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Intubated COVID‑19 predictive 
(ICOP) score for early mortality 
after intubation in patients 
with COVID‑19
Mitsuaki Nishikimi1,13, Rehana Rasul2,13, Cristina P. Sison2,3, Daniel Jafari4,5, 
Muhammad Shoaib1,3, Koichiro Shinozaki1,5, Timmy Li3, Kei Hayashida1, 
Daniel M. Rolston3,4,5, Jamie S. Hirsch3,6,7, Lance B. Becker1,3,5* & The Northwell Health 
COVID-19 Research Consortium*

Patients with coronavirus disease 2019 (COVID-19) can have increased risk of mortality shortly 
after intubation. The aim of this study is to develop a model using predictors of early mortality after 
intubation from COVID-19. A retrospective study of 1945 intubated patients with COVID-19 admitted 
to 12 Northwell hospitals in the greater New York City area was performed. Logistic regression model 
using backward selection was applied. This study evaluated predictors of 14-day mortality after 
intubation for COVID-19 patients. The predictors of mortality within 14 days after intubation included 
older age, history of chronic kidney disease, lower mean arterial pressure or increased dose of required 
vasopressors, higher urea nitrogen level, higher ferritin, higher oxygen index, and abnormal pH levels. 
We developed and externally validated an intubated COVID-19 predictive score (ICOP). The area under 
the receiver operating characteristic curve was 0.75 (95% CI 0.73–0.78) in the derivation cohort and 
0.71 (95% CI 0.67–0.75) in the validation cohort; both were significantly greater than corresponding 
values for sequential organ failure assessment (SOFA) or CURB-65 scores. The externally validated 
predictive score may help clinicians estimate early mortality risk after intubation and provide guidance 
for deciding the most effective patient therapies.

Coronavirus disease 2019 (COVID-19) was designated as a global pandemic in March 2020 by the World Health 
Organization. By September 2020, there were over 32 million people globally with COVID-19 and approximately 
985 000 deaths. The United States has surpassed all other countries in total cases (almost 7 million) and deaths 
(over 202 000)1,2. Approximately 16% of the patients infected with COVID-19 showed severe acute respiratory 
failure1, and 4–12% needed invasive respiratory support3,4.

The in-hospital mortality rate of intubated COVID-19 patients worldwide ranges from approximately 8% to 
67%5,6, but in the US, it is between 23 and 67%5. There is substantial variability in the disease process, such that 
some patients rapidly deteriorate and die of severe respiratory failure or multiple organ failure within 1 to 2 weeks 
after intubation, while others recover, despite requiring mechanical ventilation. Stratifying the risk of further 
deterioration in these patients serves to help guide medical providers and family members in joint decision-
making about the future treatment options of the patients, as well as to stratify patients in future epidemiologic/
therapeutic studies for COVID-197. To date, many independent factors used to predict mortality of admit-
ted COVID-19 patients have been reported8–11, but none are designed exclusively for intubated patients—the 
most severely ill population with the highest risk of death. Also, a recent study showed sequential organ failure 
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assessment (SOFA) score, which has been typically used for estimating severity of intubated patients, did not 
show acceptable predictive accuracy (area under the curve [AUC] = 0.59), which means a better prediction tool 
for this population is needed12.

Identifying patients with a high risk of early phase mortality after intubation is clinically important because 
these patients may require more aggressive therapeutic strategies, such as rescue therapy with extracorporeal 
membrane oxygenation (ECMO)13. In some cases, patients need to be transferred to tertiary hospitals as soon as 
possible where these treatments are available. Therefore, the aim of this study was to develop a predictive score 
that could identify COVID-19 patients with high risk of early mortality after intubation.

Material and methods
This retrospective cohort study was conducted at hospitals in Northwell Health, the largest academic health 
system in New York, serving approximately 11 million people annually. The Northwell Health Institutional 
Review Board approved this study as minimal-risk research using data collected for routine clinical practice 
and waived the requirement for informed consent. All the methods were performed in accordance with all the 
relevant guidelines and regulations.

The study included all patients (18 years or older) who required hospitalization and intubation and with 
confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection between March 1, 2020 and 
April 27, 2020. COVID-19 was confirmed by a positive result on polymerase chain reaction (PCR) testing of a 
nasopharyngeal sample. Patients were admitted to one of 12 Northwell Health hospitals, and clinical outcomes 
were monitored until July 20, 2020, the final follow-up date.

Data collection.  Data were collected from our health system’s electronic medical record (EHR; Sunrise 
Clinical Manager; Allscripts, Chicago, IL, U.S.) reporting database. Manual chart reviews were conducted by 
research staff and medical students.

Data collected included patient demographic information (age, sex, race, insurance type, language), comor-
bidities, laboratory test results and vital signs at the time of intubation, diagnoses during the hospital course, 
treatments, and outcomes (7-, 14-, and 28-day mortality after intubation). Race was self-reported in pre-specified 
fixed categories in the electronic medical record. The primary outcome was in-hospital mortality within 14 days 
after intubation. Mortality within 28 days after intubation was the secondary outcome. For analyses on 28-day 
mortality after intubation, patients were excluded if they were transferred out of the Northwell Health system 
before 28 days.

Patients were excluded if they were less than 18 years old at time of admission, died within 24 h after intuba-
tion, transferred to a hospital outside of Northwell Health system within 14 days after intubation, transferred 
into the Northwell Health system from outside hospitals after intubation, or were placed on ECMO.

We separated the data for the derivation and validation cohorts based on region to perform narrow external 
validation14, with New York City and Suffolk County cases in the derivation sample and Nassau County cases in 
the validation sample. All methods for separating the cohorts, variable selection, imputation for missing values, 
and statistical modeling to determine the predictive score were decided before the development of the analytic 
datasets. Additional information for the statistical analyses performed is provided in the eMethods in the Sup-
plementary material.

Model construction.  Candidate predictors, chosen from clinical variables which can be easily obtained 
in the early phase after intubation, and the proportion of missing data for each variable were summarized in 
eTable 1 in the Supplementary material. Multiple imputation was performed, assuming data were missing at 
random, for candidate predictors with < 25% missing values, using predictive mean matching for continuous 
variables and discriminant analysis for categorical variables. Logistic regression models starting with all 36 can-
didate predictors were fitted to determine the predictive score using each of the 33 imputed datasets from the 
derivation cohort. Backwards selection using P < 0.01 and P < 0.05 was applied for variable selection. The selec-
tion criterion yielding the fewest candidate predictors with minimal loss of discrimination was then selected. 
Logistic regression was again performed for each imputed dataset using variables appearing in at least half of the 
models. Rubin’s rules were used to calculate pooled estimates and standard errors15.

Development of the simplified score.  A logistic regression was performed for each imputed dataset 
using all selected variables from the model construction and estimates were pooled using Rubin’s rules. If a 
selected variable was continuous, it was categorized before inclusion in the model. For each variable, points 
equivalent to the odds ratio corresponding to the group to which the patient belonged, were rounded to the 
nearest integer and assigned to each patient. A patient in a reference group was assigned 0 points. The simplified 
score, sICOP, was calculated as the sum of the points across all variables for the patient.

Model performance.  Model performance of the predictive score as well as the simplified score was assessed 
using discrimination and calibration. Discrimination was quantified as the area under the receiver operating 
characteristic curve (c-statistic). To simplify reporting, predicted probabilities were averaged across the imputed 
datasets to calculate the c-statistic. Calibration was assessed by plotting the agreement between observed out-
comes and predicted probabilities.

Internal and external validation.  Both the predictive score and simplified score were internally validated 
using the optimism-corrected c-statistic. The derivation cohort was bootstrapped 100 times with replacement 
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and each bootstrapped dataset was imputed 33 times, resulting in 3300 imputed datasets. Model selection was 
performed in each of the 3300 imputed datasets using backward selection. Optimism was calculated as the 
average of the differences between the c-statistic from each model and the c-statistic from the bootstrapped 
model when applied to the original dataset. The validation cohort was imputed 33 times using similar proce-
dures described for the derivation cohort. The c-statistics of our new predictive scores in both the derivation 
and validation cohorts were compared to the corresponding values for the SOFA score and the CURB-65 score 
using Delong’s test16. In the comparison with SOFA score or CURB-65 score, only patients in whom all variables 
needed for the calculation of the corresponding scores were available, were analyzed. We used the guidelines 
for reporting and analysis from the Transparent Reporting of multivariable prediction model for Individual 
Prognosis or Diagnosis (TRIPOD) statement14. All analyses were performed using SAS 9.4 (SAS Institute Inc., 
Cary, NC).

Ethics approval and consent to participate.  Ethics approval was obtained by the Institutional Review 
Board of Northwell Health.

Consent to publish.  The Northwell Health institutional review board approved this study as minimal-risk 
research using data collected for routine clinical practice and waived the required for informed consent.

Results
A total of 2182 adult intubated patients with COVID-19 admitted to all hospitals in Northwell Health system 
were included (n = 1546 for the derivation cohort and n = 636 for the validation cohort). Among them, 157 and 
80 were excluded, respectively, because they were under 18 years old (n = 14 and n = 0), died within 24 h after 
intubation (n = 104 and n = 60), transferred outside of the Northwell Health system within 14 days after intubation 
(n = 31 and n = 11), transferred from hospitals outside of the Northwell Health system after intubation (n = 3 and 
n = 2), or placed on ECMO (n = 5 and n = 7). The data of the remaining 1389 and 556 patients were analyzed in 
this study, respectively (Fig. 1). Characteristics of the derivation and validation cohorts, such as age, sex, race, 
comorbidities and treatments, are indicated in Table 1.

The 14-day mortality rate was 43.8% (608/1389) in the derivation and 48.0% (267/556) in the validation 
cohort. A total of 36 factors were considered as candidate predictors for developing the predictive score (eTable 2 
in the Supplementary material). After the model selection process, 7 variables were selected (age, past medical 
history of chronic kidney disease [CKD], the values of mean arterial pressure [MAP]/needed dose of vasopres-
sors, oxygen index [OI], the laboratory values of blood urea nitrogen [BUN], ferritin, and pH) (eFigure 1 in 
the Supplementary material). Increased age, and values of OI, BUN, and ferritin were associated with increased 
odds of early mortality after intubation, as well as the past medical history of CKD. Abnormal levels of pH 
were also associated with increased odds of early mortality compared to normal levels. Patients who required 

Figure 1.   Flow diagram of patients. NH, Northwell Health; ECMO, extracorporeal membrane oxygenation.
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Derivation cohort Validation cohort

Demographic information

Total no 1389 556

Age, median (IQR), y 65 (56–73) 67 (58–75)

Sex, male, n (%) 964 (69.4) 366 (65.8)

BMI, median (IQR)a 29 (26–34) 29 (25–34)

Raceb, n (%)

 Asian 129 (9.3) 66 (11.9)

 Black 223 (16.1) 119 (21.4)

 White 499 (35.9) 211 (38.0)

 Other/multiracial 467 (33.6) 142 (25.5)

 Unknown 71 (5.1) 18 (3.2)

Insurance, n (%)

 Commercial 427 (30.7) 161 (29.0)

 Medicaid 303 (21.8) 113 (20.3)

 Medicare 610 (43.9) 272 (48.9)

 Otherc/self pay 49 (3.5) 10 (1.8)

Language, n (%)

 English 1032 (74.3) 445 (80.0)

 Other 357 (25.7) 111 (20.0)

Time from admission until intubation, median (IQR), days 1.94 (0.3–5.1) 2.17 (0.2–5.5)

Intubation at pre-hospital or ER 188 (13.5) 67 (12.1)

Comorbidities, n (%)

Hypertension 849 (61.1) 346 (62.2)

Diabetes 564 (40.6) 244 (43.9)

Heart disease 385 (27.7) 173 (31.1)

Lung disease 237 (17.1) 99 (17.8)

Cancer 131 (9.4) 65 (11.7)

Dementia 54 (3.9) 19 (3.4)

CKD 120 (8.6) 46 (8.3)

Chronic liver diseases 27 (1.9) 14 (2.5)

Vital signs, median (IQR)a

Heart rate, beats/mina 106 (89–122) 110 (94–126)

Mean arterial pressure, mmHg 77 (67–90) 75 (65–88)

Urinary OUTPUT, ml/kg/h 3.2 (1.5–5.7) 3.2 (1.4–5.5)

Laboratory values, median (IQR)a

Albumin, g/dL 2.9 (2.5–3.3) 2.7 (2.3–3.1)

ALP, U/L 86.5 (64–123) 93 (64–138)

Total bil, mg/dL 0.6 (0.4–0.9) 0.6 (0.4–0.8)

Total protein, g/dL 6.8 (6.2–7.4) 7 (6.4–7.6)

BUN, mg/dL 26 (16–43) 27 (17–44)

Creatinine, mg/dL 1.2 (0.8–1.8) 1.1 (0.8–1.9)

CRP, mg/L 15.54 (8.16–25.38) 13.9 (6.78–23.52)

d-dimer, × 103 μg/ml 1.2 (0.6–4.2) 1.2 (0.6–3.9)

Ferritin, × 103 ng/ml 1.1 (0.7–2.1) 1.1 (0.7–2.3)

Hematocrit, % 39 (35–43) 39 (35–44)

NLRa 12.4 (7.6–21.6) 11.7 (7.3–21.5)

Plat count, 105//μL 2.4 (1.8–3.3) 2.4 (1.8–3.4)

Potassium, mmol/L 4.3 (3.9–4.8) 4.2 (3.8–4.8)

Procalcitonin, ng/mL 0.6 (0.2–1.5) 0.5 (0.2–1.5)

RCDW, % 13.9 (13.2–14.9) 14.1 (13.2–15.2)

Sodium, mmol/L 138 (135–142) 138 (134–142)

WBC Count, K/μL 11.9 (8.6–16.7) 12.3 (8.5–18.2)

Lactate, mmol/L 1.7 (1.2–2.6) 2 (1.4–3.2)

Blood gases, median (IQR)a

AaDO2 487 (375–554) 507 (402–554)

PF ratio 131 (87–203) 117 (86–176)

Continued
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dopamine > 15 µg/kg/min or epinephrine > 0.1 µg/kg/min, or those who required epinephrine > 0.2 µg/kg/min 
or norepinephrine > 0.2 µg/kg/min were associated with increased odds of early mortality compared to those 
whose MAP was ≥ 70 mmHg (Table 2).

The predictive score, hereby designated Intubated COVID-19 Predictive score (ICOP score), is the predicted 
probability based on the logistic regression formula using coefficient values in Table 2, and ranges from 0% 
(lowest probability for early death after intubation) to 100% (highest probability for early death after intuba-
tion). The distribution of the ICOP score in the derivation and validation cohorts are shown in eFigure 2 in the 
Supplementary material.

For clinical convenience, we abridged the ICOP score and developed the simplified version of the ICOP score 
(sICOP). All continuous variables (age, and the values of BUN, ferritin, and OI) were changed to categorical, and 
each odds ratio was rounded as shown in eTable 3 in the Supplementary material. The exact formulas to calculate 
the ICOP and sICOP scores are shown in Fig. 2A,B. An Excel spreadsheet allows calculation of ICOP score (Excel 
file available upon request), and the development of a web application for ICOP score is under consideration.

The c-statistic of the ICOP score was 0.75 (95% confidence interval [95% CI] 0.73–0.78) in the derivation 
cohort, 0.72 (0.68–0.76) in the internal validation and 0.71 (0.67–0.75) in the external validation. The c-statistic 

Table 1.   Characteristics of adults with coronavirus disease 2019 presenting to 12 hospitals in the greater New 
York City area. IQR, interquartile range; BMI, body mass index; ER, emergency department; CKD, chronic 
kidney disease; ALP, alkaline phosphatase; Bil, bilirubin; BUN, blood urea nitrogen; CRP, C-reactive protein; 
NLR, neutrophil to lymphocyte ratio; Plat, platelet; RCDW, red blood cell distribution width; WBC, white 
blood cell; CHDF, continuous hemodiafiltration. a Missing data is summarized in eTable 1 in the Supplement. 
b Race was collected by self-report in prespecified fixed categories. c Other insurance includes military, union, 
and workers’ compensation. d We performed analysis by using data from 1389 patients in the derivation cohort 
and 556 patients in the validation cohort.

Derivation cohort Validation cohort

Oxygen index 13 (9–21) 15 (9–21)

pH 7.3 (7.2–7.4) 7.3 (7.2–7.3)

Treatment, n (%)

Steroid therapy 1127 (81.2) 462 (83.1)

Anticoagulant therapy 1376 (99.1) 553 (99.5)

CHDF treatment 319 (23.0) 165 (29.7)

Outcome, n (%)

7-day mortality 386 (27.8) 175 (31.5)

14-day mortality 608 (43.8) 267 (48.0)

28-day mortalityd 832 (60.7) 369 (66.4)

Table 2.   Pooled results of multivariable logistic regressions over 33 imputed datasets. y, years; CKD, chronic 
kidney disease; BUN, blood urea nitrogen; OI, oxygen index; Ref, reference level; OR, odds ratio; CI, 
confidence interval; MAP, mean arterial pressure; r, mg/kg/min; DOA, dopamine; EPI, epinephrine; NAD, 
norepinephrine.

Predictor Coefficient OR (95% CI) P value

Intercept − 4.226521 –  < 0.001

Age, y 0.036078 1.04 (1.03–1.05)  < 0.001

Past medical history of CKD 0.664208 1.94 (1.24–3.05) 0.004

BUN, mg/dL 0.014718 1.01 (1.01–1.02)  < 0.001

Ferritin, × 103 ng/ml 0.071151 1.07 (1.02–1.12) 0.009

OI 0.026700 1.31 (1.14–1.50)  < 0.001

pH (ref =  > 7.30 to ≤ 7.40)

 ≤ 7.10 0.991712 2.70 (1.63–4.45)  < 0.001

 > 7.10 to ≤ 7.20 0.594503 1.81 (1.22–2.69) 0.003

 > 7.20 to ≤ 7.30 0.423305 1.53 (1.12–2.08) 0.007

 > 7.40 0.128661 1.14 (0.80–1.62) 0.48

MAP/dose of needed vasopressor (ref = MAP ≥ 70)

MAP < 70, no vasopressor 0.068626 1.07 (0.75–1.52) 0.70

DOA ≤ 15 r/ EPI or NAD ≤ 0.1 r 0.303636 1.35 (0.96–1.92) 0.09

DOA > 15 r/EPI or NAD ≤ 0.2 r 0.645441 1.91 (1.20–3.02) 0.006

EPI or NAD > 0.2 r 1.106242 3.02 (1.95–4.68)  < 0.001



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21124  | https://doi.org/10.1038/s41598-021-00591-1

www.nature.com/scientificreports/

of sICOP was 0.74 (95%CI 0.71–0.76) in the derivation cohort, 0.73 (0.70–0.75) in the internal validation and 
0.71 (0.67–0.75) in the external validation (Fig. 3A,D). We also compared the c-statistics of our scores separately 
with each of the existing predictive scores, SOFA and CURB-65 score by using only patients in whom these 
scores were evaluable (n = 1046 and n = 446 for SOFA score, and n = 1158 and n = 514 for CURB-65 score). These 
comparisons demonstrated that the c-statistic of the ICOP score was significantly greater than the corresponding 
values for SOFA and CURB-65 scores in the derivation cohort (vs. SOFA: 0.67 (0.64–0.71), P < 0.001, and vs. 
CURB-65: 0.63 (0.60–0.66), P < 0.001), as well as in the validation cohort (vs. SOFA: 0.65 (0.61–0.70), P = 0.04, 
and vs. CURB-65: 0.63 (0.58–0.68), P < 0.001). Similarly, the c-statistics for sICOP were also significantly greater 
than both SOFA and CURB-65 (Fig. 2B,C,E,F). We also evaluated the predictive accuracy of 28-day mortality 
after intubation as a secondary outcome. The AUCs of the ICOP and sICOP scores were also significantly greater 
than SOFA and CURB-65 scores (eFigure 3 in the Supplementary material).

As a sensitivity analysis to examine the model selection process, logistic regression using the Least Absolute 
Shrinkage Selection Operator (LASSO regression) was also performed on the derivation set. The best-tuned 
model yielded c = 0.74 (eFigure 4 in the Supplementary material), which was similar to the performance of the 
ICOP score. The LASSO model was less parsimonious, retaining all 36 candidate variables (eTable 4 in the Sup-
plementary material).

In order to examine the ability of the ICOP and sICOP scores to rank patients according to the risk, we evalu-
ated the calibration of these scores. The calibration plots demonstrated good agreement between the observed and 
predicted probabilities (Fig. 4A,B). The cut off points for the predicted probabilities showing > 50% and > 80%, 
respectively, were 7 and 11 (Fig. 4C).

Discussion
In our present, multicenter, retrospective study performed in New York, which saw the initial highest incidence 
rates of COVID-19 in the US17, we developed the ICOP score and simplified version of the score to predict the 
risk of early death of COVID-19 patients after intubation by using variables that can be easily obtained in the early 
phase after intubation. The AUCs of these scores in external validation were greater than 0.7, which is regarded 

Figure 2.   Formula of ICOP Score and sICOP. (A) The ICOP score is calculated as the predicted probability by 
using coefficient values in Table 2. (B) The formula of simplified version of ICOP (sICOP) score. The sICOP 
score was calculated by summing up each score points with the corresponding categorical variable. CKD, 
chronic kidney disease; MAP, mean arterial pressure; OI, oxygen index; BUN, blood urea nitrogen.
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as an acceptable predictive accuracy18,19. In actual clinical practice, we believe that risk stratification based on 
the ICOP score is mainly helpful for guiding joint decision-making among patients’ family and medical staff in 
regard to future treatment options, distinguishing patients who can benefit from the valuable and limited medical 
resources, and determining when to advance intubated patients onto ECMO.

Reallocating and distributing the valuable and limited medical and human resources available have been 
one of the biggest concerns during this COVID-19 pandemic. The lack of resources was remarkably observed 
in Italy20, and also, in New York, where many patients were treated in “temporary” ICUs because of the limited 
capacity of traditional ICUs, despite patients requiring intubation6. Under these circumstances, the ICOP score 
may be helpful because we can potentially identify patients who are so severely ill and require intensive care 
treatment. If certain patients have a higher probability of early death based on our ICOP score, they should be 
treated preferentially in a “traditional” ICU, rather than a “temporary” ICU.

Also, the ICOP score may be useful for detecting patients who potentially require respiratory ECMO. Sev-
eral studies have suggested that respiratory ECMO in intubated patients with COVID-19 has the potential for 
improving their outcomes as seen in other respiratory infectious diseases13,21–23. Since Extracorporeal Life Sup-
port Organization (ELSO) guidelines recommend the consideration or direct application of respiratory ECMO 
depending on the predicted patient mortality of 50% or 80%, respectively24, COVID-19 patients with an even 
greater mortality risk based on our ICOP score should be considered as candidates for ECMO. If they are in 
a hospital where ECMO is not available, transportation to the tertiary hospitals as soon as possible should be 
considered.

There were 7 variables selected for our predictive score that were independently associated with early death 
after intubation: age, history of chronic kidney disease, the values of mean arterial pressure or dose of needed 

Figure 3.   Receiver operating characteristic curves for 14-day mortality after intubation. The Receiver Operating 
Characteristic (ROC) Curves of our predictive score (ICOP score) and simplified version of the score (sICOP) 
for 14-day mortality after intubation in derivation (A) and validation cohorts (D). The c-statistics of ICOP 
score and sICOP were compared with SOFA score (B,E) and CURB-65 score (C,F) by DeLong’s test. In the 
comparison with SOFA score or CURB-65 score, only patients in whom all variables needed for the calculation 
of the corresponding scores were available, were analyzed (n = 1046 in derivation and n = 446 in validation 
cohorts for SOFA score, and n = 1158 in derivation and n = 514 in validation cohorts for CURB-65 score). AUC​
, area under the receiver operating characteristic curve; SOFA, sequential organ failure assessment score (SOFA 
score); CURB, CURB-65 score.
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vasopressors, blood urea nitrogen, ferritin, OI, and pH. Some of these selected variables can serve as surrogates 
for the functions of essential organs, which are also used for existing predictive scores such as the SOFA and 
APACHE II scores25,26. Furthermore, some variables such as age and ferritin have been already shown to be 
associated with increased mortality of COVID-19 patients in recent studies8,27,28. Among them, ferritin is known 
to be associated with the development of the inflammatory cytokine storm, and given that cytokine storm is a 
major cause of death of COVID-19 patients29, it is also reasonable to include ferritin in our predictive score. The 
greatest strength of the ICOP score is the specificity of its use for COVID-19 patients, while other more general 
predicted scores lose some of their predictive power in the case of this new, severe viral illness. In fact, the pre-
dictive accuracy of our score was statistically significantly greater than these other existing scores, such as SOFA 
score and CURB-65 score, both of which did not show acceptable predictive accuracy for our analyzed patients.

Among the variety of statistical approaches used for the development of predictive scores, we selected a 
logistic regression model using backward selection30,31. One of the biggest difficulties of conducting research for 
COVID-19 is that the pathophysiology of COVID-19 has not been completely understood and there has been 
minimal evidence for the variables that are associated with the mortality of intubated COVID-19 patients. In 
this context, our score was developed using a more understandable approach for clinicians, who may not likely 
use it in actual clinical practice otherwise. Secondly, a simplified score (sICOP score) was also developed for 
practicality, without the need for any electronic devices for its calculation. Many previous clinical studies have 
used these approaches to develop simplified scores32,33. Other alternatives, such as LASSO, may significantly 
improve the predictive accuracy compared with the conventional approach; however, our sensitivity analysis 
showed that the predictive accuracy with LASSO was similar to our approach in this study, supporting the pre-
dictive capability of our score.

In this study, patients admitted to 12 Northwell hospitals in the greater New York City area were geographi-
cally divided into derivation and validation cohorts. It is possible that by using this split, selection bias was intro-
duced. However, nonrandom splits by location are considered a stronger design to evaluate the transportability 
of a model and recommended over the split-sample approach in the Tripod statement14. A broader external 
validation in the future is necessary for more information on the utility of this score. Also, patients who were 

Figure 4.   Calibration plots in validation cohort of ICOP score/sICOP and predicted probability of 14-day 
mortality by each point on sICOP. Calibration plots of our predictive scores (ICOP score and sICOP) for 
14-day mortality after intubation (A,B). The calibration curves represent the relationship between the mortality 
predicted by the ICOP score (x-axis) and the observed mortality (y-axis). The gray lines in figures represent a 
perfect calibration. A calibration curve below the gray line indicates that the score overestimates the mortality. 
(C) Predicted probability of 14-days mortality after intubation by each score point on sICOP (0–16 points). 
*There were no patients who scored 16 points on sICOP in the validation set.
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transferred from outside of Northwell Health after intubation or who transferred to outside of Northwell Health 
within 14 days were excluded because any information needed for the calculation of the score or the information 
of the outcome was not available. There is a possibility that the overall results might potentially change if we could 
include them, but we believe this effect is minimal because only 5 and 42 among 2182 patients (0.2% and 2%) 
were excluded by each reason (transferred from outside of Northwell and transferred to outside of Northwell 
within 14 days), respectively. In fact, we confirmed that if we treated the patients who transferred to outside of 
Northwell Health within 14 days as either having the event or as event-free, the predictive accuracies of the final 
models were similar (data not shown). Also, we categorized all continuous variables in the sICOP score in order 
to create a simple score that is easy to calculate. The categorization of continuous variables will likely decrease 
model performance. Furthermore, predictive scores should be carefully considered since they only indicate the 
general probability of an outcome in the general population without offering the precise probability in individual 
patients–that is, the results of mortality prediction for individual patients using the score are not absolute34. 
The final therapeutic strategy should not be solely based on the predictive score, but also involve a variety of 
different factors. As the numbers of cases continue to rise and many new areas are beginning to experience the 
same devastation that New York recently overcame, the use of our ICOP score for determining early morality 
of intubated COVID-19 patients may help to alleviate some of the burden of this disease faced by the medical 
staff, healthcare systems, and families of those suffering.

Conclusions
Among intubated COVID-19 patients, there are 7 predictors of early mortality after intubation. The externally 
validated predictive score may help clinicians estimate early mortality risk after intubation and provide guidance 
for deciding the most effective patient therapies.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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