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Abstract
Purpose Laparoscopic liver resection has significant advan-
tages over open surgery due to less patient trauma and faster
recovery times, yet is difficult for most lesions due to the
restricted field of view and lack of haptic feedback. Image
guidance provides a potential solution but is challenging in
a soft deforming organ such as the liver. In this paper, we
therefore propose a laparoscopic ultrasound (LUS) image
guidance system and study the feasibility of a locally rigid
registration for laparoscopic liver surgery.
Methods We developed a real-time segmentation method to
extract vessel centre points from calibrated, freehand, elec-
tromagnetically tracked, 2D LUS images. Using landmark-
based initial registration and an optional iterative closest
point (ICP) point-to-line registration, a vessel centre-line
model extracted from preoperative computed tomography
(CT) is registered to the ultrasound data during surgery.
Results Using the locally rigid ICP method, the RMS resid-
ual error when registering to a phantom was 0.7 mm, and the
mean target registration error (TRE) for two in vivo porcine
studies was 3.58 and 2.99mm, respectively. Using the locally
rigid landmark-based registration method gave a mean TRE
of 4.23mm using vessel centre lines derived from CT scans
taken with pneumoperitoneum and 6.57mm without pneu-
moperitoneum.
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Conclusion In this paper we propose a practical image-
guided surgery system based on locally rigid registration
of a CT-derived model to vascular structures located with
LUS. In a physical phantom and during porcine laparoscopic
liver resection, we demonstrate accuracy of target location
commensurate with surgical requirements. We conclude that
locally rigid registration could be sufficient for practically
useful image guidance in the near future.
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Introduction

In theUK, approximately 1800 liver resections are performed
annually for primary or metastatic cancer. Liver cancer is a
major global health problem, and 150,000 patients per year
could benefit from liver resection. Currently, approximately
10%of patients are considered suitable for laparoscopic liver
resection, mainly those with small cancers on the periphery
of the liver. Potentially, laparoscopic resection has signifi-
cant benefits in reduced pain and cost savings due to shorter
hospital stays [7]. Larger lesions and those close to major
vascular/biliary structures are generally considered high risk
for the laparoscopic approach mainly due to the restricted
field of view and lack of haptic feedback.

We have developed a system that provides wider spatial
context and potentially greater accuracy by aligning a preop-
erative plan derived from magnetic resonance (MR) or CT
scans with the laparoscopic view. In this paper, we describe
a freehand laparoscopic ultrasound (LUS)-based system that
registers liver vessels in ultrasound (US) with MR/CT data.
Specifically, we evaluate whether within a small region of
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interest a locally rigid registration is sufficiently accurate for
surgical guidance.

Background

Previously reported commercial systems register using either
surfaces of the liver reconstructed using a dragged pointer
[14] or manual identification of four points (CAS-ONE1).
The former will lead to errors due to direct contact with a soft
tissue, while both are limited to a global rigid registration
which is clearly unrealistic with the abdominal insuffla-
tion needed in laparoscopy. We have previously developed
a system [24] for laparoscopic guidance based on dense
stereo surface reconstruction [25] and an iterative closest
point (ICP) [5]-based alignment to a surface derived from
a preoperative CT model. However, the research literature
suggests that deformable registration is a necessity for image
guidance [13,23]. But, deformable models are difficult to
validate [19] and may have multiple plausible solutions. It
is also essential that a surgeon understands the registration
accuracy while operating. We therefore propose a system
based on locally rigid registration and test whether such a
system is sufficiently accurate for surgical guidance. In this
paper, a LUS probe is used to scan a local region of interest
and update the global rigid registration based on the align-
ment of vessels in the preoperative CT and intraoperative
ultrasound data within the region of interest.

In the literature, Aylward proposed rigid body registra-
tion of 3D B-mode ultrasound to preoperative CT for radio
frequency ablation, based on a feature-to-image metric [2].
Lange, however, used a feature-to-feature method by extract-
ing vessel centre lines from CT and 3D power Doppler
ultrasound and then used ICP followed by multi-level B-
splines for non-rigid alignment [15]. This was subsequently
extended to incorporate vessel branch points as registration
constraints [16]. The branch points were automatically iden-
tified in advance of surgery in the CT data, but selected
manually in the ultrasound.

Accurate segmentation is a critical prerequisite for feature-
based registration, and ultrasound image segmentation is
itself a challenging problem, due to the low signal-to-noise
ratio. Noble provides a thorough review [20]. Subsequently,
Guerrero used an ellipsemodel to constrain an edge detection
algorithm [12], thereby extracting vessels from ultrasound
data for assessment of deep vein thrombosis. Later, Schnei-
der used power Doppler ultrasound to initialize and guide
vessel segmentation in B-mode images [22], replacing the
previously required [12] manual initialisation of vessel cen-
tres. A scale-space blob detection approach has been used by
Dagon et al. [8] and Anderegg et al. [1] to initialise vessel
regions and approximate vessel walls using an ellipse model.

1 http://www.cascination.com.

An alternative approach to feature-to-feature registration
is image-to-image registration. Penney et al. [21] transformed
a sparse set of freehand ultrasound slices to probability maps
and registered with resampled and preprocessed CT data.
Subsequently,Wein et al. [26] used amagnetic tracker to per-
form freehand3Dultrasound registrationof a sweepof data to
preprocessed CT, using a semi-affine (rotations, translations,
2 scaling, 1 skew) transformation. This work was extended
to non-rigid deformation using B-splines and tested in a neu-
rosurgical application [27].

Currently, there still exists challenges that are specific to
the use of freehand LUS in surgical applications. The meth-
ods of Aylward et al. [2] and Lange et al. [16] are based
on a 3D percutaneous probe. The probe is held stationary
while a mechanical motor sweeps the ultrasound transducer
in a predictable arc. Unfortunately, there are currently no
commercially available laparoscopic 3D ultrasound probes.
Wein’swork is based on a percutaneous probe, swept through
a volume collecting a dense set of slices [26], and Penney’s
work collects a sparse set of slices [21]. However, in a free-
hand laparoscopic setting, port positions and positioning of
the LUS probe are often restrictive, and control of the motion
during a sweep of data is often difficult, resulting in jerky
motion. Moreover, the relatively small field of view makes
the context difficult to interpret, and in our experience, it is
often difficult to obtain elliptical vessel outlines.

Contribution of this paper

In this paper, we describe a registration system to align mod-
els derived from preoperative MR/CT data to intraoperative
freehand ultrasound data taken using a 2D LUS probe. The
method has similarities to the preceding literature in that we
extract vessel centre lines as in [1,8,22] and use an ICP regis-
tration as in [15,22]. In addition, to the best of our knowledge,
while globally rigid [22] and additionally deformable [1,8]
registration of vessel models fromCT and US data have been
proposed, an evaluation of registration accuracy in vivo in
a clinically usable laparoscopic ultrasound system has not
been reported. The hypothesis of this paper is that local rigid
registration within a small region of interest is sufficient for
image guidance without deformable modelling, and the spe-
cific contributions of this paper are the delivery of a system
to achieve that, and a thorough evaluation of errors using a
phantom and during porcine laparoscopic liver resection.

Methods

Figure 1 shows an overview of the registration process. Ves-
sel centre points P are detected in 2D ultrasound images
and converted into 3D space via the ultrasound calibration
and tracking transformations. The preoperative CT scan is
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Fig. 1 Overview of the
registration process. Vessel
centre points P from ultrasound
data are registered to a vessel
centre-line graph G giving rigid
body transformation GTP

Fig. 2 Applying the
registration transformation to
anatomical models derived from
preoperative CT data enables
live visualisation of CT data,
within the context of live
laparoscopic video and
ultrasound data

preprocessed to extract a graph G representing vessel centre
lines. The ultrasound- derived data P and CT-derived data G
are registered using manually picked landmarks and/or the
ICP algorithm. The rigid body registration transformation
GTP enables the preoperative data to be visualised relative
to the live ultrasound imaging plane, as shown in Fig. 2.

Preprocessing preoperative data

A standard clinical tri-phase abdominal CT scan is obtained
and segmented2 to represent important structures such as the
liver, tumours, arteries, hepatic vein, portal vein, gall bladder.
Centre lines are extracted using the Vascular Modelling Tool
Kit (VMTK).3 This yields a vessel graph G, which can be
trivially processed to identify vessel bifurcation points.

Real-time Ultrasound Segmentation

Previous works on 2D ultrasound vessel segmentation use an
ellipse model to constrain the edge detection process [1,8,
12]. This approach assumes that vessels are imaged approx-
imately perpendicular to the vessel centre line, which is
not practical for laparoscopic use where movement is often
restricted by the position of a trocar. Moreover, it is not clear
how this approach handles topological changes of the exter-
nal contours of vessels in the 2D US images. Therefore, we
propose a flexible segmentation method that is not limited
to cross-sectional scans and can cope with topology changes
during the course of scanning. An example is shown in Fig. 3.

2 http://www.visiblepatient.com.
3 http://www.vmtk.org/tutorials/Centerlines.html.

Vessel enhancement image

The standard B-mode ultrasound images have a low signal-
to-noise ratio (Fig. 3a), so vessel structures are first enhanced
for more reliable vessel segmentation. Themulti-scale vessel
enhancement filter [10] is used, which is based on eigen-
value analysis of the Hessian. The eigen values are ordered
as |λ1| < |λ2|. The 2D “vesselness” of a pixel is measured
by
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β = 1 and c = 10 are thresholdswhich control the sensitivity
of the line filter to themeasures RB and S. In Fig. 3b, it can be
seen that some common artefacts on the ultrasound images,
e.g. shadows, are wrongly picked up by the enhancement
filter. For many cases, using only the prior knowledge of the
vessel intensity distributions is not sufficient to exclude those
non-vessel regions. To improve robustness, we adopt theDip
image as proposed by Penny et al. [21].

Creation of the Dip image

TheDip image (Idip)was originally designed to produce ves-
sel probability maps via a training data set. In this paper, we
only use the intensity differences (i.e. intensity dips) between
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Fig. 3 Vessel segmentation: a ultrasound B-mode image. b Vessel-
enhanced image. c Thresholded vessel-enhanced image. d Dip
image [21]. e Thresholded Dip image. f The candidate seeds of vessels

after thresholded vessel- enhance image is masked with the thresholded
Dip image. g Vessel contours are depicted in red, fitted ellipses, and
centres are in green

Fig. 4 Creation of the Dip image. Left Gaussian blurred ultrasound image (IU S). Centre The intensity profile along line (x0, xn). The location and
size of image regions which gives the values a, b and c. Right The resulting Dip image

regions of interest. The size of a region is determined by the
diameter of vessels. No additional artefact removal step is
required, except for a Gaussian filter over the US image.
Since we currently target the left liver lobe for surgical guid-
ance, we set the search range of vessel diameters from 9 to
3mm (roughly equal to 100–40 pixels on the LUS image) as
a porcine left lobe features relatively large vessels.

The Dip image is computed along the beam direction.
As we use a linear LUS probe, the beam directions can be
modelled as image columns. Figure 4 illustrates the calcula-
tion of three mean intensity values a, b and c, within regions
[x+v/2, x+v], [x−v, x−v/2], [x−v/2, x+v/2], respec-
tively, with x being a pixel at the i th column and v the vessel
width. If c < b and c < a, every pixel in [x − v/2, x + v/2]
on theDip image will have the value bv = min(a−c, b−c).
This process is repeated for each v in [vmin, vmax]. The final

pixel values at position [x − v/2, x + v/2] will be max(bv).
The steps above are repeated for every column of the US
image and all pixels along that column. This can be par-
allelised easily as each column is processed independently
of others. To reduce the search range of vessel diameters, a
coarse-to-fine pyramidal approach is proposed to speed up
the process further.

Segmentation and reconstruction

The vessel-enhanced image is thresholded at Te to eliminate
background noise; Fig. 3c. We create a mask image (Imask)

by applying a threshold (Td) to theDip image which is set as
half of maximum value of theDip image; Fig. 3e. These two
thresholds are set for the given B-mode imaging parameters,
e.g. gain, power, map.
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Fig. 5 Example of outlier rejection. The ellipse is fitted to the vessel
outline but the detected centre is rejected by the ellipse axes criteria

The de-noised vessel-enhanced image is masked with
Imask. Regions appearing on both images are kept (Fig. 3f).
The intensity distribution of those regions will be further
compared against the prior knowledge of vessel intensity and
will be removed if they are not matching, i.e. falling out of
the vessel intensity range. The remaining pixels are candidate
vessel seeds. The regions in the de-noised vessel enhance-
ment image containing such candidate seeds are identified as
vessels and their contours are detected.

Since vessel centre points are employed for registration
in this paper, ellipses are fitted to those contours to derive
centre points in each ultrasound image (Fig. 3g). Outliers
can be excluded by defining minimal and maximal ellipse
axes ratio and length, as demonstrated in Fig. 5. For example,
when an image is scanned near parallel to a vessel centre-line
direction, it results in large ellipse axes. This can be removed
by constraining the short axis length to the pre-defined vessel
diameter range [vmin, vmax], as described in section “Creation
of the Dip image”. An additional criterion is that the axes
ratio should be larger than 0.5. Otherwise, the vessel could
be scanned less than 30◦ to its centre-line direction, which
often does not produce reliable ellipse centres.

The vessel centres, in 2D pixel coordinates are multiplied
by the ultrasound calibration, and the probe tracking transfor-
mation and hence converted into 3D data points (P), which
are used to register the preoperative CT data to the patient in
the operation room.

Registration

Figure 6a, b illustrates the landmarks and vectors used for
initial alignment. A landmark L and two vectors, u and v,
are defined on the preoperative centre-line model G, along
with their correspondences L ′, u′, v′ in the derived centre

Fig. 6 Example of corresponding landmarks and vectors in the hepatic
vein, as used for initial alignment. a Intraoperative centre points P .
b Preoperative centre-line model G. c Preoperative centre-line model
G is aligned to intraoperative centre points P using ICP

points P . Currently, this was done manually. An initial rigid
registration is obtainedby the alignment of landmarks {L , L ′}
which gives the translation, and vectors {u, u′} and {v, v′}
which computes the rotation. After the initial alignment, the
ICP algorithm [5] is applied to further refine the registration
of preoperative data G to the intraoperative data P (Fig. 6c).

Experiments and results

Experiments were performed to determine the overall reg-
istration accuracy of the system, and to identify sources of
error from various component parts (sections “Ultrasound
calibration error” and “Vessel segmentation error”). Our sys-
tem uses an electromagnetic (EM) tracker, which is known to
display tracking inaccuracies due to magnetic field inhomo-
geneities [11]. Various works have tried to mitigate against
EM tracking inaccuracies by calibration [18] and combi-
nation with optical trackers [9]. The focus of this paper is
the practicalities of intraoperative registration, so we refer to
the manufacturer-claimed position accuracy of 1.4mm RMS
and orientation accuracy of 0.5◦ RMS. A fundamental point
for surgical navigation is that while the presented algorithm
determines the registration transformation PTG from preop-
erative data G to intraoperative data P , the actual navigation
accuracy will be the composition of the registration accu-
racy, the EM tracking accuracy as the probe moves, the US
calibration accuracy and the deformation of the liver due to
the US probe itself. For this reason, separate data are used
to assess registration accuracy (section “Registration accu-
racy: in vivo”), and navigation accuracy (section “Navigation
accuracy: in vivo”). In experiments “Registration accuracy:
in vivo” and “Navigation accuracy: in vivo”, we use vessel
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Fig. 7 Evaluation of ultrasound
calibration using an eight- point
phantom. a Eight-point
phantom. b A LUS B-mode
scan of pins on phantom. c 3D
positions of eight pins obtained
from tracked LUS scans are
depicted in yellow. The ground
truth position of eight pins is
depicted in green

models derived from CT scans taken using pneumoperi-
toneum (insufflated), which are not available clinically. So
in section “Comparison of insufflated versus non-insufflated
models”, we specifically compare registration and navigation
accuracywhen registering to CT-derived vessel models using
pneumoperitoneum (insufflated) and without pneumoperi-
toneum (non-insufflated). US images were collected under
controlled breathing (Boyles apparatus), which is discussed
later.

Experimental set-up

Our data acquisition system is built upon the NifTK plat-
form [6]. Live LUS images are acquired at 25 frames per
second (fps). We used an Analogic4 SonixMDP, and a
Vermon5 LP7 linear probe. An Ascension6 3D Guidance
medSafe mid-range electromagnetic (EM) tracker was used
to track the LUS probe at 60 fps via a six-degrees-of-freedom
(6-DOF) sensor (Model 180) attached to the articulated
tip.

Ultrasound calibration error

The LUS probe was calibrated at a scanning depth of 45mm
before surgery using an invariant point method [17]. The
scanning depth of the LUS probe was not changed through-
out our experiments. The validation phantom is shown in
Fig. 7a, and described further in [4]. Eight pins on the
phantom were scanned in turn using the LUS probe. The
pin heads were manually segmented from the US images,
Fig. 7b. 100 frames were collected at each pin to min-
imise the impact of manual segmentation error. Their 3D
positions in the EM coordinate system were computed by
multiplying the 2D pixel location by the calibration transfor-
mation and then the EM tracking transformation, Fig. 7c.
The accuracy of these computed 3D positions were vali-
dated based on two ground truths. The first ground truth is
the known geometry of the 8-pin phantom, where the pins
are arranged on a 4 × 2 grid, with each side being 25mm

4 http://www.analogicultrasound.com.
5 http://www.vermon.com.
6 http://www.ascension-tech.com.

Table 1 Error measures for each reconstructed pin position

Pin number

1 2 3 4 5 6 7 8

RMS error (mm) 2.89 3.40 1.28 0.81 2.35 1.59 2.20 2.82

See Fig. 7c

in length. The resulting mean edge length was 24.62mm.
The second ground truth is the physical positions of the
eight phantom pins in the EM coordinate system, which
are measured by using another EM sensor tracked by the
same EM transmitter, Fig. 7c. The distance between each
reconstructed pin and its ground truth position is listed in
Table 1.

Vessel segmentation error

LUS images were acquired from a phantommade fromAgar.
The phantom contained tubular structures filled with water,
as shown in Fig. 8a, b. The ground truth is the diameter of
the tubular structures manufactured as 6.5mm. One hundred
and sixty images (640 × 480 pixels) were collected. The
contours of the tubular structures were automatically seg-
mented from the US images and fitted with ellipses, so that
the short ellipse axis approximated the diameter of the tubular
structures, Fig. 8c–e. The resultingmean (standard deviation)
diameter of the segmented contours was 6.4 (0.17)mm. The
average time of the image processing on one US image was
100ms.

Registration accuracy: phantom

The registration accuracy was assessed on the same phan-
tom as section “Vessel segmentation error”, Fig. 8. Using the
presented algorithm, the tubular structures were automati-
cally segmented, the centre points extracted, and converted
to EM coordinates by multiplication with the US calibration
matrix and EM tracker matrix. These reconstructed points
were rigidly registered to the centre lines of the phantom
tubular structures using the ICP method. Figure 9 illus-
trates the registration of reconstructed points to the phantom
model. The RMS residual error given by the ICPmethod was
0.7mm.
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Fig. 8 Validation of vessel
segmentation on a phantom.
a Phantom design. The rods will
be removed after filling the box
with Agar. b LUS probe
sweeping across the surface of
the phantom which is made
from Agar. An EM sensor is
attached to the probe and
tracked. c–e LUS images of the
tubular structures. The outlines
are depicted in red. The ellipses
fitted to the outlines are depicted
in green. The extracted ellipse
centres are depicted in green

Fig. 9 Validation of vessel registration on a phantom: the reconstructed
contours from the ultrasound data (yellow rings) were rigidly registered
to the phantom using ICP

Registration accuracy: in vivo

The overall registration accuracy was evaluated during
porcine laparoscopic liver resection using two studies of the
same subject. The LUS images were acquired from the left
lobe of the liver, before and after a significant repositioning
of the lobe. The surgeon swept the liver surface in a steady
way to make sure vessel centre points were densely sam-
pled and gently so as not to cause significant deformation
of the liver surface. The US imaging parameters for bright-
ness, contrast and gain control were preset values and not
changed during scanning. About 10 images per second were

segmented. In the first study, in total 370 images (640×480
pixels) were processed. In the second study, 340 images were
processed. The detected vessel centres were converted into
3D data points P . Two tri-phase clinical CT scans had been
obtained a week earlier, one with insufflation (12mm Hg)
and one without. Vessel centre lines were extracted using the
model derived from the insufflated CT scan. The registration
method of section “Registration” was applied, registering the
preoperative centre-line model G to the intraoperative data
set P . For the first study, eight bifurcations were manually
identified and labelled in both the US images and the CT
data, to be used for anatomical targets, as shown in Fig. 10b.
The mean TRE was 3.58mm, and the maximum TRE was
5.76mm. For the second study, three bifurcations (i.e. num-
ber 1, 2, 4 in Fig. 10) were identified, as only the middle part
of the left lobe of the liver was scanned. The mean TRE was
2.99mm and the maximum TRE was 4.37mm.

Navigation accuracy: in vivo

To evaluate the navigation accuracy, the surgeon scanned
another LUS image sequence for each study (giving four
US data sets in total), again using minimal force on the LUS
probe to avoid deformation. Using the same bifurcation land-
marks as in the registration experiment (section “Registration
accuracy: in vivo”), the corresponding landmarks on LUS
imagesweremanually identified. For the first study, themean
TRE was 4.48mm and the maximum TREwas 7.18mm. For
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Fig. 10 Hepatic vein landmark positions. a Eight bifurcation land-
marks on the centre-line model were used to measure TRE in the first
study. b Three bifurcation landmarks on the centre-line model were
used to measure TRE in the second study

the second study, the mean TRE was 3.71mm and the max-
imum TRE was 4.40mm.

Comparison of insufflated versus non-insufflated
models

In sections “Registration accuracy: in vivo” and “Naviga-
tion accuracy: in vivo”, we used the insufflated CT model to
evaluate the registration and navigation accuracy. In clinical
practice, the patient would be scanned without insufflation,
so in this section we used vessel centre lines derived from
both insufflated and non-insufflated CT data. From the first
study, landmarks 1, 2, 4, 5 (see Fig. 10a) weremanually iden-
tified and labelled in both the US images and the CT data.
From the second study, landmarks 1, 2, 4 (see Fig. 10b) were
used.Using each landmark a registrationwas performed, reg-
istering the CT data to the US using the manual registration
method (a landmark and two vectors, illustrated in Fig. 6a,
b). For each registration the TRE was evaluated as in section
“Registration accuracy: in vivo” using the eight bifurcations
for the first study and the three bifurcations for the second
study. The measures of TRE are presented graphically in
Fig. 11. Similarly the navigation error is measured on the
second LUS sequence for each study for each locally rigid
registration. The measures of navigation error are illustrated
in Fig. 12.

Discussion

In this paper, we describe and evaluate a practical laparo-
scopic image guidance system based on a fast and accurate

Fig. 11 Evaluation of registration accuracy with locally rigid registra-
tion. The errors are shown as a function of distance from the landmark
used to register. Within 35-mm distance to the reference points, 76%
landmarks have TRE smaller or equal to 10mmwith the insufflated CT
model; 72% for the non-insufflated CT model

Fig. 12 Evaluation of navigation accuracy with locally rigid registra-
tion. The errors are shown as a function of distance from the reference
landmarks. Within 35-mm distance to the reference points, 74% land-
marks have TRE smaller or equal to 10mm with the insufflated CT
model; 71% for the non-insufflated CT model

vessel centre-point reconstruction coupled with a locally
rigid registration to the preoperative model using vascular
features visible in LUS.

In section “Ultrasound calibration error”, we checked the
accuracy of the invariant point calibration method. The mean
edge length between pins in the 8-pin phantomwas 24.62mm
comparedwith amanufactured edge length of 25mm.Table 1
shows the reconstructed physical position errors between
0.81 and 3.40mm, and an average of 2.17mm, and this
includes errors inmeasuring the gold standard itself.We con-
cluded that although simple, this was comparable to other
methods [17]. Future work could try improve calibration
accuracy, specifically for LUS probes.

We subsequently checked the segmentation accuracy on
a phantom (section “Vessel segmentation error”). The phan-
tomwas constructed via 3Dprinting a computer-aided design
(CAD) model. So, the plastic phantom had known geome-
try with a tolerance of 0.1mm. The reconstructed size of the
internal diameter of the tubes was 6.4mm compared with
the diameter in the CAD model of 6.5mm and was deemed
within tolerance. Furthermore, in section “Registration accu-
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racy: phantom” we see that the ICP-based registration of the
point cloud resulting from the US segmentation to the CAD
model itself gave a RMS error of 0.7mm.

In section “Registration accuracy: in vivo”, we evaluated
the registration accuracy in two in vivo studies. The mean
TRE was 3.58 and 2.99mm, measured at eight and three
identifiable landmarks,respectively. This represents a best-
case scenario for rigid registration, as we used an insufflated
CT model, and a large region of interest (left temporal lobe).
However, it does include movement due to respiration and
cardiac pulsatilemotion. The controlled breathingmeans that
most of the time is spent near maximum exhale. We col-
lected data for around 40 seconds, over several breathing
cycles. Thus we assume that for the ICP-basedmethods, over
a large region of interest, the data will be somewhat noisy,
but the registration will average over the noise. For the man-
ual landmark- based registration, future work will consider
breath-holding techniques, faster software or a footswitch
synchronised to the breathing. During the cardiac cycle,
vessels pulsate and change size. We mitigated against this
problem by using vessel centre lines which should be more
reliable than vessel external contours.

From the initial registration, a second test data setwas used
to evaluate navigation accuracy. This incorporates the error
due to registration, additional nonlinear EM tracking errors
and errors due to further liver deformation via the US probe.
Comparing the TRE errors of the corresponding data set in
sections “Registration accuracy: in vivo” and “Navigation
accuracy: in vivo”, the navigation accuracy is only slightly
worse than the registration accuracy, if the surgeonperformed
the US scans in a consistent way. This also suggests the EM
tracking error may not be a major problem, although further
work is needed here.

In clinical practice, the patient will not be CT scanned
while insufflated. The preoperative, non-insufflated CT will
have a significantly different shape to that seen during
surgery. So we compared registration of both insufflated and
non-insufflated CT. It was difficult to identify corresponding
landmarks in bothCT scans. So rather than having eight land-
marks in study 1, we could only identify landmarks labelled
as 1, 2, 4 and 5 in Fig. 10a consistently in both insufflated
and non-insufflated CT models. If a large region of interest
was scanned using the US probe, the ICP-based registra-
tion to non-insufflated CT models was unreliable, due to
the significantly different shape. If a small region of inter-
est was scanned, then the smaller the structure, the more
likely it was to be featureless, e.g. more closely resembling a
line. So, to directly compare insufflated with non-insufflated
registration, the manual landmark- based method (section
“Registration”) was used around individual bifurcations, so
as to be consistent across the two studies. Comparing Figs. 11
and 12, we can see that there are similar errors when using
non-insufflated or insufflated errors. But an acceptable level

(<5mm) is achievable only near to a registration point. Inter-
estingly, the navigation errors are similar. We tested locally
rigid registrations on both insufflated and non-insufflated CT
models which gave mean (standard deviation) errors of 4.23
(2.18)mmand6.57 (3.41)mm,whenmeasured at target land-
marks located within 10mm of the landmark used to register.
When measured within 35mm to the reference points, over
70% of the target landmarks have errors smaller or equal to
10mm for both model. Figures 11 and 12 show that if TREs
are assessed away from the reference points, then errors do
indeed increase.

Considering the state of the art in finite element meth-
ods that do attempt to compensate for tissue deformation,
Suwelack et al. [23] measured errors of 5.05 mm and 8.7
mm on a liver phantom, Haouchine et al. [13] measure
registration accuracy at two points as 2.2 and 5.3, in an ex-
vivo trial while Bano et al. [3] measure 4mm error at the
liver surface but 10mm error at structures internal to the
liver. Although deformable models based on understanding
of the biomechanics of tissue deformation are developing
rapidly [3,13,23], there remain significant issues of vali-
dation in a surgical environment. We anticipate that it will
be a long time before the surgeon has sufficient faith in a
deforming model alone to guide surgical decisions during
resection itself. However we do propose that this locally
rigid registration system is practical and could relatively
easily be automated with minimal user intervention. Local
regions could also be used to drive and validate a deformable
model.

Conclusion

While this work is preliminary and performed on two studies
from a single porcine experiment, we believe that the results
provide preliminary evidence that our method is sufficiently
accurate to be further developed and validated using animal
models and clinically. Given a simple interface and a suffi-
ciently close initial estimate, the liver could be scanned round
the target lesion and nearby vessel bifurcations, and then it
may be possible to obtain registration errors of the order of 4–
6mmwith nodeformablemodelling.Our proposedmethod is
both practical and provides guidance to the surgical target. It
also implicitly includes information on the location of nearby
vasculature structures which are the same structures that the
surgeon needs to be aware of when undertaking laparoscopic
resection. It may be that such a system has advantages over
open surgery and haptics where the surgeon still remains
blind to the precise location of these structures. Future work,
considering either the vessel centre lines and deformable reg-
istration or combining ultrasound vessel centre lines into a
deformable model will likely provide either better accuracy,
more robustness or both.
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