolation and in combination. To do this, we
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determine the temperature optimum and temperature niche/breadth of E. coli by fit-
ting the modified Briere model (developed here, see Materials and Methods) to experi-
mental data of bacterial growth collected under different (unstressed and stressed)
growth environments across seven temperatures (22°C, 25°C, 30°C, 37°C, 41°C, 44°C,
and 46°C). The entire data set and model fits are shown in Fig. S1 in the supplemental
material. More details about the model and fitting procedure can be found in Materials
and Methods and Text S1.

First, we explore how the optimal growth temperature of E. coli changes under sin-
gle-stressor conditions (Fig. 1a and b). We find that the majority of the single-drug
environments exhibit left shifts—meaning the optimal temperature (Topt) is lower
(Fig. 1c)—compared to the no-drug condition, Topt = 37.7°C, 95% credible interval (CI)
(36.7°C, 38.6°C). Right shifts are both less common and of lower magnitude than the
observed left shifts. In addition, we find that the thermal niche breadth typically
becomes narrower under antibiotic stress, meaning that E. coli can survive and prop-
erly function at a reduced temperature range.

Next, we investigate whether the physiological effects of antibiotics bear any rela-
tion to the direction of the observed shifts in the temperature responses (Fig. 2). To do
this, we group the antibiotics according to the similarity of their physiological effects

TABLE 1 List of antibioticsa

aThe antibiotics used are listed with their abbreviation, mechanism of action, dose, and our color scheme
throughout the paper. Similar colors are chosen for drugs belonging to the same class/mechanism of action.
For example, blue tones are chosen for aminoglycosides. The similarity of each antibiotic to temperature stress
according to their interactions with other stressors (34) is also shown, along with the corresponding range of
growth temperatures that show similarity. For the purposes of cold/heat similarity, we consider any antibiotic
with a similar temperature range lower than the optimum as cold similar. For example, there are two groups of
cold-similar antibiotics, which we call cold (22 to 37°C) and very cold (22 to 25°C). These terms are used to
distinguish the groups by the relative strength of the cold stress to which they are similar but not necessarily
the severity of the cold stress in an absolute sense.
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to those of low or high temperatures, as determined previously (34). We observe the
direction of the shifts for both single drugs (Fig. 2a, left panels) and drug combinations
that contain one or more of the antibiotics in the group (Fig. 2a, right panels). We find
that—for both single drugs and combinations—cold-similar antibiotics (i.e., with
effects on bacteria similar to those caused by low temperatures) tend to either leave
the optimal temperature unchanged or shift it slightly to the right (i.e., to higher

FIG 2 Physiological effects of antibiotics predict the direction of shifts in the optimal temperature. (a) (Left) The fitted temperature response curve (TRC) in
the presence of single antibiotics is compared to the unstressed growth condition. Drugs are grouped according to the similarity of their effects to
temperature (34), as shown in the left of the plots, except beta-lactams, which did not show similarity to temperature. (Right) Histogram of shifts in the
optimal temperature under all pairwise drug combinations involving the drugs in the group. The individual estimates are shown as short lines in the
bottom. The mean of the optimal temperature estimates involving each drug (including combinations) is shown as a dashed colored line. The unstressed
optimal temperature is shown as a black dashed line in both sets of plots. For both single drugs and combinations, the direction of the optimal
temperature shifts depends on whether the drug is similar to cold or to heat. (b) Optimal growth temperature and temperature niche observed under each
antibiotic combination used in this study. The first drug in the combination is shown at the top of the plot. The second drug is shown on the y axis using
its assigned line color. The single-drug conditions are shown with shaded 95% credible intervals to facilitate comparisons and the point estimates are
marked as in Fig. 1c. Conditions under which the maximum growth was too small to estimate parameters reliably were removed.
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optimal temperatures). In contrast, heat-similar antibiotics (i.e., with effects on bacteria
similar to those caused by high temperatures) tend to result in unchanged optimal
temperatures or shifts to the left (i.e., to lower optimal temperatures). In fact, bacteria
exposed to aminoglycosides (tobramycin [TOB], gentamicin [GEN], and streptomycin
[STR]), which induce misfolding of membrane proteins and have similar physiological
effects as very high temperatures (Fig. 2), show the greatest shifts toward the left. This
is not the case for other protein synthesis inhibitors such as erythromycin (ERY) or clin-
damycin (CLI) that are similar to cold. Interestingly, beta-lactams shift the temperature
curves in a similar way as heat-similar drugs when used in combinations, despite them
having a different mechanism of action (inhibition of cell wall synthesis) that was not
found to be heat similar.

Furthermore, to evaluate the extent to which these changes are concentration de-
pendent, we measure the growth of E. coli at 12 growth temperatures and increasing
antibiotic concentrations (ranging from no antibiotic to near inhibitory) for two antibi-
otics: ERY and trimethoprim (TMP) (Fig. S4 and S5). We find that growth decreases with
increasing antibiotic concentration, but this decrease is not uniform at all tempera-
tures. For both antibiotics, the growth decrease at temperature extremes is sharper
than at the central part of the curve. However, for TMP (a heat-similar drug), growth at
high temperatures decreases more sharply than at low temperatures. In contrast, for
ERY (cold similar), growth decreases more sharply at low temperatures than at high
temperatures. The observed shifts in optimal temperature seem to be due to this
asymmetry in the growth decrease which causes the position of the central part of the
curve to change. From these experiments, we conclude that both the magnitude of
the optimal temperature shifts and the extent of the decrease in temperature breadth
depend on the antibiotic concentration. However, the direction of the optimal temper-
ature shifts seems to remain consistent when varying antibiotic concentrations.

We then compare the optimal temperature and temperature niche—the range
between the temperatures that result in half-maximum growth—for bacteria under all
antibiotic combinations to those under the single-drug conditions (Fig. 2b). For some
antibiotics (e.g., ERY and ciprofloxacin [CPR]), the optimal temperature and the thermal
niche range are similar to those of the single drug when combined with most other
antibiotics. In contrast, there are other antibiotics for which these features show much
more variation when combined with others (e.g., GEN, STR, TOB, and cefoxitin [FOX]).
This suggests that some antibiotics may act as the main drivers of the temperature
response curve of antibiotic combinations.

Following this idea, we further explored how the optimal growth temperature is
determined under combinations of stressors relative to the optimal temperature under
single-stressor conditions. We contrast the observed optimal temperatures with the
predictions of five candidate models of how the combination optimal temperature
could be determined from that of the single stressors (see Materials and Methods)
(Fig. 3a). The min and max models assume that the optimal temperature of the combi-
nation is determined by the optimal temperature of a single drug (the minimum or the
maximum of the pair, respectively). These models best describe most (65%) multidrug
combinations (Fig. 3b). The attenuated and elevated models assume that the optimal
temperature of the combination is either lower or higher, respectively, than for both
single drugs. These models best describe 18% of the combinations. Lastly, the mean
model assumes that the temperature of the combination is determined by the average
of the single-drug optimal temperatures. This model best described only 17% of the
drug combinations. These results suggest that the optimal temperature of antibiotic
combinations is often determined by a single drug.

Finally, we explore cases where single-driver models (min, max, attenuated, and ele-
vated) represent the best optimal temperature model over the mean model, where
both stressors compromise to result in the optimal temperature of an organism in the
presence of combined stressors (Fig. 3c). Interestingly, we rarely observe aminoglyco-
sides (GEN, STR, and TOB), antibiotics similar to high heat, being drivers. In contrast,
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some cold-similar drugs (ERY, LVX, CPR), but not all (CLI, TET), frequently drive the opti-
mal temperature of the combination. To account for the possibility that some antibiot-
ics appear to be a driver more often than others purely by chance, we used a permuta-
tion test to evaluate our data against the null model that all drugs are equally likely to
be a driver (see D-statistic in Text S1 for details). This test provides strong evidence
(P=0.002) that some antibiotics have a greater tendency to be drivers than others by
testing the entire data set simultaneously. We also tested if specific antibiotics are driv-
ers more often than expected by chance (see M-statistic in Text S1). However, we did
not obtain statistically significant results for individual drugs, after correcting for multi-
ple comparisons. We believe this may be due to a lack of statistical power to detect dif-
ferences due to the smaller number of observations for individual antibiotics than for
the full data set.

DISCUSSION

Through a systematic analysis of growth response curves of bacteria across different
temperatures and under different stressor environments, we investigate the effects of
stressors on the phenotypic variation in temperature response traits—optimal temper-
ature and temperature breadth. We see that stressors often decrease the temperature
breadth and shift the optimal temperature in a direction that depends on their physio-
logical mechanism of harm. In addition, our results suggest that left shifts—where the
optimal temperature in a stressed environment is lower than the optimal temperature
under unstressed environmental conditions—are more common and dramatic as
opposed to right shifts toward higher optimal temperatures. This may be partially due
to the asymmetry of temperature response curves, where the interval between the
minimum and optimal growth temperatures is larger than that between the optimal
and maximum growth temperatures.

FIG 3 The optimal growth temperature under stressor combinations is often determined by a single stressor. (a) Schematic illustration of models to
determine the optimal growth temperature under two stressors (Topt, XY) given the single-stressor optimal temperatures (Topt, X, Topt, Y). (b) The frequency at
which each model is the best fit, across all drug combinations. (c) Proportion of time that each antibiotic is the main driver of the optimal temperature
when combined with other antibiotics. This is based on cases where an individual model (min, max, attenuated, or elevated) best describes the optimal
temperature under an antibiotic combination. In these cases, the driver of the combination is the antibiotic for which the optimal temperature (when
present on its own) is closer to the optimal temperature of the combination.

Antibiotics Shift the Temperature Response of E. coli

July/August 2021 Volume 6 Issue 4 e00228-21 msystems.asm.org 7

https://msystems.asm.org


High temperature harms living organisms through multiple mechanisms, including
misfolding and aggregating proteins, damaging nucleic acids, and increasing mem-
brane permeability (27). The heat shock response attempts to prevent and/or repair
this damage by producing chaperones that aid the correct folding of proteins (36). It
has previously been shown that certain kinds of antibiotics can activate components
of the heat shock response (34, 37, 38). Moreover, heat shock chaperones have been
shown to help combat aminoglycoside-induced protein misfolding (39). However, add-
ing antibiotics to heat stress is unlikely to help the cell survive high temperatures, since
the heat shock response is already induced by the high temperature alone. Thus, right
shifts in the optimal temperature may be rare because it is unlikely that adding a sec-
ond stressor can reduce or repair the high-temperature-induced damage. In most
cases where we do observe a right shift, it seems to be due to asymmetrical effects on
the temperature response curve, where the left portion (i.e., below the unstressed opti-
mal temperature Topt) is more depressed by the antibiotic than the right portion
(Fig. 2a; see also Fig. S1 and S4 in the supplemental material).

In contrast, cold temperatures predominantly slow down cell growth by suppressing
DNA replication or protein translation (40, 41). Since the effects of low temperature seem
to be primarily mediated by slowing down metabolism and growth rather than the accu-
mulation of physical damage, it seems more likely that stressors can shift the optimal
temperature to the left, especially when the stressor is more harmful at higher tempera-
tures. In some cases, cold temperatures might allow cells to sustain antibiotic killing
because certain antibiotics are effective against only actively growing cells (42). Low tem-
peratures have also been shown to alter the structural stability (43) or the global uptake
of some antibiotics such as gentamicin, thus impairing killing efficiency (44).

Antibiotics damage bacteria through various mechanisms of action, such as interfer-
ing with cell wall synthesis (45), binding the ribosome to either inhibit protein transla-
tion or increase the translational error rate (46), and modifying DNA supercoiling (47).
Based on network clustering methods (48, 49), we previously found that certain antibi-
otic classes have similar physiological effects as either heat or cold in E. coli (34). These
temperature-drug groups were shown to correlate with changes in drug sensitivity of
high-temperature-adapted strains obtained by Rodríguez-Verdugo et al. (50) and are
consistent with previous work comparing the protein expression profile of E. coli under
various antibiotics with that induced under heat shock and cold shock (37).
Interestingly, here we find that in most cases the direction of the shifts in the optimal
temperature can be predicted from these groups. Cold-similar drugs tend either to
leave the optimal temperature unchanged or to shift it slightly to the right. In contrast,
heat-similar drugs tend to result in larger shifts to the left or leave the optimal temper-
ature unchanged (Fig. 2). Similar trends are exhibited by antibiotic combinations con-
taining drugs in these groups.

We propose a shared-damage hypothesis to explain this phenomenon: antibiotics
that damage the same cellular functions as those damaged by temperature stress
(heat or cold) will cause an increased burden to the cell machinery that repairs this
damage. For example, simultaneous exposure to aminoglycosides and high tempera-
tures will result in more misfolded proteins than either stressor on its own. Upon addi-
tion of an antibiotic, the stress-response machinery of the cell could be overwhelmed
at less extreme temperatures, causing a greater reduction in growth at temperatures
that cause similar physiological damage to the drug. The effect of these kinds of antibi-
otics in the temperature response curve will thus be asymmetrical. Growth will be
more strongly reduced in the direction (heat or cold relative to Topt) where the drug
and temperature damage overlap, and the optimal temperature will often shift toward
the opposite direction because it suffers less from growth reduction. In terms of stres-
sor interactions based on the Bliss independence framework, the shared-damage hy-
pothesis implies that stressors (e.g., antibiotics and temperatures) with overlapping
damage mechanisms will tend to interact synergistically, decreasing growth more than
what would be expected given the effects of the individual stressors (Fig. S7).
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The most pronounced shifts in optimal temperature tend to occur in cases with
lower peak growth (Fig. 2a). This suggests that perhaps these shifts become more pro-
nounced when increasing antibiotic concentration, as we see for ERY and TMP (Fig. S4
and S5). However, when evaluated across all antibiotic backgrounds in our study, maxi-
mum growth is uncorrelated with the magnitude of the optimal temperature shifts
(Fig. S6). Our results suggest that not all antibiotics elicit optimal temperature shifts,
but for those that do, the magnitude of shifts is concentration dependent. We
hypothesize that increasing the concentration of heat-similar drugs will result in
greater shifts to the left and that doing so for cold-similar drugs will result in greater
shifts to the right.

Notably, although the aminoglycosides (TOB, GEN, and STR) share the same cellular
target—the ribosome—as the other protein synthesis inhibitors (CLI, ERY, and TET)
used in our study, they result in distinct effects on the thermal response. Previously,
differences in the effects of aminoglycosides and other protein synthesis inhibitors at
different growth rates have been attributed to the reversibility of ribosomal binding
(51). In that study, the authors found that STR is more effective when the growth rate
is lower, which does not agree with our results at low temperatures. This discrepancy
may be because the reduction in growth was previously manipulated by nutrient limi-
tation as opposed to the temperature variation in our study.

Instead of binding reversibility, we could explain the different effects of these drugs
by their mechanisms of action being qualitatively different, with the aminoglycosides
being heat similar and the other protein synthesis inhibitors being cold similar. This is
because aminoglycosides, unlike other protein synthesis inhibitors, induce mistransla-
tion by the ribosome that decreases translational accuracy and causes protein misfold-
ing (52). Cold temperatures may counteract this effect by slowing down ribosomal ac-
tivity and increasing accuracy (37), thus causing aminoglycosides to be less effective
when bacterial growth is suppressed at lower temperatures, as we observe. Reduced
drug uptake at low temperatures could also play a role (44).

Interestingly, beta-lactams have a similar effect in the temperature response as
heat-similar drugs. We speculate that this may be due to increased effectiveness at
high temperatures due to a synergy between the cell wall damage caused by the anti-
biotic and the increased membrane permeability caused by high temperatures.
Further disentangling these processes in future studies will help increase our under-
standing of the connection between antibiotic susceptibility and bacterial physiology.

The breadth of the temperature niche is typically reduced in the presence of antibi-
otics, both in isolation and in combination. The molecular mechanisms involved in this
reduction of the temperature breadth by antibiotics have not yet been studied experi-
mentally. However, in the absence of antibiotics the lower and upper limits of growth
are believed to be set by chemical and physical limits on the biological processes nec-
essary for bacterial physiology, growth, and cell division (2). Since drugs introduce
physiological damage in addition to that caused by temperature extremes, it seems
likely that in most cases antibiotics would further constrain the temperature response
by killing off barely surviving populations at the extreme temperatures. Previous stud-
ies have also observed the temperature niche being reduced upon exposure to stres-
sors (53, 54). From our results it is apparent that stressors can reduce the temperature
niche of living organisms at either temperature extreme. Thus, species that experience
a wide range of stressful conditions at different times could perhaps experience selec-
tion for a broader temperature breadth that can be adapted to various environmental
stressors (17).

The temperature niche is measured as the range between the low and high temper-
atures for half-maximum growth: its definition is therefore relative to the maximum
growth. Consequently, conditions that decrease the right and central (i.e., near Topt)
portions of the curve more than the left portion can result in a temperature niche that
is shifted to the left (and vice versa) in the absence of increased growth at temperature
extremes. These effects can lead to apparently surprising cases where adding a drug
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extends the limits for the thermal niche of the unstressed condition without increased
growth at temperature extremes. This suggests that microbial communities may expe-
rience shifted thermal niches—giving rise to a different competitive landscape (e.g.,
due to reduced invasibility of high-temperature habitats under aminoglycosides)—in
the presence of certain antibiotics. These effects could be particularly important in the
presence of variation in adaptations to antibiotics within microbial communities, which
might cause the severity of their effects on the temperature curves to be species de-
pendent. We expect antibiotics to change the competitive landscape the most in
mixed populations with both antibiotic-resistant and nonresistant microbes, since the
latter would be expected to show larger antibiotic-induced changes in the thermal
response than the former under the shared-damage hypothesis.

We find that in most cases the shift in optimal temperature of E. coli due to antibi-
otic pairs is primarily determined by a single antibiotic. However, we also found cases
where interactions between antibiotics seem to be important for determining the opti-
mal temperature. For example, aminoglycosides (TOB, GEN, and STR) show the largest
degree of downshifting of the optimal temperature. However, when a second drug is
added, this downshifting tends to be alleviated. Thus, in combinations of stressors,
aminoglycosides are not the dominant driver for changing optimal temperature de-
spite their large effects when used alone. When a shift in the thermal optimum is allevi-
ated by addition of a second antibiotic, this does not imply that the reduced growth is
also alleviated. Typically, these shifts are due to the second antibiotic decreasing some
regions of the temperature response curve more sharply than others (Fig. S1). A nota-
ble exception involves interactions between certain aminoglycosides (GEN and STR)
and other protein synthesis inhibitors (ERY, TET, and other aminoglycosides), possibly
because inhibition of protein synthesis reduces the aminoglycoside-induced produc-
tion of misfolded protein aggregates.

The growth response to multiple environmental factors such as temperature, CO2, and
pH has been measured in green algae (55). Under conditions with a large number of fac-
tors present simultaneously, the response is dominated by a single, severely detrimental
driver. In contrast, in environments with a smaller number of factors, specific interactions
between drivers were found to determine overall growth rather than the response to an
overriding factor. These results were explained by the authors by the presence of a
severely detrimental driver limiting the growth reduction that can be obtained by addi-
tional stressors, making the severe driver the primary determinant of the response. In con-
trast, we find that the effects of an antibiotic can sometimes be partially undone by
another (e.g., aminoglycosides and other protein synthesis inhibitors). This suggests that,
while identifying a dominant environmental driver can be a simplified approach to under-
standing organismal response to a complex system, this needs to be done with care since
interactions between drivers can be a contributing factor as well.

The thermal optimum is often below the mean environmental temperature. This is
because thermal response curves typically decrease sharply at high temperatures, so the
penalty of going above the optimal temperature is much steeper than going below. The
exact distance between the thermal optimum and the mean is determined by the tempera-
ture variability in the environment (31–33). It is thus often tacitly assumed that the optimum
temperature of individuals closely aligns with the environment in which the individual has
been reared and/or the species has evolved. For this reason, the optimal temperature is not
expected to quickly shift in response to other stressful conditions. This is a common assump-
tion in mathematical models that describe the combined effects of temperature and other
stressors such as pH (56), nutrient limitation (57), and humidity (58). In contrast, we observe
that stressors can substantially and quickly change the optimal temperature for growth of a
bacterium. A study that evaluated the combined effects of temperature and salt in slime
molds (59) also found shifts in the thermal optimum, suggesting that this phenomenon is
not limited solely to antibiotics.

Any physical or chemical environmental feature that kills or slows the population
growth of a living organism can be considered a stressor. Antibiotics are stressors to
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bacteria in clinical settings, but they may not always take this role in nature. It has
been proposed that some antibiotics may participate in communication or be by-prod-
ucts of metabolism in their natural environments (60–62). Since we explain thermal op-
timum shifts through differential growth reduction, our shared-damage hypothesis
predicts antibiotic-induced thermal optimum shifts will occur when antibiotics are act-
ing as stressors. However, this will not necessarily happen when antibiotics have a dif-
ferent role at much lower concentrations than those relevant in the clinic. In these
cases, we would expect thermal optima to change only if there is a nonnegligible fit-
ness decrease caused by the antibiotic. Further work could test this by measuring the
effects of an antibiotic on the thermal responses of microbes that naturally occur in
the same environments as the antibiotic.

An exciting potential application of the shared-damage hypothesis is in predicting
the effect of other stressors on the thermal optima of living organisms. To do this, fur-
ther studies are necessary to evaluate the extent to which the physiological damage
caused by other environmental stressors—such as pressure and pH—is similar to ei-
ther temperature stress or antibiotics. This can be done by comparing either the gene-
expression profile or the interaction profile (i.e., synergies and antagonisms with other
stressors) of the environmental stressor of interest with those of extreme temperatures
and/or antibiotics, as has been done to explore the overlap between antibiotics and
temperature (34, 37). Our hypothesis would then predict that stressors that induce sim-
ilar damage as high temperature will result in left shifts in Topt (and vice versa).
Moreover, the direction of the shift induced by a stressor should be the same as that of
other stressors (e.g., antibiotics) that cause similar physiological damage. For example,
beta-lactam antibiotics compromise the integrity of the bacterial cell wall, so we specu-
late that the induced damage to the cell could have certain similarities to osmotic
shock. If this were true, it seems possible that osmotic shock might change the temper-
ature responses in a similar way as beta-lactams.

Although there has been substantial interest in understanding thermal response
curves because of their potential to predict responses to climate change (18, 19, 63,
64), the implications might be even broader. For example, an intriguing recent study
showed that increased local temperatures were associated with increasing antibiotic
resistance (65). This may be because temperature or seasonality affects environmental
growth of resistant strains (66, 67) and horizontal gene transfer—one method of facili-
tating resistance transmission (68, 69). Another study showed that adaptations to long-
term temperature changes unexpectedly coincided with mutations conferring resist-
ance to rifampin, an antibiotic that impairs RNA polymerase (50). Climate change has
also been linked to changes in host-parasite dynamics that alter the frequency and se-
verity of many infectious diseases (70, 71). Our work here and elsewhere shows that
certain classes of antibiotics are more effective at different temperatures and that there
is substantial overlap in the response mechanisms to temperature and some kinds of
antibiotics (34, 37, 39, 72). This suggests the hypothesis that climate change might
favor the evolution of resistance to specific (i.e., heat-similar) antibiotics indirectly due
to its overlap with resistance to high-temperature stress.

From our results it also appears that drugs can be used to modify temperature
response curves in predictable ways. A temperature-drug system could perhaps be
used to examine scenarios for biological responses to climate change via a variety of
thermal responses in a laboratory setting. Going forward, such a system could serve as
a simplified model for examining changes in response to temperature across seasons,
geographic gradients, and climate change.

Finally, it is worth nothing that exact estimates of the optimal temperature and tem-
perature niche depend somewhat on the choice of mathematical model (73). This is why
the abilities of a model to provide a good fit to the data and have biologically interpreta-
ble parameters are important considerations in choosing an appropriate model (10). In
order to fit the variety of shapes and skews we observe here for temperature responses,
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we developed a novel flexible temperature response model that is reparametrized in
terms of biologically meaningful parameters (Materials and Methods and Text S1).

Temperature is one of the fundamental drivers of biological processes. By using antibi-
otics as stressors, our study system is particularly valuable for its tractability, reproducibil-
ity, and potential to study temperature-stressor interactions beyond the pairwise level.
Our results provide insights into the interactions between temperature and other stres-
sors. Particularly, we show that stressors can modify the temperature response curves of a
living organism and that these changes can be predicted from the way the stressor harms
its physiology. More broadly, our results imply that the chemical environment of a living
organism—or potentially the presence of other stressors—can influence how it interacts
with both abiotic (temperature) and biotic (modified competition due to changes in its
thermal niche) factors. Investigating stressor effects on the physiological and ecological
trait responses to temperature changes under this framework could lead to future
research directions in exploring other environmental stressors that may aid in predicting
the stability and diversity of ecological systems.

MATERIALS ANDMETHODS
Experimental framework. (i) Bacterial strain and growth medium. The study used BW25113, a

derivative of the F2 l2 E. coli K-12 strain BD792 (CGSC6159) (74). Bacterial cultures were grown in LB
broth (10 g/liter tryptone, 5 g/liter yeast extract, and 10 g/liter NaCl) and maintained in 25% glycerol at
280°C. Fresh cultures were started by adding 20ml of thawed bacterial glycerol stock into 2ml of LB fol-
lowed by incubation at 37°C. Cultures were grown to exponential growth phase and diluted to maintain
104 cells per experimental condition.

(ii) Antibiotics. A total of 12 antibiotics were included in the study as representatives of all major
drug classes. Ciprofloxacin (CPR) from MP Biomedicals (Santa Ana, CA) and gentamicin (GEN), levofloxa-
cin (LVX), tetracycline (TET), tobramycin (TOB), erythromycin (ERY), ampicillin (AMP), clindamycin (CLI),
streptomycin (STR), nitrofurantoin (NTR), cefoxitin (FOX), and trimethoprim (TMP)—all from Sigma (St.
Louis, MO)—were used. Stock solution at 20mg/ml of each antibiotic was stored in 50-ml aliquots at
220°C. Each aliquot was only frozen and thawed once to preserve potency.

(iii) Growth experiments. Antibiotics used in all experiments inhibited bacterial growth at sublethal
concentrations (50% to 90% growth). The desired concentrations were first determined by a 12-step
concentration series of 2-fold at each step in 96-well plates (Costar). Antibiotic stock solutions were pre-
pared in a total volume of 5ml at 10-fold their respective concentrations (Table 1). Experiments with
pairwise drug combinations were prepared by adding 10ml of each component drug followed by the
addition of 80ml cell inoculum. Ten microliters of LB medium was added in replacement of a second
drug for single-drug experiments. Each experimental condition was conducted in 4 replicates from the
same antibiotic stock solution. The 96-well plates were incubated at various temperatures (22°C, 25°C,
30°C, 37°C, 41°C, 44°C, and 46°C) with aeration at 300 rpm. Cell density was measured at 4 h, 8 h, 12 h,
and 24 h by reading optical density at 600 nm (OD600). The optical density measurements (used as a
proxy for bacterial growth) at 24 h were used to infer the temperature curves.

The E. coli growth data set used to infer the temperature response curves (see Fig. S1 in the supple-
mental material) was partially used in a previous publication (34). The overlapping data (less than 30%
of the data points) correspond to growth under no antibiotic and single antibiotics at all measured tem-
peratures as well as growth under antibiotic pairs at a single temperature (41°C).

(iv) Growth experiments at various antibiotic concentrations. For a representative cold-similar
(ERY) and heat-similar (TMP) antibiotic, we conducted additional growth experiments at various antibiotic
concentrations and temperatures (Fig. S4 and S5). Ten antibiotic concentrations were chosen as a linear gra-
dient ranging from the absence of drug to a near-inhibitory drug concentration (ERY, 1,000mg/ml; TMP,
0.14mg/ml) in order to clearly see changes in the shape of the temperature response. Four replicates of
each antibiotic concentration were incubated at each of 14 temperatures, ranging from 18°C to 50°C.

Mathematical framework. (i) Modified Briere model for characterizing temperature response
curves. Briere et al. (75) defines a simple model for the temperature dependence of a trait, such as
growth, denoted by g(T) as follows:

g Tð Þ ¼ cT T2Tminð Þ T2Tmaxð Þ12

where Tmin and Tmax are the minimum and maximum temperatures of growth, respectively. This model is
not flexible enough to describe the antibiotic growth curves we found empirically. As a more general al-
ternative, we propose the modified Briere model:

g Tð Þ ¼ c T2Tminð Þa T2Tmaxð Þb

where a, b $ 0 are parameters that determine the shape of the curve. In this modified Briere model, we
have Topt = aTmax 1 (1 2 a)Tmin, where a ¼ a

a1b corresponds to the location of the optimal temperature
relative to the minimum and maximum growth temperatures.

Cruz-Loya et al.

July/August 2021 Volume 6 Issue 4 e00228-21 msystems.asm.org 12

https://msystems.asm.org


Consequently, our model can be reparametrized as

g Tð Þ ¼ gmax
T2Tmin

a

� �a
Tmax 2T
12a

� �12a
1

Tmax 2Tmin

� �" #s

where gmax is the maximum value of the trait, i.e., growth, and s = a 1 b is a parameter that determines
how steeply the temperature response curve increases (see the supplemental material for details). We
use this parametrization for parameter fitting of temperature response curves of the bacterium across
different drug combination treatments (Table 1 lists chosen drugs in our study).

(ii) Bayesian parameter fitting. The modified Briere model was fitted to the temperature growth
curve for the bacterium under all conditions through a Bayesian methodology with the PyMC3 library of the
Python programming language (76). The following methodology is used for obtaining Bayesian estimates
for the model parameters. Let yi be the ith observed data point for growth after 24h, and let Ti be the tem-
perature at which it was observed. The observed values were assumed to be Gamma distributed with

yij gðTiÞ; sTi ;Gamma m ¼ g Tið Þ; s ¼ sTi

� �
where the Gamma distribution is parametrized in terms of the mean m and standard deviation s . The
data are clearly heteroskedastic, and multiple measurements were taken at the same temperature, ena-
bling estimates of the standard deviation at each measured temperature. Because of this, a different
standard deviation was modeled for each measured temperature. The following hierarchical model was
used for the standard deviation:

sTi j b ; halfCauchyðb Þ

b;halfCauchyð0:3Þ

The prior distributions for the modified Briere model parameters and a justification for all priors used
are given in the supplemental material. A variational method (full-rank ADVI) (77) was used to obtain ap-
proximate posterior distributions for the model parameters. These posterior distributions were used to
construct point estimates—the expected value of the posterior distribution—and 95% credible intervals
for all parameters to evaluate the uncertainty in the estimates. Credible intervals are the Bayesian analog
to confidence intervals. A credible interval contains the true value of the parameter of interest with the
specified (e.g., 95%) probability, given the observed data.

(iii) Models for predicting optimal temperatures for multidrug responses. We denote single
drugs as X and Y and the combination of drugs as XY. We use these drug notations as a subscript for the
corresponding optimal temperatures, i.e., Topt, X, Topt, Y, and Topt, XY. For predicting the optimal tempera-
ture of multidrug combination treatments, we define five different models by the choice of simple yet
biologically meaningful scenarios (Fig. 3).

(a) A single drug is playing a major role in determining the optimal temperature of the bacterial
response. The optimal temperature of the combination is given by either of the two individual stressors
(min or max model). Topt, XY = min(Topt, X, Topt, Y) or Topt, XY = max(Topt, X, Topt, Y).

(b) The optimal temperature of the bacterium in the presence of drug combinations is shifted to
lower or higher temperatures than both single drugs’ optimal temperature values. Along the lines of
these extreme behaviors, we define attenuated and elevated optimal temperature models Topt, XY ,,

min(Topt, X, Topt, Y) or Topt, XY .. max(Topt, X, Topt, Y).
(c) Temperature tolerance is determined by both of the drugs in the combination. To uncover such

cases, we define our fifth model, namely, the mean optimal temperature model. This model expresses
the optimal temperature of the combined treatment as the average of the two single drug optimal tem-

peratures (Fig. 1). In other words, the mean model is equivalent to Topt; XY¼ Topt; X1 Topt;Y
2 .

To determine the best optimal temperature model, we measured the difference between the
actual value and the predicted value of each of the min, mean, and max models. We considered the
best-fit model as the one with the smallest absolute difference between actual and predicted values.
When this absolute difference is greater than the cutoff value of 2.20°C (see Fig. S2), then the best
model is determined to be either the attenuated or elevated model depending on the direction of the
optimal temperature shift.

Data availability. The data and code used in this paper are available in the Dryad Digital Repository (78).
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Supplemental material is available online only.
TEXT S1, PDF file, 0.2 MB.
FIG S1, EPS file, 2.8 MB.
FIG S2, EPS file, 0.3 MB.
FIG S3, EPS file, 0.7 MB.
FIG S4, EPS file, 0.5 MB.
FIG S5, EPS file, 0.6 MB.

Antibiotics Shift the Temperature Response of E. coli

July/August 2021 Volume 6 Issue 4 e00228-21 msystems.asm.org 13

https://msystems.asm.org


FIG S6, EPS file, 0.2 MB.
FIG S7, EPS file, 0.3 MB.

ACKNOWLEDGMENTS
We are grateful for funding from the Hellman Foundation (P.J.Y.), a KL2 Fellowship

(P.J.Y.) through the NIH/National Center for Advancing Translational Science (NCATS)
UCLA CTSI grant number UL1TR001881, UC Mexus and CONACYT (M.C.-L.), and a James F.
McDonnell Foundation Complex Systems Scholar Award (V.M.S.).

We thank Nina Singh for comments on the manuscript. We thank Rina Watanabe for
laboratory assistance.

REFERENCES
1. Chadwick LE, Rahn H. 1954. Temperature dependence of rattling fre-

quency in the rattlesnake, Crotalus v. viridis. Science 119:442–443.
https://doi.org/10.1126/science.119.3092.442.

2. Huey RB, Kingsolver JG. 1989. Evolution of thermal sensitivity of ecto-
therm performance. Trends Ecol Evol 4:131–135. https://doi.org/10.1016/
0169-5347(89)90211-5.

3. Lynch M, Gabriel W. 1987. Environmental tolerance. Am Nat 129:283–303.
https://doi.org/10.1086/284635.

4. Fenberg PB, Self A, Stewart JR, Wilson RJ, Brooks SJ. 2016. Exploring the
universal ecological responses to climate change in a univoltine butterfly.
J Anim Ecol 85:739–748. https://doi.org/10.1111/1365-2656.12492.

5. Somero G. 2010. The physiology of climate change: how potentials for ac-
climatization and genetic adaptation will determine ‘winners' and 'losers’.
J Exp Biol 213:912–920. https://doi.org/10.1242/jeb.037473.

6. Ohlberger J, Mehner T, Staaks G, Holker F. 2008. Temperature-related
physiological adaptations promote ecological divergence in a sympatric
species pair of temperate freshwater fish, Coregonus spp. Funct Ecol
22:501–508. https://doi.org/10.1111/j.1365-2435.2008.01391.x.

7. Bennett AF. 1980. The thermal dependence of lizard behaviour. Anim
Behav 28:752–762. https://doi.org/10.1016/S0003-3472(80)80135-7.

8. Savage VM, Gilloly JF, Brown JH, Charnov EL. 2004. Effects of body size
and temperature on population growth. Am Nat 163:429–441. https://doi
.org/10.1086/381872.

9. Ali RM. 1970. The influence of suspension density and temperature on
the filtration rate of Hiatella arctica. Mar Biol 6:291–302. https://doi.org/10
.1007/BF00353662.

10. Adams MP, Collier CJ, Uthicke S, Ow YX, Langlois L, O’Brien KR. 2017.
Model fit versus biological relevance: evaluating photosynthesis-temper-
ature models for three tropical seagrass species. Sci Rep 7:39930. https://
doi.org/10.1038/srep39930.

11. Padfield D, Yvon-Durocher G, Buckling A, Jennings S, Yvon-Durocher G.
2016. Rapid evolution of metabolic traits explains thermal adaptation in
phytoplankton. Ecol Lett 19:133–142. https://doi.org/10.1111/ele.12545.

12. Parmesan C. 2006. Ecological and evolutionary responses to recent cli-
mate change. Annu Rev Ecol Evol Syst 37:637–669. https://doi.org/10
.1146/annurev.ecolsys.37.091305.110100.

13. Beaugrand G, Reid PC, Ibanez F, Lindley JA, Edwards M. 2002. Reorganiza-
tion of North Atlantic marine copepod biodiversity and climate. Science
296:1692–1694. https://doi.org/10.1126/science.1071329.

14. Buckley LB, Huey RB. 2016. How extreme temperatures impact organisms
and the evolution of their thermal tolerance. Integr Comp Biol 56:98–109.
https://doi.org/10.1093/icb/icw004.

15. Angilletta MJ. 2009. Thermal adaptation: a theoretical and empirical syn-
thesis. Oxford Scholarship Online, Oxford, United Kingdom.

16. Angilletta MJ, Bennett AF, Guderley H, Navas CA, Seebacher F, Wilson RS.
2006. Coadaptation: a unifying principle in evolutionary thermal biology.
Physiol Biochem Zool 79:282–294. https://doi.org/10.1086/499990.

17. Gaitan-Espitia JD, Belen Arias M, Lardies MA, Nespolo RF. 2013. Variation
in thermal sensitivity and thermal tolerances in an invasive species across
a climatic gradient: lessons from the land snail Cornu aspersum. PLoS
One 8:e70662. https://doi.org/10.1371/journal.pone.0070662.

18. Dell AI, Pawar S, Savage VM. 2011. Systematic variation in the temperature
dependence of physiological and ecological traits. Proc Natl Acad Sci U S A
108:10591–10596. https://doi.org/10.1073/pnas.1015178108.

19. Demory D, Baudoux AC, Monier A, Simon N, Six C, Ge P, Rigaut-Jalabert F,
Marie D, Sciandra A, Bernard O, Rabouille S. 2019. Picoeukaryotes of the

Micromonas genus: sentinels of a warming ocean. ISME J 13:132–146.
https://doi.org/10.1038/s41396-018-0248-0.

20. Russell NJ, Sandercock SP. 1980. The regulation of bacterial membrane flu-
idity by modification of phospholipid fatty acyl chain length, p 181–190. In
Kates M, Kuksis A (ed), Membrane fluidity, vol 1. Humana Press, Totowa, NJ.

21. Mansilla MC, Cybulski LE, Albanesi D, Mendoza D. 2004. Control of mem-
brane lipid fluidity by molecular thermosensors. J Bacteriol 186:6681–6688.
https://doi.org/10.1128/JB.186.20.6681-6688.2004.

22. Maeda K, Imae Y, Shioi JI, Oosawa F. 1976. Effect of temperature on motil-
ity and chemotaxis of Escherichia coli. J Bacteriol 127:1039–1046. https://
doi.org/10.1128/jb.127.3.1039-1046.1976.

23. Paulick A, Jakovljevic V, Zhang S, Erickstad M, Groisman A, Meir Y, Ryu WS,
Wingreen NS, Sourjik V. 2017. Mechanism of bidirectional thermotaxis in
Escherichia coli. Elife 6:e26607. https://doi.org/10.7554/eLife.26607.

24. Takami H, Takaki Y, Chee GJ, Nishi S, Shimamura S, Suzuki H, Matsui S,
Uchiyama I. 2004. Thermoadaptation trait revealed by the genome
sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res
32:6292–6303. https://doi.org/10.1093/nar/gkh970.

25. Liao H, McKenzie T, Hageman R. 1986. Isolation of a thermo-stable
enzyme variant by cloning and selection in a thermophile. Proc Natl Acad
Sci U S A 83:576–580. https://doi.org/10.1073/pnas.83.3.576.

26. Chen Z, Farrell AP, Matala A, Narum SR. 2018. Mechanisms of thermal adap-
tation and evolutionary potential of conspecific populations to changing
environments. Mol Ecol 27:659–674. https://doi.org/10.1111/mec.14475.

27. Richter K, Haslbeck M, Buchner J. 2010. The heat shock response: life on
the verge of death. Mol Cell 40:253–266. https://doi.org/10.1016/j.molcel
.2010.10.006.

28. Mayer MP, Bukau B. 2005. Hsp70 chaperones: cellular functions and mo-
lecular mechanism. Cell Mol Life Sci 62:670–684. https://doi.org/10.1007/
s00018-004-4464-6.

29. Reed TE, Schindler DE, Waples RS. 2011. Interacting effects of phenotypic
plasticity and evolution on population persistence in a changing climate.
Conserv Biol 25:56–63. https://doi.org/10.1111/j.1523-1739.2010.01552.x.

30. Thomas MK, Aranguren-Gassis M, Kremer CT, Gould MR, Anderson K,
Klausmeier CA, Litchman E. 2017. Temperature-nutrient interactions
exacerbate sensitivity to warming in phytoplankton. Glob Chang Biol
23:3269–3280. https://doi.org/10.1111/gcb.13641.

31. Martin TL, Huey RB. 2008. Why “suboptimal” is optimal: Jensen’s inequal-
ity and ectotherm thermal preferences. Am Nat 171:E102–E118. https://
doi.org/10.1086/527502.

32. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC,
Martin PR. 2008. Impacts of climate warming on terrestrial ectotherms
across latitude. Proc Natl Acad Sci U S A 105:6668–6672. https://doi.org/
10.1073/pnas.0709472105.

33. Amarasekare P, Savage V. 2012. A framework for elucidating the temperature
dependence of fitness. AmNat 179:178–191. https://doi.org/10.1086/663677.

34. Cruz-Loya M, Kang TM, Lozano NA, Watanabe R, Tekin E, Damoiseaux R,
Savage VM, Yeh PJ. 2019. Stressor interaction networks suggest antibiotic
resistance co-opted from stress responses to temperature. ISME J
13:12–23. https://doi.org/10.1038/s41396-018-0241-7.

35. Cruz-Loya M, Tekin E, Kang TM, Rodriguez-Verdugo A, Savage VM, Yeh PJ.
2020. Antibiotics shift the temperature response curve of Escherichia coli
growth. bioRxiv https://doi.org/10.1101/2020.04.04.025874.

36. Vabulas RM, Raychaudhuri S, Hayer-Hartl M, Hartl FU. 2010. Protein fold-
ing in the cytoplasm and the heat shock response. Cold Spring Harb Per-
spect Biol 2:a004390. https://doi.org/10.1101/cshperspect.a004390.

Cruz-Loya et al.

July/August 2021 Volume 6 Issue 4 e00228-21 msystems.asm.org 14

https://doi.org/10.1126/science.119.3092.442
https://doi.org/10.1016/0169-5347(89)90211-5
https://doi.org/10.1016/0169-5347(89)90211-5
https://doi.org/10.1086/284635
https://doi.org/10.1111/1365-2656.12492
https://doi.org/10.1242/jeb.037473
https://doi.org/10.1111/j.1365-2435.2008.01391.x
https://doi.org/10.1016/S0003-3472(80)80135-7
https://doi.org/10.1086/381872
https://doi.org/10.1086/381872
https://doi.org/10.1007/BF00353662
https://doi.org/10.1007/BF00353662
https://doi.org/10.1038/srep39930
https://doi.org/10.1038/srep39930
https://doi.org/10.1111/ele.12545
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
https://doi.org/10.1126/science.1071329
https://doi.org/10.1093/icb/icw004
https://doi.org/10.1086/499990
https://doi.org/10.1371/journal.pone.0070662
https://doi.org/10.1073/pnas.1015178108
https://doi.org/10.1038/s41396-018-0248-0
https://doi.org/10.1128/JB.186.20.6681-6688.2004
https://doi.org/10.1128/jb.127.3.1039-1046.1976
https://doi.org/10.1128/jb.127.3.1039-1046.1976
https://doi.org/10.7554/eLife.26607
https://doi.org/10.1093/nar/gkh970
https://doi.org/10.1073/pnas.83.3.576
https://doi.org/10.1111/mec.14475
https://doi.org/10.1016/j.molcel.2010.10.006
https://doi.org/10.1016/j.molcel.2010.10.006
https://doi.org/10.1007/s00018-004-4464-6
https://doi.org/10.1007/s00018-004-4464-6
https://doi.org/10.1111/j.1523-1739.2010.01552.x
https://doi.org/10.1111/gcb.13641
https://doi.org/10.1086/527502
https://doi.org/10.1086/527502
https://doi.org/10.1073/pnas.0709472105
https://doi.org/10.1073/pnas.0709472105
https://doi.org/10.1086/663677
https://doi.org/10.1038/s41396-018-0241-7
https://doi.org/10.1101/2020.04.04.025874
https://doi.org/10.1101/cshperspect.a004390
https://msystems.asm.org


37. VanBogelen RA, Neidhardt FC. 1990. Ribosomes as sensors of heat and
cold shock in Escherichia coli. Proc Natl Acad Sci U S A 87:5589–5593.
https://doi.org/10.1073/pnas.87.15.5589.

38. Cardoso K, Gandra RF, Wisniewski ES, Osaku CA, Kadowaki MK, Felipach-
Neto V, Haus LFA, Simão RCG. 2010. DnaK and GroEL are induced in
response to antibiotic and heat shock in Acinetobacter baumannii. J Med
Microbiol 59:1061–1068. https://doi.org/10.1099/jmm.0.020339-0.

39. Goltermann L, Good L, Bentin T. 2013. Chaperonins fight aminoglycoside-
induced protein misfolding and promote short-term tolerance in Escherichia
coli. J Biol Chem 288:10483–10489. https://doi.org/10.1074/jbc.M112.420380.

40. Hofmann S, Cherkasova V, Bankhead P, Bukau B, Stoecklin G. 2012. Trans-
lation suppression promotes stress granule formation and cell survival in
response to cold shock. Mol Biol Cell 23:3786–3800. https://doi.org/10
.1091/mbc.E12-04-0296.

41. Sinha AK, Pavankumar TL, Kamisetty S, Mittal P, Ray MK. 2013. Replication
arrest is a major threat to growth at low temperature in Antarctic Pseudo-
monas syringae Lz4W. Mol Microbiol 89:792–810. https://doi.org/10
.1111/mmi.12315.

42. Lewis K. 2007. Persister cells, dormancy and infectious disease. Nat Rev
Microbiol 5:48–56. https://doi.org/10.1038/nrmicro1557.

43. Mitchell SM, Ullman JL, Teel AL, Watts RJ. 2014. pH and temperature
effects on the hydrolysis of three beta-lactam antibiotics: ampicillin, cefa-
lotin and cefoxitin. Sci Total Environ 466–467:547–555. https://doi.org/10
.1016/j.scitotenv.2013.06.027.

44. Loughman K, Hall J, Knowlton S, Sindeldecker D, Gilson T, Schmitt DM,
Birch JW, Gajtka T, Kobe BN, Florjanczyk A, Ingram J, Bakshi CS, Horzempa
J. 2016. Temperature-Dependent gentamicin resistance of Francisella
tularensis is mediated by uptake modulation. Front Microbiol 7:37.
https://doi.org/10.3389/fmicb.2016.00037.

45. Bush K, Bradford PA. 2016. b-Lactams and b-lactamase inhibitors: an
overview. Cold Spring Harb Perspect Med 6:a025247. https://doi.org/10
.1101/cshperspect.a025247.

46. Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. 2018. Ribosome-tar-
geting antibiotics: modes of action, mechanisms of resistance, and impli-
cations for drug design. Annu Rev Biochem 87:451–478. https://doi.org/
10.1146/annurev-biochem-062917-011942.

47. LeBel M. 1988. Ciprofloxacin: chemistry, mechanism of action, resistance, anti-
microbial spectrum, pharmacokinetics, clinical trials, and adverse reactions.
Pharmacotherapy 8:3–33. https://doi.org/10.1002/j.1875-9114.1988.tb04058.x.

48. Yeh P, Tschumi AI, Kishony R. 2006. Functional classification of drugs by
properties of their pairwise interactions. Nat Genet 38:489–494. https://
doi.org/10.1038/ng1755.

49. Segrè D, Deluna A, Church GM, Kishony R. 2005. Modular epistasis in yeast
metabolism. Nat Genet 37:77–83. https://doi.org/10.1038/ng1489.

50. Rodriguez-Verdugo A, Gaut BS, Tenaillon O. 2013. Evolution of Escherichia
coli rifampicin resistance in an antibiotic-free environment during thermal
stress. BMC Evol Biol 13:50. https://doi.org/10.1186/1471-2148-13-50.

51. Greulich P, Scott M, Evans MR, Allen RJ. 2015. Growth-dependent bacte-
rial susceptibility to ribosome-targeting antibiotics. Mol Syst Biol 11:796.
https://doi.org/10.15252/msb.20145949.

52. Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM. 1999. Aminoglycosides:
activity and resistance. Antimicrob Agents Chemother 43:727–737. https://
doi.org/10.1128/AAC.43.4.727.

53. Okie JG, Van Horn DJ, Storch D, Barrett JE, Gooseff MN, Kopsova L, Takacs-
Vesbach CD. 2015. Niche and metabolic principles explain patterns of diver-
sity and distribution: theory and a case study with soil bacterial commun-
ities. Proc Biol Sci 282:20142630. https://doi.org/10.1098/rspb.2014.2630.

54. Fischer K, Dierks A, Franke K, Geister TL, Liszka M, Winter S, Pflicke C. 2010.
Environmental effects on temperature stress resistance in the tropical
butterfly Bicyclus anynana. PLoS One 5:e15284. https://doi.org/10.1371/
journal.pone.0015284.

55. Brennan G, Collins S. 2015. Growth responses of a green alga to multiple
environmental drivers. Nat Clim Chang 5:892–897. https://doi.org/10
.1038/nclimate2682.

56. Rosso L, Lobry JR, Bajard S, Flandrois JP. 1995. Convenient model to describe
the combined effects of temperature and pH onmicrobial growth. Appl Envi-
ronMicrobiol 61:610–616. https://doi.org/10.1128/aem.61.2.610-616.1995.

57. Kovárová K, Zehnder AJ, Egli T. 1996. Temperature-dependent growth
kinetics of Escherichia coli ML 30 in glucose-limited continuous culture. J
Bacteriol 178:4530–4539. https://doi.org/10.1128/jb.178.15.4530-4539.1996.

58. Parra R, Magan N. 2004. Modelling the effect of temperature and water ac-
tivity on growth of Aspergillus niger strains and applications for food spoil-
age moulds. J Appl Microbiol 97:429–438. https://doi.org/10.1111/j.1365
-2672.2004.02320.x.

59. Cuppers HG, Oomes S, Brul S. 1997. A model for the combined effects of
temperature and salt concentration on growth rate of food spoilage
molds. Appl Environ Microbiol 63:3764–3769. https://doi.org/10.1128/
aem.63.10.3764-3769.1997.

60. Mlot C. 2009. Microbiology. Antibiotics in nature: beyond biological war-
fare. Science 324:1637–1639. https://doi.org/10.1126/science.324_1637.

61. Martínez JL. 2008. Antibiotics and antibiotic resistance genes in natural envi-
ronments. Science 321:365–367. https://doi.org/10.1126/science.1159483.

62. Dietrich LE, Teal TK, Price-Whelan A, Newman DK. 2008. Redox-active antibi-
otics control gene expression and community behavior in divergent bacte-
ria. Science 321:1203–1206. https://doi.org/10.1126/science.1160619.

63. Huey RB, Kingsolver JG. 2011. Variation in universal temperature depend-
ence of biological rates. Proc Natl Acad Sci U S A 108:10377–10378.
https://doi.org/10.1073/pnas.1107430108.

64. Rohr JR, Civitello DJ, Cohen JM, Roznik EA, Sinervo B, Dell AI. 2018. The
complex drivers of thermal acclimation and breadth in ectotherms. Ecol
Lett 21:1425–1439. https://doi.org/10.1111/ele.13107.

65. MacFadden DR, McGough SF, Fisman D, Santillana M, Brownstein JS.
2018. Antibiotic resistance increases with local temperature. Nat Clim
Chang 8:510–514. https://doi.org/10.1038/s41558-018-0161-6.

66. Gautam R, Bani-Yaghoub M, Neill WH, Dopfer D, Kaspar C, Ivanek R. 2011.
Modeling the effect of seasonal variation in ambient temperature on the
transmission dynamics of a pathogen with a free-living stage: example of
Escherichia coli O157:H7 in a dairy herd. Prev Vet Med 102:10–21. https://
doi.org/10.1016/j.prevetmed.2011.06.008.

67. Mermel LA, Machan JT, Parenteau S. 2011. Seasonality of MRSA infections.
PLoS One 6:e17925. https://doi.org/10.1371/journal.pone.0017925.

68. Lorenz MG, Wackernagel W. 1994. Bacterial gene transfer by natural
genetic transformation in the environment. Microbiol Rev 58:563–602.
https://doi.org/10.1128/mr.58.3.563-602.1994.

69. Walsh TR, Weeks J, Livermore DM, Toleman MA. 2011. Dissemination of
NDM-1 positive bacteria in the New Delhi environment and its implications
for human health: an environmental point prevalence study. Lancet Infect
Dis 11:355–362. https://doi.org/10.1016/S1473-3099(11)70059-7.

70. Molnar PK, Kutz SJ, Hoar BM, Dobson AP. 2013. Metabolic approaches to
understanding climate change impacts on seasonal host-macroparasite
dynamics. Ecol Lett 16:9–21. https://doi.org/10.1111/ele.12022.

71. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel
MD. 2002. Climate warming and disease risks for terrestrial and marine
biota. Science 296:2158–2162. https://doi.org/10.1126/science.1063699.

72. Rodríguez-Verdugo A, Lozano-Huntelman N, Cruz-Loya M, Savage V, Yeh
P. 2020. Compounding effects of climate warming and antibiotic resist-
ance. iScience 23:101024. https://doi.org/10.1016/j.isci.2020.101024.

73. Low-Décarie E, Boatman TG, Bennett N, Passfield W, Gavalás-Olea A,
Siegel P, Geider RJ. 2017. Predictions of response to temperature are con-
tingent on model choice and data quality. Ecol Evol 7:10467–10481.
https://doi.org/10.1002/ece3.3576.

74. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal
genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A
97:6640–6645. https://doi.org/10.1073/pnas.120163297.

75. Briere J-F, Pracros P, Le Roux A-Y, Pierre J-S. 1999. A novel rate model of
temperature-dependent development for arthropods. Environ Entomol
28:22–29. https://doi.org/10.1093/ee/28.1.22.

76. Salvatier J, Wiecki TV, Fonnesbeck C. 2016. Probabilistic programming in
Python using PyMC3. PeerJ Prepr 4:e1686v1. https://peerj.com/preprints/1686/.

77. Kucukelbir A, Tran D, Ranganath R, Gelman A, Blei DM. 2017. Automatic
differentiation variational inference. J Mach Learn Res 18:430–474.

78. Cruz-Loya M, Tekin E, Kang TM, Cardona N, Lozano-Huntelman N,
Rodriguez-Verdugo A, Savage VM, Yeh PJ. 2021. Data from “Antibiotics
shift the temperature response curve of Escherichia coli growth.” Dryad
Digital Repository https://doi.org/10.5068/D14T2B.

Antibiotics Shift the Temperature Response of E. coli

July/August 2021 Volume 6 Issue 4 e00228-21 msystems.asm.org 15

https://doi.org/10.1073/pnas.87.15.5589
https://doi.org/10.1099/jmm.0.020339-0
https://doi.org/10.1074/jbc.M112.420380
https://doi.org/10.1091/mbc.E12-04-0296
https://doi.org/10.1091/mbc.E12-04-0296
https://doi.org/10.1111/mmi.12315
https://doi.org/10.1111/mmi.12315
https://doi.org/10.1038/nrmicro1557
https://doi.org/10.1016/j.scitotenv.2013.06.027
https://doi.org/10.1016/j.scitotenv.2013.06.027
https://doi.org/10.3389/fmicb.2016.00037
https://doi.org/10.1101/cshperspect.a025247
https://doi.org/10.1101/cshperspect.a025247
https://doi.org/10.1146/annurev-biochem-062917-011942
https://doi.org/10.1146/annurev-biochem-062917-011942
https://doi.org/10.1002/j.1875-9114.1988.tb04058.x
https://doi.org/10.1038/ng1755
https://doi.org/10.1038/ng1755
https://doi.org/10.1038/ng1489
https://doi.org/10.1186/1471-2148-13-50
https://doi.org/10.15252/msb.20145949
https://doi.org/10.1128/AAC.43.4.727
https://doi.org/10.1128/AAC.43.4.727
https://doi.org/10.1098/rspb.2014.2630
https://doi.org/10.1371/journal.pone.0015284
https://doi.org/10.1371/journal.pone.0015284
https://doi.org/10.1038/nclimate2682
https://doi.org/10.1038/nclimate2682
https://doi.org/10.1128/aem.61.2.610-616.1995
https://doi.org/10.1128/jb.178.15.4530-4539.1996
https://doi.org/10.1111/j.1365-2672.2004.02320.x
https://doi.org/10.1111/j.1365-2672.2004.02320.x
https://doi.org/10.1128/aem.63.10.3764-3769.1997
https://doi.org/10.1128/aem.63.10.3764-3769.1997
https://doi.org/10.1126/science.324_1637
https://doi.org/10.1126/science.1159483
https://doi.org/10.1126/science.1160619
https://doi.org/10.1073/pnas.1107430108
https://doi.org/10.1111/ele.13107
https://doi.org/10.1038/s41558-018-0161-6
https://doi.org/10.1016/j.prevetmed.2011.06.008
https://doi.org/10.1016/j.prevetmed.2011.06.008
https://doi.org/10.1371/journal.pone.0017925
https://doi.org/10.1128/mr.58.3.563-602.1994
https://doi.org/10.1016/S1473-3099(11)70059-7
https://doi.org/10.1111/ele.12022
https://doi.org/10.1126/science.1063699
https://doi.org/10.1016/j.isci.2020.101024
https://doi.org/10.1002/ece3.3576
https://doi.org/10.1073/pnas.120163297
https://doi.org/10.1093/ee/28.1.22
https://peerj.com/preprints/1686/
https://doi.org/10.5068/D14T2B
https://msystems.asm.org

	RESULTS
	DISCUSSION
	MATERIALS AND METHODS
	Experimental framework.
	Mathematical framework.
	Data availability.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

