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ABSTRACT: Since the introduction of the novel SARS-CoV-2 virus (COVID-19) in late 2019, various new variants have appeared
with mutations that confer resistance to the vaccines and monoclonal antibodies that were developed in response to the wild-type
virus. As we continue through the pandemic, an accurate and efficient methodology is needed to help predict the effects certain
mutations will have on both our currently produced therapeutics and those that are in development. Using published cryo-electron
microscopy and X-ray crystallography structures of the spike receptor binding domain region with currently known antibodies, in the
present study, we created and cross-validated an intermolecular interaction modeling-based multi-layer perceptron machine learning
approach that can accurately predict the mutation-caused shifts in the binding affinity between the spike protein (wild-type or
mutant) and various antibodies. This validated artificial intelligence (AI) model was used to predict the binding affinity (Kd) of
reported SARS-CoV-2 antibodies with various variants of concern, including the most recently identified “Deltamicron” (or
“Deltacron”) variant. This AI model may be employed in the future to predict the Kd of developed novel antibody therapeutics to
overcome the challenging antibody resistance issue and develop structural bases for the effects of both current and new mutants of
the spike protein. In addition, the similar AI strategy and approach based on modeling of the intermolecular interactions may be
useful in development of machine learning models predicting binding affinities for other protein−protein binding systems, including
other antibodies binding with their antigens.

■ INTRODUCTION
The SARS-CoV-2 virus (which causes the COVID-19 disease)
continues to remain the world health community’s number one
priority as the pandemic prepares to enter its third year.1

Although potent vaccines have been developed for the virus,
widespread inoculation has been achieved primarily in well-
developed nations, leaving vast areas of lesser developed
nations in peril against the virus and its many variants.2,3

Vaccine hesitancy within the United States has led to multiple
additional waves of COVID-19 infections, in which the
B.1.617.2 (Delta) and B.1.1.529 (Omicron) variants have
played significant roles, especially within the southern United
States.3−9 The Delta variant is noted for both its increased
infectivity and the severity of symptoms it causes.7 Although
vaccines still remain largely effective against the Delta variant,

breakthrough infections are still possible, and the viral load
carried by vaccinated individuals is unaffected, a testament to
the infectivity of the Delta variant.10−12 However, the
resistance against mutations seen within the fast-tracked
vaccines from Pfizer, Moderna, and Janssen is not carried
over to the monoclonal antibody therapeutics that have also
been approved for COVID-19 treatment.13−17 Of note is Ly-
CoV555, an antibody that received FDA emergency use
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authorization, which has dramatic reduction in efficacy when
used against the B.1.617.1 (Kappa), Delta, and most notably
the Omicron variant.13,15,18−20

Mutations seen within the receptor binding domain (RBD)
region of the spike protein are of particular interest when
developing COVID-19 variant-resistant antibodies. Due to the
similar positioning of angiotensin-converting enzyme II
(ACE2) and many antibodies in relation to the spike protein’s
RBD region (see Supporting Information Figure S1), the
mutations that confer greater biding affinity to ACE2 may be
deleterious to the binding of the antibody.21 Of note is the
L452R mutation and T478K mutation, both of which are
capable of greatly decreasing binding affinity with multiple
known antibodies on their own, including Ly-CoV555.13 As
variants continue to develop, it is important to develop an
accurate and efficient methodology that can predict the effects
on binding affinity these mutations may have. During the early
months of the pandemic in 2020, our laboratory group was
attempting to adapt our in silico protein/ligand binding affinity
methodology to the spike protein and several engineered
ACE2 proteins and ACE2 mimics to optimize the binding
interactions between them. This methodology is a very
convenient, computationally inexpensive way of estimating
the Gibbs binding free energy using only energy minimization
and molecular mechanics Poisson−Boltzmann surface area
calculations (MM-PBSA), a methodology that our laboratory
had seen great success with in multiple protein/ligand
systems.22−27 Concurrently, the first variant of major public
note, the N501Y (later named B.1.1.1 or Alpha), began
sweeping across the United Kingdom. Our group then decided
to include a prediction for the binding affinity of this Alpha
variant using the linear regression model that had been
established for the spike protein and the engineered ACE2
protein and its mimics. Our prediction of 0.44 nM Kd for the
Alpha variant was validated during the review process of our
first spike/ACE2 model as the Alpha variant’s Kd was
determined in vitro at 0.8 nM, less than a 0.5 nM difference.28

Throughout 2021, additional waves of the COVID-19 virus
manifested, introducing new, even more heavily mutated
variants (e.g., B.1.617.2 and B.1.1.529) to the public. Using the
same computational methodology, our laboratory was able to
further predict the binding affinity of the Omicron variant at
22.63 nM, a prediction that was later validated during review,
as in vitro experiments determined the Kd at 20.69 nM.

29

Since the publication of our previous methodologies
focusing on the interactions between the spike protein and
ACE2, a slew of new antibody structures binding with the spike
protein have been deposited and have subsequently been used
in in silico methodologies. Both coarse-grained (CG) and all-
atom molecular dynamics (MD) simulations have been
performed with numerous antibodies to study the changes in
the binding modes induced by the mutation of the spike
protein across the many variants of SARS-CoV-2.30−32 These
models have also been used to produce reasonable estimates of
the binding affinity; however, these studies are more focused
on a particular subset of antibodies, rather than producing a
more generalizable model.32 With these new antibody
structures available, along with the empirically determined Kd
values, we can update our model to accurately predict the
binding affinity of these antibodies with the different variants
of the spike protein.
However, building a model that can predict the affinity of

various antibodies with the spike protein broadly is a much

more challenging task than building a model to determine how
certain mutations will affect the binding of a singular protein/
protein pair. Generalized linear regression models for the
prediction of protein/protein interactions33 do suffer in terms
of their accuracy when compared to models such as our
previously published ACE2/spike mutation model.28 This loss
in accuracy is inherent to the methodology as while a change in
a residue in an otherwise unchanged protein structure can be
seen as a small perturbation of the overall system, the use of
many antibodies, each with their own unique binding mode
with the spike protein (Figure S1), cannot. This issue is further
compounded when considering the multitude of different
charge/charge combinations between the spike protein and the
antibody, which is variable due to several common mutations
seen within the SARS-CoV-2 spike protein (e.g., L452R,
T478K, etc.).
To circumvent this loss in accuracy, we have constructed a

multi-layer perceptron (MLP) neural network, a machine
learning method that is able to accurately predict the binding
affinity of a wide variety of antibodies, including several
monoclonal antibody therapeutics on offer from Regeneron,
AstraZeneca, and Eli Lilly.34 By including multiple predictors
including the gas and solvation free energy predictions from
the MM-PBSA methodology, solvent-accessible surface areas
(SASA) of the complex, hydrogen bonds between the antibody
and spike protein, and the charges of each, we have developed
and cross-validated such an artificial intelligence model which
can accurately predict the binding affinity of various SARS-
CoV-2 variants’ spike protein with numerous antibodies. We
have then proceeded to use the model to predict the binding
affinity of these antibodies with numerous variants of concern
(VOCs) including the B.1.1.529 and the newly published
“Deltamicron” (or “Deltacron”) variant identified within
southern France.35

■ METHODS
The methodology for preparing our MLP neural network
models consists of three major stages: (1) structure
preparation of spike/antibody structures, (2) energy mini-
mization utilizing the Sander module of the Amber MD
package followed by an MM-PBSA calculation, and finally, (3)
the construction, training, and cross-validation of the MLP
models.28,36 Once the MLP models are validated for their
accuracy in both the training and validation data sets, the
model predictions may be averaged to mitigate local
inaccuracies located within one model.
Modeling of Spike Protein/Antibody Complexes. For

the first stage, multiple spike/antibody crystal and cryo-
electron microscopy (cryo-EM) structures were obtained from
the RCSB database (PDB IDs are available in Supporting
Information Table S1), and the structures which had only one
type of antibody binding to the spike protein and had a known
binding affinity Kd value were chosen for use in the MLP
model. Additional data points from mutated versions of these
antibodies were taken from Liu et al.,37 who measured the Kd
for numerous antibodies with spike proteins that mimicked the
B.1.617.1 and B.1.617.2 strains of the RBD region of the spike
protein. Each of these structures was prepared using the
PDB4AMBER module of the AmberTools suite, which
removed any non-protein atoms from the structure.38 These
prepared structures then had their initial coordinates and
parameters created using the tLEaP module of the
AmberTools package; this package also assigned the positions
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for the hydrogens for each structure. For the non-wild-type
data points, the structures were perturbed using the PyMol
mutation tool to replace each residue with its respective
mutation in the RBD region of the spike protein, making sure
that the lowest-energy rotamer available was chosen to avoid
large steric clashes with nearby residues.44

For the second stage, to prepare the complexes for their
interaction energy calculation with the MM-PBSA method, we
employed our previous methodology that employs computa-
tionally efficient energy minimization over a two-step process.
This methodology has been shown to accurately estimate the
binding affinity in both protein/protein and protein/ligand
systems22−27 and has previously been used to engineer an anti-
cocaine therapeutics.39,40 This methodology, although more
simplistic than other methodologies that employ all-atom or
CG MD simulations, has major advantages. Sufficiently long
MD simulations require extensive computational resources and
can require days of computing time before a system may enter
equilibrium. Additionally, over these long simulations, the
limitations placed upon these MD simulations (e.g., force field
cutoffs, periodic conditions, etc.) can introduce artifacts into
the system, impacting the actual accuracy of the simulation.
Usage of energy minimization also limits the number of
snapshots required to determine the ΔG of the system as only
one snapshot is needed as opposed to MD simulations or with
using free-energy perturbation methods.41,42 However, this
methodology does assume that the structure used within the
energy minimization/MM-PBSA calculations is close to its
equilibrium state (i.e., unperturbed), and the amino acid
mutations inserted into each of these structures are a small
perturbation away from the equilibrium state, which can be
returned with the energy minimization steps.
The wild-type protein/protein complex structures were

energy-minimized over a two-step process using the CUDA-
optimized version of PMEMD in the AMBER20 package.38

The first round of energy minimization used 1000 steps of
steepest descent minimization followed by 4000 steps of
conjugate gradient energy minimization, using 10 kcal/Å
restraints upon the backbone alpha carbons of the proteins.
The second round of energy minimization reduced these

restraints to 2 kcal/Å. Interaction (binding) energies of the
spike/antibody complexes were then evaluated using the
MMPBSA.py module of AMBER20, using the MM-GBSA
methodology.36,38,43 The ΔGGB values were deconstructed into
their constituent electrostatic (EEL), van der Waals (vdW),
and solvation (SOLV) energies for use in training/validation of
our model. Unlike our other empirical models, the residues
mutated within the spike protein variants induced a change in
charge, which caused overestimations of the ΔΔGEEL between
variants using the standard MM-PBSA method. To account for
these overestimations, we implemented a distance-dependent
dielectric coefficient that we previously employed to correctly
predict the binding affinity of ligands with the nicotinic
acetylcholine receptors.44−46 The distance between the charge
centers of the antibody and spike protein was calculated by
exporting the minimized parameters and topology of each in
the PQR format. Using the product of each atom’s charge and
XYZ coordinates, an average location for the overall charge in
each structure was calculated, followed by determining the
distance between these two points using the Euclidian distance
formula. Finally, the SASA of each complex, antibody, and
spike protein was calculated using a 1.4 Å probe via the
CPPTRAJ module of the AMBER package.47

Construction of the MLP Neural Network Model.
Once the necessary in silico parameters for each complex were
generated, the in vitro Kd values were converted to kcal/mol
units to match those of the MM-GBSA calculations. These
converted Kd values were set as the response variable in the
JMP 16.0 software package, utilizing the neural predictive
modeling package.48 The neural network structure consists of
initial 11 input nodes (i.e., electrostatic, vdW, and solvation
energy decomposed from the MM-GBSA calculation, long-
range electrostatic energy (LRE), antibody and spike overall
charges, distance between antibody and spike protein charge
centers, hydrogen bonds between the spike protein and
antibody, and the surface areas of the overall complex, spike
protein, and the antibody surface), forward feeding into two
hidden layers of 11 nodes, which is forward feeding into a
single-output node, providing the binding free energy (ΔG)

Figure 1. Schematic of the MLP neural network used to predict spike/antibody binding affinities. The network is divided into four sections: an
input layer, two fully connected hidden layers, and a final singular output layer.
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prediction of the antibody/protein complex in question
(Figure 1).
This setup (Figure 1) allows for each of the input variables

collected in the previous stages to possess their own singular
input node for weight training while simultaneously avoiding
overfitting the data with an overly complex model.49,50 Each
node within the hidden layer uses the TanH activation
function, which has previously been shown to be superior in
accuracy and the root mean square error (RMSE) in MLP
performance meta-analyses.51 To train and cross-validate the
model, the 48 data points collected were randomly split into
training and validation sets, using 3 K-fold cross-validation,
allowing each of our models to receive 67% (32 points) of the
available data as a training set, while the other 33% (16 points)
is used as the validation set to train the weights for each fold.52

This cross-validation method allows for efficient use of the
relatively small set of available Kd values measured for
antibody/protein complexes and allows us to determine the
generalizability of the model over the entire data set. Each K-
fold neural-network model was trained over 10,000 iterations,
and loss was measured using the RMSE of the validation set’s
prediction versus the empirically determined binding affinity
values. Finally, each K-fold’s prediction was added and
averaged for the final spike/antibody Kd prediction.
Once the MLP model was established, the structures for

multiple antibody/spike complexes were reconstructed for
each variant’s set of mutations using the PyMol mutation tool.
The variants chosen for analysis are the VOCs listed by the
CDC in June 2021. Much like our previous work investigating
the effects of spike protein mutations with ACE2,28 the
mutations investigated were treated as small structural
perturbations of the overall spike protein structure, which is

made possible due to the availability of reliable experimental
crystal or cryo-EM structures of these antibody/spike
complexes, whose energy-minimized structures produce results
consistent with in vitro data.22−27 This methodology allows us
to avoid long-timescale MD simulations of the spike/antibody
complex that can introduce artifacts into the simulated system
from the imperfect force field and from the truncation of long-
distance interactions.53−57 Additionally, these long MD
simulations allow for deviations away from the original
crystal/cryo-EM structures, thus losing the overall equilibrium
state of the complex captured by these structural methods
(Supporting Information Figure S17). These complex
structures were similarly energy-minimized, and their inter-
action energies were calculated. The values obtained from the
MM-GBSA calculation, along with the charge center, SASA,
and H-bond measures, were then used within our MLP
network to obtain the antibody-predicted affinity for the
mutated spike protein. To obtain the predicted Kd values of
these antibodies against the SARS-CoV-2 variants, the
difference between the ΔGGB value of the WT spike protein
versus each variant was applied to the ΔGexp obtained from in
vitro experiments.

■ RESULTS AND DISCUSSION
Structural Insights into the Binding Modes of VOCs.

Binding Interactions of B.1.617.2 (Delta) Variant’s Spike
Protein with Human ACE2. We have previously utilized the
available structures of ACE2 binding with the spike protein to
investigate the effects the N501Y mutation had on the
interactions within the ACE2/spike interface.28 Although the
mutations of the Delta variant are still located in the RBD

Figure 2. (A) Overall binding structure of the WT spike protein with ACE2, with L452 and T478 indicated in stick representation. (B) Overall
binding structure of the B.1.617.2 (Delta) spike protein and ACE2, with L452R and T478K mutations in ball and stick representation. (C) Detailed
representation of the WT spike and ACE2 binding mode, showing several hydrogen bonds of interest at the interface between the two proteins.
(D) Detailed binding mode of Delta spike and ACE2, revealing limited deviation in position for the mutated spike protein’s residues. All hydrogen
bonds in (C) are retained.
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region of the spike protein, the L452R and T478K mutations
are not located within the interface between the spike protein
and ACE2. These mutations are either closer to the core of the
spike protein (e.g., L452R) (Figure 2B) or are located on the
receptor binding motif (RBM) but too far away to closely
interact with any ACE2 residues (e.g., T478K) (Figure 2B). A
commonality between these two residues is their change from
an uncharged residue to a positively charged residue; this
change alters the electrostatic surface of the spike protein and
thus its affinity with ACE2, which has an overall charge of −27.
With this large number of negative charges within ACE2, it is
not surprising that many of the VOCs utilize such mutations
within the RBD region to gain affinity with ACE2 [e.g., B.1.1.7
(Alpha), B.1.351 (Beta), B.1.427 (Epsilon), B.1.429 (Epsilon),
B.1.525 (Eta), B.1.526 (Iota), B.1.526.1, B.1.617.1-2, P.1
(Gamma), P.2 (Zeta), C.37 (Lambda), and B.1.1.529
(Omicron)].58 However, the distance of these residues from
the interface between spike and ACE2 limits their effects on
modifying any existing interactions between the two. This can
be seen in Figure 2C,D, revealing the low rmsd between the
two energy-minimized protein structures (rmsd = 0.046)
(Figure 2A,B).

Mutational Escape of Spike VOCs against Antibodies.
Although the Delta variant is known for its increased
infectivity, its mutational escape against several antibodies is
also notable. Although there are few examples in the literature
of empirical binding data of antibodies against the B.1.617.1
(Kappa) spike protein, Liu et al. released a study of the effects
of the T478K and E484Q mutations in the spike RBD region
against several of their identified COVOX-series antibodies.37

Two antibodies, COVOX-316 and COVOX-384, were notable

for their drastic increase in binding Kd versus the B.1.617.1
protein and the WT spike, 200 and >500-fold, respectively.
Identifying these Kd values against the Delta spike’s RBD
region while also elucidating the cryo-EM structure of these
antibody complexes with the spike protein provides an
opportunity to establish a predictive model like our previously
published model with the spike/ACE2 complex and enables to
predict Kd values across a representative sample of known
antibodies.37

COVOX-316 and COVOX-384 bind to the RBM of the
spike protein much in the same way as ACE2 does (Figure
3A,D). However, both antibodies are in much closer proximity
to the L452 and E484 mutational sites, making them much
more susceptible to the effects of these changes. Although the
L452R mutation’s primary effect is the addition of deleterious
+/+ charge interactions with the positively charged antibody,
the E484Q mutation has a much larger effect. The mutated
glutamine residue is unable to fit within the same pocket as the
glutamic acid and thus loses two strong hydrogen bonds with
the COVOX-316 (Figure 3B,C). In Covox-384, the mutation
of E484Q is more devastating, removing a critical +/− charge
interaction between E484 and R52 of COVOX-384 (Figure
3E,F). Additionally, a +/+ charge repulsion between the
mutated R452 and H56 further adds to the loss in binding
affinity between these two proteins (Table 1). This drastic loss
in interactions within COVOX-384 explains the “knockout”
reported by Liu et al. regarding the Kd value of the complex.
Several antibodies share a similar positioning of an arginine
residue in the range of the L452R mutation including COVA2-
04, C1A-C2, C1A-F10, C1A-B3, and C1A-B12 (Figures S6 and

Figure 3. (A) Overall binding mode of COVOX-316 and the B.1.617.1 variant spike protein, with the mutated residues R452 and Q484 in green
ball and stick representation. (B) Detailed binding mode of COVOX-316 with WT spike protein, showing the hydrogen bonds within the complex.
(C) Binding mode of COVOX-316 with Delta spike protein. The E484Q mutation causes a loss of two hydrogen bonds between E484/S494 and
E484/N54 of the spike and antibody, respectively, leaving only the hydrogen bond with Y33 with the Q484 of the mutated spike protein. (D)
Overall binding mode of COVOX-384 and the Delta variant spike protein, with mutated residues in green ball and stick representation. (E)
Binding mode of COVOX-384 with WT spike protein; E484 forms a +/− charge interaction with R52 of the antibody, which is destroyed upon
mutation to Q484, along with a hydrogen bond with the backbone amine of F490 (F).
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S9−S11), a potential issue if these antibodies were to be trialed
against either the Kappa or Delta variants.

Delta Variant’s Escape of Ly-CoV555. Upon closer
inspection, the cause behind the large loss in efficacy of Ly-
CoV555 when used against the Delta variant is clear when one
looks at the antibody/spike interface, particularly at the L452R
mutation site (Figure 4A,B)7 The mutation from leucine to
arginine constitutes a shift in both residue size and charge,
putting it in stark contrast to the hydrophobic Ly-CoV555 I54
and L55 residues it interfaces with. Additionally, both the
L452R and T478K mutations within the Delta variant
introduce two additional positive charges into the spike
protein, shifting the total charge of the spike protein from
+2 to +4 and thus inducing multiple sources of positive/
positive charge repulsion, the strongest of which coming from
nearby R24 on the Ly-CoV555 light chain. These mismatches
in residue affinity lead to a 20% loss in LRE energy between
Ly-CoV555 and the WT/Delta variant spike protein (−31.4 to
−25.1 kcal/mol, respectively) (Table 1).
Construction and Validation of the MLP Model of

Spike/Antibody Interactions. Our previous models would
primarily use either the ΔGPB or the deconstructed van der
Waals, electrostatic, and solvation energies to create a linear
regression to predict the binding affinity, creating a generalized
model for numerous classes of antibodies presents an
additional challenge. The differences in spike/antibody charges
and binding modes cause each class of antibodies (i.e.,
COVOX and CC12.x, each of which contains three or more
examples available for linear regression and both have high
sequence similarity and have been published contempora-
neously) to be locally comparable with one another via linear
regression analysis (Figure S14 and Table S2). However, when
combining these two classes of antibodies, the ability to predict
the binding affinity worsens significantly, with an R2 value of
only 0.001 and an RMSE of nearly 1 kcal/mol (Figure S13), far
below that of our previous models, which can achieve up to R2
= 0.924.28,29,36 With these differences between the antibodies,
a more complex model that can take into account the
differences in the structure is required to accurately predict the
binding affinity of each to the spike protein and its variants.
Using the obtained interaction energy values and the

additional structural information variables (Figure 1) from
the spike/antibody structures and their modified, mutated
versions, we proceeded to train a four-layer perceptron neural
network (MLP) machine learning model, using the converted
Kd in kcal/mol unit as the response variable. Due to the limited
number of available experimental data points for spike/
antibody binding affinities, we decided to implement a
methodology which would allow for the greatest utilization
of the data. By partitioning the whole data set of spike/
antibody binding affinity data into 67% training and 33%
validation partitions (each data point labeled as either 0 or 1,
respectively, within JMP 16.0 software,48 Table S1), we
effectively created three data sets (i.e., K-folds 1, 2, and 3) to
train three separate models, each having a different
combination of data points that were included in the training
set. Additionally, this ensures that each data point is within the
validation set once over the course of training the three neural
network models, which alleviates the overtraining commonly
seen within supervised learning tasks for the neural network
models.59 For each of the training partitions of the data, the
models have both high accuracy and precision when compared
to the experimentally derived values, with an average RMSE ofT
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0.16 kcal/mol for all three K-folds (Figure 5). Additionally, the
R2 values for each K-fold range from 0.962 to 1.0 for the
training sets, which is representative when compared to our
previous linear regression-based prediction models of spike/
ACE2 and GPCR/ligand binding affinities.28,44,46,60 Additional
covariance analysis of the 11 features used in comparison with
the ΔGbind values used to train the model shows that the
electrostatic (EDW), LRE, and charges of the spike/antibody
proteins show both high correlation and covariance with the
ΔG value (Tables S3 and S4). This correlation is expected as
each of these variables is either directly force-field-based
calculation of the interactions between the spike protein or is
used to calculate the said force-field-based features (i.e., the
charges used to calculate Coulombic potential). Although each
of these parameters on its own does not have a strong
correlation with the ΔGbind, their use within the neural network
creates a model that can accurately predict these values.
Once the ability for the models to accurately predict against

each K-fold’s training partition had been confirmed (correla-
tion matrix of the ΔGprediction to the used descriptors available
in Table S5), we than proceeded to test their generalizability
by introducing the models to their respective validation
partitions of the data. These predictions also had low average
RMSE values (0.40 kcal/mol in average), and the averaging of

the K-folds’ predictions further improved this metric,
decreasing the RMSE of our final prediction to 0.38 kcal/
mol (Table 1). While fold 2 does appear to be over-trained on
the training partition, with a 0.0 kcal/mol training RMSE, the
model’s generalizability is not impacted when compared to the
fold’s validation set, which has a similar RMSE (0.35) when
compared to the average K-fold validation RMSE (0.4 kcal/
mol). Importantly, the K-folds’ models displayed an ability to
predict when the spike protein’s binding affinity with a certain
antibody would be dramatically decreased in the micromolar
range, which will serve as a warning when utilizing this model
with three antibody/variant combinations.
Prediction of Binding Affinity of Concerned Spike

Variants with Various Antibodies via the MLP Neural
Network. With the establishment and successful validation of
our three K-folds’ neural networks, attention was then turned
to the spike VOCs and how their mutations would affect a
wide array of antibodies, especially the antibodies that are
currently being used to treat SARS-CoV-2 infections. By
utilizing the same computational methodology to generate the
parameters needed (e.g., MM-PBSA, LRE interactions, surface
area, etc.), each variant spike/antibody complex’s binding free
energy was predicted using each the K-fold’s neural network
and subsequently averaged to reduce the influence of any one

Figure 4. (A) Overall structure of the spike protein and Ly-CoV555 complex. (B) Interface of the L452 to R452 (in yellow ball and stick
representation) mutation with Ly-CoV555, with nearby residues I54 and L55 clashing with the polar and charged arginine residue.

Figure 5. Predicted binding free energy (kcal/mol) vs experimental binding free energy (kcal/mol) of antibody proteins and SARS-CoV-2 spike
proteins listed in Table 1 utilizing the neural networks trained on fold 1, 2 and 3 training and validation partitions of the spike/antibody binding
free energy data. RMSE and R2 values for each K-fold’s training (0) and validation (1) partitions are displayed.
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K-fold model’s biases and reduce the overall RMSE of the
predictions. The predicted binding affinity data are summar-
ized in Table 2. As seen in Table 2, experimental Kd values
have been reported in the literature for multiple antibodies
with spike variants B.1.617.1 (Kappa) and B.1.617.2 (Delta).
The predicted Kd values are all close to the corresponding
experimental data, suggesting that the predictions provided in
Table 2 are reasonable.
Upon analysis of the screened antibodies versus the

numerous SARS-CoV-2 variants’ spike proteins, a pattern
emerged that many antibodies are unable to retain their affinity
across the entire spectrum of variants. This is especially true
with Ly-CoV555, which loses significant affinity toward
B.1.617.1, B.1.617.2, and B.1.1.529.13,37,67 Additionally, due
to the high amount of similarity between the Omicron and
“Deltamicron” RBD regions, the same antibodies that showed
susceptibility to the Omicron variant show similar binding
affinities, including Ly-CoV555 (Table 2). However, the
positioning of the antibody in relation to the spike protein
has significant effects on its susceptibility to these variants. The
antibody CR3022 (RCSB: 6YLA) has a unique positioning
against the spike protein, where it instead binds in proximity to
the β-sheets of the RBD region of the spike protein, rather than
the ACE2 binding interface, where most other antibodies bind
(Figure 6).64 This confers significant resistance for CR-3022 to
the mutations that are common in the VOCs. This is reflected
in the data, where CR-3022’s binding affinity has little
variability when compared to that of the RBD binding
antibodies and has no predicted knockouts among the variants
tested. This unique positioning and high affinity to the spike
protein could potentially be used as a dual-antibody treatment,
wherein CR3022 is used as a secondary binder to the spike
protein in combination with an antibody tailored to the SARS-
CoV-2 VOC (e.g., B.1.617.2).
Conversely, when looking at the trends from a variant-

centric perspective, the Kappa, Delta, and Gamma variants all
have substantial changes in their average binding affinity from
17 nM for the WT Kd values to 560, 240, and 260 nM,
respectively. These large increases in Kd over a large class of
antibodies can be tied to these variant’s mutation upon the
RBD; although these three variants do not contain the same
mutation, they do each contain a mutation which alters the
overall charge balance of the (i.e., E484 for B.1.617.1 & P.1 and
T478K for B.1.617.2). This change in charge balance will affect
the more positively charged antibodies (e.g., COVOX-316 and
COVOX-384) and decrease the binding affinity between the
spike protein and antibody.

■ CONCLUSIONS
We have developed and validated an intermolecular interaction
modeling-based MLP neural network that is able to replicate
the experimentally determined in vitro binding affinities of a
wide set of known antibodies toward the wild-type SARS-CoV-
2 spike protein and various measurements of these same
antibodies with both the Kappa and Delta variants of the spike
protein. This neural network utilizes non-proprietary in silico-
derived parameters, which can be obtained using the publicly
available structures of these spike/antibody complexes. Using
this model, we have predicted the binding affinities across
multiple VOCs for each of these antibodies, including those
from Eli Lilly and Regeneron, which are currently being used
to treat SARS-CoV-2. In the case of the Ly-CoV555 antibody,
the L452R and T478K mutations appear to be deleterious to
the antibody’s binding to the protein, through a combination
of the disruption of the charge/charge interactions between the
antibody and spike protein and steric hindrance induced by the
L452R mutation. Our model was also able to predict the
deleterious effects of the B.1.1.529 (Omicron) variant’s
mutations on the Ly-CoV555’s efficacy, with a predicted
200-fold decrease in binding affinity; this prediction has been
borne out in clinical studies where Ly-Cov555 has little to no
effect on treating the Omicron variant.18,67 These effects carry
over to the newly discovered “Deltamicron” variant, which
shares significant similarity with the Omicron variant RBD
region. Additionally, this method has revealed a resistance to
mutations in the RBD region with the antibody CR3022,
which bind peripherally to the RBD region of the protein; this
resistance could be employed within a multi-antibody
therapeutic to circumvent the loss of affinity seen with many
other antibodies. This neural network methodology provides a
quick and computationally inexpensive way to not only test
currently existing antibodies against new SARS-CoV-2 variants
but also to allow for the quick in silico screening of newly
designed antibodies before their costly production and in vitro
testing.
In addition, our machine learning approach for fast protein−

protein binding affinity prediction is based on modeling of
intermolecular interactions between proteins. Compared to
usually used machine learning models that often use hundreds
or even thousand(s) of molecular descriptors as input nodes,
an intermolecular interaction modeling-based machine learning
model will only need to use a few intermolecular interaction
descriptors as input nodes, such as only 11 input nodes in this
study. The similar computational strategy and approach may
be useful in development of machine learning models
predicting binding affinities for other protein−protein binding
systems, including other antibodies binding with their antigens.

Figure 6. (A) Overall binding mode of CR3022 with the WT spike protein; important to note is the unique positioning of the antibody in the spike
RBD region. Unlike Ly-CoV555 (B) and many other antibodies (Figure S1), CR3022 binds to a separate motif of the spike protein, separate from
the commonly used RBM region utilized by the ACE2. This difference in positioning (C) leads to additional resistance against the spike protein
mutations (Table 2), which are tailored to increase binding affinity with ACE2 at the RBM.
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Further iterations of this model may focus on including
additional mutation Kd values as they are reported along with
implementing other machine learning methods (e.g., AdaBoost,
Boosting Gradient, etc.), which can also produce models that
show strong correlation with the empirically obtained muta-
tional data (Figure S16). Additionally, further feature
optimization may be performed by paring unnecessary features
(a prospective five-feature model’s performance can be seen in
Supporting Information S18).
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