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Abstract
Honey bee virus prevalence data are an essential prerequisite for managing epidemic

events in a population. A survey study was carried out for seven viruses in colonies repre-

senting a healthy Danish honey bee population. In addition, colonies from apiaries with high

level Varroa infestation or high level of winter mortality were also surveyed. Results from

RT-qPCR showed a considerable difference of virus levels between healthy and sick colo-

nies. In the group of healthy colonies, no virus was detected in 36% of cases, while at least

one virus was found in each of the sick colonies. Virus titers varied among the samples, and

multiple virus infections were common in both groups with a high prevalence of Sacbrood

virus (SBV), Black queen cell virus (BQCV) and Deformed wing virus (DWV). Based on the

distribution of virus titers, we established four categories of infection: samples free of virus

(C = 0), samples with low virus titer (estimated number of virus copies 0 < C < 103), samples

with medium virus titer (103� C < 107) and samples with high virus titer (C� 107). This

allowed us to statistically compare virus levels in healthy and sick colonies. Using catego-

ries to communicate virus diagnosis results to beekeepers may help them to reach an

informed decision on management strategies to prevent further spread of viruses among

colonies.

Introduction
Honey bee colonies provide valuable pollinators that enable secure crop productivity [1]. The
decline of pollinators in many countries has received considerable public and scientific atten-
tion in the past decade [2]. In particular, honey bees have been experiencing considerable col-
ony losses worldwide [3], with yearly estimates of about 30% in the U.S. since 2006 [4–6].
Losses have also been reported from Europe, although Europe appears to experience generally
lower levels of losses at a less constant rate [7–9]. Multiple agents, environmental and biologi-
cal, have been highlighted in correlation to colony losses [3, 7, 10–12]. However, there exists as
yet no comprehensive conclusion about the cause or the most probable combination of causes
[6, 13, 14].

The ectoparasitic mite, Varroa destructor, originating from one of the Asian honey bee spe-
cies (Apis cerana) is an invasive species on the European honey bee (Apis mellifera) [15] and
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considered one major cause responsible for colony losses [4, 11, 12, 16]. The mites puncture
the cuticle of honey bee workers and pupae to suck hemolymph, which may lead to immuno-
suppression of the parasitized host [11, 17, 18], and can also transfer virus particles [11, 19].
The detrimental impact of an infestation with high numbers of Varroamites together with
closely associated viruses (DWV, Acute bee paralysis virus (ABPV), Kashmir bee virus (KBV),
and Israeli acute paralysis virus (IAPV)) on individual bees as well as colony survival has been
established in previous studies [17, 19–22]. In addition to Varroamites, the microsporidian
Nosema ceranae, another possible agent involved in collapse of honey bee colonies, also created
concern in some countries [12, 23, 24]. Infections with the related species Nosema apis have
been linked with infections of BQCV [25].

Numerous viruses of honey bees are known and occur in different geographical regions [26,
27]. Most surveys focus on DWV, and the ABPV complex (including KBV and IAPV [28]),
since they are closely associated with and transmitted by the Varroamite. Furthermore, three
viruses for which Varroa seems to play no significant role in transmission, namely Chronic bee
paralysis virus (CBPV), SBV, and BQCV are frequently surveyed, too [29–31].

Based on results of infection studies, these seven viruses can be characterized as either acute
or persistent. In particular, the three closely related viruses from the family Dicistroviridae
(ABPV, KBV and IAPV) and the yet unclassified virus (CBPV) can cause acute infection of
adult bees with a high rate of viral replication leading to high mortality of workers within a
short time span [28, 32]. These viruses are found infrequently; in most prevalence studies they
have been detected at low titers from bees without obvious symptoms that were sampled from
healthy looking colonies. In contrast, DWV and SBV from the family Iflaviridae and BQCV
from the Dicistroviridae family are known to be near omnipresent and persistent viruses, often
characterized by an absence of clear disease symptoms [26]. However, they occasionally turn
problematic in association with specific biotic and abiotic stress factors [13, 25, 33, 34]. Results
from honey bee virus studies reveal that only a minor fraction of the honey bee populations are
free of persistent viruses throughout the year [29–31]. These observations support the theory
that coevolution between viruses and their hosts may lead towards less malign virus strains [35,
36]. This allows both virus and host to sustain a host-parasite relationship, for mutual persis-
tence. It has been shown for IAPV that some colonies apparently are able to cope with the
virus [37, 38]. In consequence, selection and breeding from colonies resistant to pests and path-
ogens can lead to a sustainable solution to combat honey bee disease [39, 40], since any chemi-
cal treatment comes with the risk of inducing resistance in the pathogens and a possible
contamination of hive products.

For example, efforts to breed honey bee strains that are more tolerant towards Varroamites
are being conducted in several countries [41–43]. In Denmark, a selection program to reduce
the impact of Nosemosis has been carried out over two decades which resulted in a strain of
Nosema-tolerant bees [44, 45]. The ability to reliably quantify the mites and Nosema spores
enables beekeepers and scientists to monitor the prevalence and quantity of parasites easily and
select the best colonies for the next generations.

For virus diagnosis, quantitative RT-PCR is an advanced and more sensitive technology
than qualitative gel-based technique [46]. The ability of RT-qPCR to generate accurate quanti-
tative data has had a positive impact on honey bee viral diagnosis and on our understanding of
the problems associated with viral infection [30, 47, 48]. In contrast to the qualitative tech-
niques, quantification allows us to categorize the findings according to the level of viral load.

Colony losses in Denmark reached up to 32% in the winter of 2007 to 2008 and were largely
attributed to honey bee viruses, Varroamites and interactions between Varroa and viruses [13,
31, 49]. It was found that both high viral titers and the proportion of sick workers within colo-
nies are directly correlated with the number of Varroamites [13]. However, the diagnostic data
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of this study were obtained from symptomatic colonies and are thus likely to over-represent
the prevalence of viral infections in the population. The present study aims to survey seven
viruses in the healthy Danish honey bee population during the spring of 2012, to generate base-
line data of virus levels in healthy and sick colonies after a long winter. The application of
highly sensitive quantitative RT-PCR enables detection of virus titers much below those
observed in earlier studies based on qualitative techniques and, thus, contributes to improving
prevalence data [31, 49]. In addition, quantitative results may easily be categorized and thus
become accessible to statistical evaluation. For beekeepers and breeders, categorized results are
more easily understandable and consequently can be translated into management and selection
decisions.

Material and Methods

Honey bee samples
The survey was designed to determine viral presence from apparently healthy honey bee colo-
nies all over Denmark (Fig 1). In total, 241 samples (further referred to as healthy colonies)
from 98 apiaries were received. The samples were sent by skilled Danish beekeepers, bee health
inspectors, and breeders of queens, all trained in field diagnosis. Each beekeeper was asked to
send a standard queen cage with up to 20 live bees per colony, exclusively from colonies that
had low levels of Varroamites and were determined free of symptomatic diseases (European
Foulbrood, American Foulbrood and Chalkbrood) based on thorough visual inspection. We

Fig 1. Geographic distribution of honey bee samples in Denmark.

doi:10.1371/journal.pone.0140272.g001
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pooled each sample of 20 bees, which is considered sufficient for a reliable quantification of
virus levels in a colony [50]. For comparison, 28 additional samples (further referred to as sick
colonies) were collected from the colonies at Flakkebjerg (n = 12) (Department of Agroecology,
Aarhus University) that suffered from a heavy infestation with mites and from an apiary
(n = 16) with high colony mortality in the previous winter. All samples were collected alive and
sent via mail during the spring of 2012 (from mid-April to mid-June). Upon arrival bees were
frozen and stored at -80°C until RNA extraction.

Molecular approaches
Bees of each sample were placed in a 15 mL plastic bottle together with 5–10 steel bearing balls.
Using a technique adapted from plant virology, the samples were freeze dried, homogenized in
a genogrinder and thereafter, RNA was extracted according to the manufacturer’s manual (for
details see [13]). Following RNA extraction, a two-step real-time RT-PCR assay was used to
detect and quantify seven honey bee viruses, BQCV, CBPV, SBV, DWV, ABPV, KBV, and
IAPV. The three closely related viruses of the ABPV complex (ABPV, KBV and IAPV) were
detected in a single assay (AKI) [51]. The housekeeping gene, β-Actin, was used as an internal
control, where the presence and quantification of this reference gene ensured that the entire
procedure from extraction to quantification was done without degradation of RNA [13].

Quantitative PCR amplifications were carried out on a vii7 apparatus (Applied Biosystems)
in duplicate for each sample using SYBR Green DNA binding dye. Final volumes of 12μL with
a primer concentration of 0.4μMwere loaded on optical 384 well PCR plates. Primers [30, 47,
51–53] used in this study are listed in Table 1.

Calibration curve and data analysis
For each virus genome, a standard curve was calculated by plotting the serial dilutions of
known amounts of the amplification product against the corresponding Ct values as described
previously [13]. Slope and intercept of each curve were calculated with a correlation coefficient
of 0.99. The amplification curve for β-Actin was used to confirm that the integrity of the RNA
was preserved during the entire procedure, from the preparation of samples and RNA extrac-
tion to RT-qPCR (data not shown). Virus loads in each sample were quantified using the abso-
lute quantification method described before [13]. Fisher’s exact test was applied to estimate the

Table 1. Primers used to establish the standard curve and qRT-PCR

Source Primers name Primer sequence Product size(bp) Reference

AKI F-AKI 5’-CTTTCATGATGTGGAAACTCC 100bp [51]

R-AKI 5’-AAACTGAATAATACTGTGCGTA

DWV F-DWV 5’-GGATGTTATCTCCTGCGTGGAA 69bp [30]

R-DWV 5’-CTTCATTAACTGTGTCGTTGATAATTG

BQCV BQCV-qF 5’-AGTGGCGGAGATGTATGC 294bp [52]

BQCV-qB 5’-GGAGGTGAAGTGGCTATATC

SBV F-SBV 5’- ACCAACCGATTCCTCAGTAG 258bp [53]

R-SBV 5’- TCTTCGTCCACTCTCATCAC

CBPV F-CBPV 5’-CGCAAGTACGCCTTGATAAAGAAC 101bp [47]

R-CBPV 5’-ACTACTAGAAACTCGTCGCTTCG

β.Actin F-β-Actin 5’-TGCCAACACTGTCCTTTCTGGAGGT 96bp [13]

R-β-Actin 5’- TTCATGGTGGATGGTGCTAGGGCAG

doi:10.1371/journal.pone.0140272.t001
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variation between healthy and sick colonies. Analysis of the data and visualization were per-
formed using the softwares; Highcharts and R [54].

Results

Observed frequencies of the viruses in the population
A total of 241 apparently healthy and 28 sick colonies were screened for SBV, BQCV, DWV,
CBPV and ABPV complex viruses. No virus at all was detected in 36% (n = 86) of the healthy
colonies, while all of the sick colonies had at least one virus. The frequencies of the viruses in
the two groups of colonies are shown in Fig 2.

The most prevalent viruses in the healthy colonies are SBV, BQCV and DWV, with frequen-
cies of 39% (n = 95), 35% (n = 84) and 34% (n = 82), respectively. These three viruses are also
highly prevalent and frequent (75%, 71% and 68%) in the sick colonies. In contrast, viruses of
the ABPV complex are present in only 14% of the healthy colonies, but 50% of the sick colo-
nies. CBPV was only observed in four healthy colonies and one sick colony.

Twenty-seven percent of the healthy colonies contained at least one virus, mainly SBV and
DWV. Multiple virus infections are also not uncommon in healthy colonies. We observed high
rates of duplicate and triplicate infections (18% and 15%, respectively), the majority of them
with DWV, SBV and BQCV (Fig 3). As expected, multiple virus infections are very common in
sick colonies, with more than half of the samples (57.2%) simultaneously infected by three
viruses. Compared to the healthy colonies, the rate of double and quadruple infections in the
sick colonies was also much higher (Fig 3).

Viral titers in the populations
For each investigated virus the samples of healthy and sick colonies were categorized according
to the quantified virus titer. Beyond the two obvious categories, bees free of virus (copy num-
ber, C = 0) and symptomatic bees (C� 107), we decided to subdivide the remaining samples
into two groups: samples with low virus titer (0< C< 103) and samples with medium virus
titer (103 � C< 107). For both DWV and SBV we found samples falling in all four categories,
whereas high BQCV and AKI titers were never observed. Finally, CBPV was observed only in
the two categories no virus or medium virus level. The distribution of samples within these
four categories is displayed in Fig 4 for all viruses under investigation, demonstrating

Fig 2. Percentage of different viruses in healthy colonies (A) and sick colonies (B).

doi:10.1371/journal.pone.0140272.g002
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significant differences between healthy and sick colonies for the virus titers of SBV, DWV,
BQCV and AKI (P< 0.001), but not for CBPV (P = 0.3842).

Discussion
We report data on the prevalence of viruses in samples of healthy Danish honey bee colonies
collected in the spring time. Similar to earlier studies from other countries [29, 30], no virus
was found in 36% (n = 86) of the healthy colonies. In spite of us requesting bees to be collected

Fig 3. Percentage of single andmultiple infections in healthy colonies (A) and sick colonies (B).

doi:10.1371/journal.pone.0140272.g003
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from healthy colonies, a few samples contained at least one bee with a high virus titer. Instead
of interpreting this as a beekeeper’s mistake, rather this result is expected since the virus is
probably present at high levels in just a few bees in most colonies, however in samples of 20
bees it mostly goes undetected.

Sacbrood virus is found to be the most prevalent virus in Danish honey bees for the period
of investigation. Almost 40% of the healthy colonies carry SBV, with 18% of the population
infected by a medium or high titer of the virus. This virus was even more frequently detected in
our samples of sick colonies (75%) which is in accordance with a previous study from Denmark
(81% [31]). Sacbrood is known as a disease affecting the brood of the honey bee, but it has also
been reported from adult honey bees lacking any obvious sign of disease [14, 30, 34]. The
occurrence of Sacbrood in the spring and summer may be related to colony growth with a high
ratio of brood to nurse bees [55], or the quality of available pollen [29]. Even though an associa-
tion between SBV and Varroamites was reported in different studies [29, 56], the effect is most
likely resulting from stress at colony level, since the disease occurs in larvae before these are
attractive to Varroamites. In Denmark it has frequently been reported that colonies suffer
from severe outbreaks of SBV, not commonly found elsewhere in Europe [57].

Deformed wing virus is the other highly prevalent virus in this study. It was detected in 34%
of the healthy colonies with almost 11% of these carrying a medium or high titer which is asso-
ciated with reduced life span of the adult bees [58]. This result is concurrent with previous
reports from Denmark [13, 31, 49]. DWV has also been found to be highly prevalent in honey
bees in other countries [12, 22, 30]. DWV can be detected in all developmental stages and
castes of bees [29, 59]. It is closely associated with the Varroamite and strongly suspected to be
one of the biological agents for honeybee colony losses [12, 59], since a significant relationship

Fig 4. Percentage of viral titer categories for each virus in two groups of healthy and sick colonies.

doi:10.1371/journal.pone.0140272.g004
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between DWV and colony collapse was reported in several studies [10, 11, 13, 34, 50, 60]. Our
data for the sick colonies (68% prevalence with 40% medium and high titer) may be associated
with high levels of Varroamites infestation during the preceding winter.

Black queen cell virus is another highly prevalent virus in the healthy colonies in this study.
It has been reported as a common virus in adult European honey bees [30], however, in Den-
mark only one single case was reported [31]. We hypothesize that the absence of BQCV posi-
tive sample in the previous study may be the result of lower sensitivity of the technique they
used. We observed only low and medium titer infections, in both the healthy and the sick
colonies.

BQCV has been detected with high titers in collapsed colonies [10]. A recent study suggests
that BQCV has limited effects on both drone and worker health [61]. There are reports regard-
ing a close association between BQCV and N. apis [25, 29]. As yet, no synergistic interaction
has been found between BQCV and N. ceranae [61].

Acute bee paralysis virus, Kashmir bee virus and Israeli bee paralysis virus are three
closely related viruses that were analyzed together in a single assay [51]. Almost 14% of the
healthy colonies were found positive, but only 2% of colonies carried a medium titer of virus
and not a single case with high titer was detected. All three viruses are equally and highly viru-
lent and have a close association with the Varroamite [13, 20, 21, 28]. While our results do not
distinguish between the three subtypes (ABPV, KBV and IAPV), all three are known to rapidly
kill the bees. Several studies in recent years have identified the family of Acute paralysis viruses
as one of the major biological agents detected in collapsed colonies [3, 13, 62]. Our results are
in agreement with previous studies that report a low prevalence of these viruses in spring [13,
34], and observe high viral titers only in collapsing colonies [10, 30]. Therefore, high titers of
these viruses are rarely detected in active survey studies since highly infected bees die fast and
are therefore not sampled.

Chronic bee paralysis virus is the rarest detected virus, also amongst the sick colonies.
CBPV is known as a disease of adult honey bees, mostly with outbreaks during high nectar
flow [32]. We only detected CBPV in 1.7% of the healthy colonies with a medium titer. This
result is in agreement with previous studies that also reported a low prevalence of CBPV [29,
31].

Several of the viruses we discuss above are considered serious pathogens in regard to their
impact on colony survival [10, 12, 13]. However, viruses often persist in colonies as covert
infections [26] with limited consequences for colony health, and of little concern to beekeepers.
Nonetheless, the standard procedure in virus analysis thus far has been to report the result as
“negative” or “positive” [12, 59, 63]. In fact, a positive result from a whole-body extraction of
20 workers, as in our study, could result from a covert infection. Thus, a positive qualitative
result does not necessarily allow for a meaningful prognosis.

For instance, even after successful Varroa treatment, DWV seems to prevail in the colony
and the infection level will build up again, when the Varroa population increases. Individual
bees parasitized by Varroamites, either in the pupal stage or as adults, exhibit extraordinary
high viral titers [64]. As the Varroa population in a colony increases, more and more bees
carry such high infection levels and therefore the chance of including one of those bees in a
random sample will also increase. Similar patterns are expected for the Acute bee paralysis
virus complex, which may result in colony loss [65].

On the other hand, a virus like CBPV, which is not vectored by Varroa, may spread readily
between colonies and is considered very contagious [32, 66]. We therefore consider it helpful if
colonies carrying high virus titers within an apiary can be identified and adequately taken care
of, for instance, by removing them to a quarantine apiary. In our experience beekeepers and
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breeders listen more readily and conceive the meaning of virus analysis results more easily
when these are communicated as categories.

Frequently, due to the non-normal distribution of virus titers over several magnitudes,
problems arise when trying to statistically compare two sets of samples. Categorization of
quantitative virus titers renders the results accessible to statistical evaluation beyond non-
parametric tests and thus allows comparisons between different samplings. Such data enable
monitoring the progression of a viral infection in a colony or apiary, or comparisons between
different breeding lines in a selection program. Based on a sufficient number of observations,
critical thresholds will emerge that can be used for management decisions [57]. Especially in
ongoing selection programmes for Varroa tolerance [42, 67] information on the virus load of
potential queen and drone mother colonies may be provide useful information in the evalua-
tion of breeding stock.
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