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Abstract

Thorough knowledge of the germination behavior of weed species could aid in the develop-
ment of effective weed control practices, especially when glyphosate resistance is involved.
A study was conducted using two glyphosate-resistant (GR) (SGW2 and CP2) and two
glyphosate-susceptible (GS) (Ch and SGM2) populations of Chloris virgata, an emerging
and troublesome weed species of Australian farming systems, to evaluate their germination
response to different alternating temperature (15/5, 25/15 and 35/25°C with 12 h/12 h light/
dark photoperiod) and moisture stress regimes (0, -0.1, -0.2, -0.4, -0.8 and -1.6 MPa).
These temperature regimes represent temperatures occurring throughout the year in the
eastern grain region of Australia. Seeds germinated in all the temperature regimes with no
clear indication of optimum thermal conditions for the GR and GS populations. All popula-
tions exhibited considerable germination at the lowest alternating temperature regime 15/
5°C (61%, 87%, 49%, and 47% for Ch, SGM2, SGW2, and CP2, respectively), demonstrat-
ing the ability of C. virgata to germinate in winter months despite being a summer annual.
Seed germination of all populations was inhibited at -0.8 and -1.6 MPa osmotic potential at
two alternating temperature regimes (15/5 and 35/25°C); however, some seeds germinated
at 25/15°C at -0.8 MPa osmotic potential, indicating the ability of C. virgata to germinate in
arid regions and drought conditions. Three biological parameters (T10: incubation period
required to reach 10% germination; T50: incubation period required to reach 50% germina-
tion; and T90: incubation period required to reach 90% germination) suggested late water
imbibition with increasing moisture stress levels. The GR population SGW2 exhibited a dis-
tinctive pattern in T10, T50, and T90, possessing delayed germination behaviour and thus
demonstrating an escape mechanism against pre-plating weed management practices.
Knowledge gained from this study will help in developing site-specific and multi-tactic weed
control protocols.
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Introduction

Chloris virgata Sw. is a summer annual species of Poaceae family that is considered a trouble-
some weed species across the tropics of the world. It possesses a C4 photosynthesis mechanism,
monocotyledon seed structure, and is commonly referred to by many names depending on the
region, such as Feathertop Rhodes grass in Australia; feathered finger grass, feathered windmill
grass, and feathered Chloris in the United States; and oldland grass and sweetgrass in south-
east Asia [1]. It can reach more than 1 m height, produce 600 g m™ dry matter under suitable
(summer) weather conditions [2], and has been classified as a host for aphids, barley yellow
dwarf and cereal yellow dwarf virus, and some species of nematodes [3].

Chloris virgata can produce more than 40,000 seeds plant' and is therefore considered a
prolific seed producer [2]. The seeds of C. virgata are comparatively smaller than other weed
species, aerodynamic in shape, lightweight, and exhibit two protruded trichomes (hairs).
These morphological structures aid seeds in dispersal from one ecosystem to another and
increase C. virgata’s potential invasiveness [4]. An earlier study suggested that the seeds of C.
virgata can travel up to 13 m in normal wind velocity [1]. Moreover, the seeds of C. virgata
prefer two kinds of dispersal methods: hydrochory and anemochory (dispersal through water
and wind, respectively). The two protruded trichomes could also help C. virgata seeds in stick-
ing to agricultural machinery and labors, thus reducing the energy required for dispersal.

Chloris virgata is known to have originated from the warm regions of the world; however,
the exact origin of this species is yet to be identified and is open for international debate [5]. It
is recognized as an emerging and problematic cropping weed species in Australian farming
systems. This species is greatly distributed across the mainland of Australia and is considered
as a major weed species of South Australian vineyards, grain cropping regions of Queensland,
Western Australia, and Northern Territory, and cotton-growing regions of New South Wales
[1]. The widespread occurrence of this species has been observed in an area of 118,000 ha of
Australian agricultural land and is responsible for a substantial amount of yield and revenue
loss equalling 39,300 tons of grain and AUD 7.7 million per annum, respectively [6]. A study
conducted at the University of Queensland suggested that 22-25 plants m™* of C. virgata
reduced the mungbean yield by 50% compared to a weed-free treatment plot [7]. Considering
the economic impact of this species on Australian agriculture, it has been listed among the top
20 weeds of major concerns in Australia [6].

The shift from traditional agriculture to conservation agriculture offers substantial benefits
to Australian farming systems, such as less energy-exhaustive farming practices, less environ-
mental degradation, and a higher margin of profits compared to traditional farming systems
[8]. However, several species, which were previously considered as environmental weeds, have
established in Australian agroecology due to the adoption of conservation agricultural prac-
tices (e.g., no-till systems) as well as their peculiar biology, rapid dispersal ability, reproductive
potential, and efficient competitiveness [9,10]. Of these weed species, C. virgata is one of the
most important examples. The long-term use of no-till systems drastically changed weed man-
agement practices and caused over-reliance on glyphosate-based weed control. Owing to the
long-term usage of glyphosate-based weed management operations in summer fallows and
glyphosate-tolerant cotton, several weed species have developed resistance against glyphosate,
including C. virgata. After the first case of glyphosate resistance of C.virgata in Australia in
2015, several populations of this species have been identified as glyphosate-resistant (GR) [4].

Seed germination ability is an essential phenomenon in identifying the efficiency of any
weed species to establish successfully in agroecosystems [11]. Germination processes are
known to be regulated by several environmental factors, such as temperature, soil moisture,
soil pH level, light intensity, and photoperiod [12]. However, temperature, soil moisture, and
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photoperiod are considered the most impactful environmental factors on germination [13]. In
previous studies on several weed species, it was observed that GR and glyphosate-susceptible
(GS) populations possessed different germination characteristics [14-18].

The present study was conducted to understand the differential germination response of
two GR and two GS populations of C. virgata to different temperature regimes and moisture
stress regimes. In order to reduce the over-dependence on chemical weed control tactics and
develop more effective weed control programs by adopting integrated weed management
operations, detailed knowledge of seed germination biology would offer opportunities to
achieve management of competitive weed species, such as C. virgata. The major aim of this
study was to enhance the scant knowledge about C. virgata germination in response to differ-
ent temperature regimes and moisture stress regimes, whether this differs between GR and GS
populations, and different water stress adaptability of GR and GS populations under different
alternating temperature regimes. The data from this study will aid weed scientists and agrono-
mists to develop an effective weed control program for this emerging weed species.

Materials and methods
Seed collection

Seeds of C. virgata were collected from multiple sites across the grain-growing regions of
Queensland, Australia in March-April 2017. Initially, 10 populations were collected from five
locations [4] and later screened with different doses of glyphosate to identify GR and GS popu-
lations. All populations were given precise and unique coding to keep records for future collec-
tion. Mature panicles were detached by using garden secateurs and immediately placed in
individual paper bags according to population. Also, seeds were collected from several plants
within the population to acquire seed lot representatives. Paper bags were also labeled accord-
ing to the coding given to all populations. The whole collected seed lot was then transported to
the Queensland Alliance for Agriculture and Food Innovation (QAAFI) weed science labora-
tory at the University of Queensland, Gatton (latitude -27.5551 and longitude 152.3343) where
all the seeds were separated from panicles manually and stored in airproof containers to avoid
unwanted contamination. All the containers were stored at room temperature (20-25°C) in
dark conditions [19]. Seed production was carried out as described by [4].

Seed viability test

It was earlier hypothesized that black-colored seeds are more viable than the ivory-colored
seeds for this particular species [20]. However, according to our previous observations, not all
black-colored seeds are viable. Consequently, all the seeds were subjected to the X-raying
technique.

Black and white seeds of individual populations were placed in the Petri dish over the filter
paper. A desk-mounted magnifying glass was used for seed placement. Prepared Petri dishes
were then placed on the platform of the X-ray machine (Faxitron MX-20 X-ray machine, Aus-
tralia) in order to get X-ray images of seeds. Non-viable and hollowed seeds were removed by
forceps. In this way, four different seed batches (one for each population) were prepared with
viable seeds for the germination experiment.

Experimental approach and design

A laboratory experiment was conducted to assess the effect of various alternating temperature
regimes and moisture stress levels using a split-plot design in which alternating temperature
regimes were the main plot factors and moisture stress regimes were the subplot factors. Three
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alternating temperature regimes (15/5°C, 25/15°C, and 35/25°C with 12 h/12 h light/dark pho-
toperiod) and six moisture stress regimes (0, -0.1, -0.2, -0.4, -0.8, and -1.6 MPa) were employed
to evaluate the germination response of GR (SGW2 and CP2) and GS (Ch and SGM2) popula-
tions of C. virgata.

Moisture stress treatments were replicated three times within each alternating temperature
treatment. Three different temperature regimes were provided by three different incubators
(Labec Laboratory Pvt. LTD., Australia) in which a temperature regulator connected to a data
logger (Invensys Eurotherm, 3216 PID temperature controller) was installed to monitor alter-
native temperature regimes. A photoperiod of 12 h/12 h light/dark was controlled by fluores-
cent lamps (Ultralamp ECO-T5, 28W, 1170 mm) installed in all three incubators. Moreover,
the flush mount time clock (Grasslin Uni 45 series timers) installed in all three incubators was
used to regulate the timing of alternating temperature regimes and photoperiod. Moisture
stress treatments of 0, -0.1, -0.2, -0.4, -0.8, and -1.6 MPa were developed by dissolving an
appropriate quantity of polyethylene glycol (PEG) into deionized water, corresponding to dif-
ferent alternating temperature regimes according to Eq 1 [21]:

¥s = 0.013(PEG)’T — 13.7(PEG)° (1)

where ‘PEG’ denotes the quantity of polyethylene glycol (g PEG g' water) and “T” denotes the
temperature.

Germination measurements

A germination experiment was carried out on two GR (SGW2 and CP2) and GS (Ch and
SGM2) populations at the QAAFI weed science laboratory, Gatton, Queensland, Australia in
2020. Double filter papers (Macherey-Nagel GmbH & Co. Kg, Germany) were placed in each
Petri dish (92 mm diameter x 16 mm height). All the filter papers installed in Petri dishes were
moistened by adding 5 ml of deionized water (control treatment) or 5 ml PEG solution corre-
sponding to the treatments using a micropipette. Twenty-five seeds of each population were
placed uniformly in each Petri dish using a pair of forceps and a desk mount LED laboratory
magnifier lamp (White label, Model: QM3546) was used for seed placement considering the
small seed size of C. virgata. Zip-lock plastic bags were used to hold Petri dishes.

Seed germination counts were observed daily, and germinated seeds were removed using a
pair of forceps. Final germination counts were then converted into the final cumulative germi-
nation (FCG). Seeds were considered to have germinated once radicle emergence was visible
(>1 mm). Evaporation was high for Petri dishes under 35/25°C temperature regime; therefore,
to maintain constant moisture stress conditions, 2 ml of deionized water or PEG solutions
were added every 2 d in all the Petri dishes at this temperature regime. The germination exper-
iment was considered complete after no germination was observed for five consecutive days.

Statistical analysis

The experiment was carried out in a split-plot design with three replications. The FCG data set
was subjected to two-way analysis of variance (ANOVA) with multiple comparisons in which
means were separated by Fisher’s LSD test (GraphPad 8.4.2 679. GraphPad Software Inc., Cali-
fornia) to observe the significant difference of individual treatment. Data transformation did
not improve the homogeneity of variance; therefore, non-transformed data were used for
ANOVA. Percentage germination reduction of the control treatment (0 MPa) within each
alternating temperature range of each population was calculated manually and further fitted
using a three-parameter sigmoidal model (Eq 2) (Sigmaplot 14.0, Systat Software Inc., San
Jose, California, USA) to understand the stress adaptability of the populations at different
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alternating temperature regimes.

f=a/ <1 + exp(%)b> (2)

Codifications: ¥ final cumulative germination; ‘a”>» maximum germination percentage
(maximum number on Y-axis or inflection point); ‘x0’: osmotic potential level corresponding
to a 50% germination reduction; and ‘b* the slope of regression curve.

The ‘SeedCalc’ package in R software was used to determine the incubation period required
to attain 10%, 50%, and 90% germination (T'10, T50, and T90, respectively) [22].

o [:(}]—_})w B 5

Codification: ‘N total number of germinated seeds; i’ and ‘uj” final number of germi-
nated seeds in adjacent counts of time ‘i’ and %, respectively.

e ti + { [%L—_ nnii})(tj — ti) @

Codifications: As mentioned for T10’.

o0 ti + { [%lj—_n’ji})(tj — ti) )

Codifications: As mentioned for ‘TI10.

Results and discussion

Osmotic potential (MPa) had a significant influence on the germination of all four populations
at the three alternating temperature regimes (p<0.001 for all temperatures) (Table 1). The
interaction of temperature and population was non-significant. The FCG of the GR popula-
tions (SGW2 and CP2) did not exceed more than 60% at any temperature regime. At 0 MPa
osmotic potential level, germination was 49% and 47% for SGW2 and CP2, respectively, at 15/
5°C; 60% and 37% for SGW2 and CP2, respectively, at 25/15°C; and 39% and 43% for SGW2
and CP2, respectively, at 35/25°C (Table 1). On the other hand, FCG at 0 MPa was 61% and
87% for Ch and SGM2, respectively, at 15/5°C; 65% and 79% for Ch and SGM2, respectively,
at 25/15°C; and 48% and 74% for Ch and SGM2, respectively, at 35/25°C (Table 1). These
results suggest that the FCG of the GR populations (SGW2 and CP2) was lower compared to
the GS populations (Ch and SGM2) (p = 0.001). This could be due to different dormancy levels
of the GR and GS populations as only viable seeds were used for all populations. Similar results
were found in Bassia scoparia (L.) A.J. Scott, in which the GR populations exhibited lower ger-
mination (ranging from 53% to 70%) than the GS populations (ranging from 95% to 100%)
when tested at different alternating temperature regimes [18].

The FCG of Ch and SGW?2 was significantly higher (65% and 60%, respectively) under 25/
15°C at 0 MPa osmotic potential compared to the other two alternating temperature regimes.
Population SGM2 exhibited 79% FCG at 25/15°C which was lower than the FCG (87%) at 15/
5°C; however, the difference was non-significant (p = 0.478). Similarly, the CP2 population
possessed higher FCG at 15/5°C (47%) and 35/25°C (43%) compared to 25/15°C (37%),
though the differences were non-significant. As mentioned earlier, C. virgata is a summer
annual weed species. However, it tends to acclimatize rapidly in terms of germination [20].
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Table 1. Final cumulative germination of two glyphosate-susceptible (Ch and SGM2) and two glyphosate-resistant (SGW2 and CP2) populations of Chloris virgata
in response to different temperature regimes and moisture stress levels.

Temperature (° C)

Osmotic Potential (MPa)

Glyphosate susceptible (GS)

Glyphosate resistant (GR)

Ch SGM2 SGW2 CP2

15/5 0 61.3 + 1.4 (0) 86.7 9.6 (0) 49.3 +2.5 (0) 46.7 £5.3 (0)
-0.1 42.7 3.5 (30) 69.3 £ 7.0 (20) 41.3 +8.1 (16) 26.7 £7.0 (43)
0.2 40.0 +10.1 (35)* 50.7 + 1.3 (42) 34.7 +10.4 (30) 22.7 £3.5 (51)*
0.4 8.0 +2.0 (87)* 24.0 £6.1 (72)* 12.0 + 4 (76) 16.0 £ 6.1 (66)*
0.8 0+ 0 (100)* 0+ 0 (100)* 0+ 0 (100)* 0+ 0 (100)*
-1.6 0+ 0 (100)* 0+ 0 (100)* 0+0 (100)* 0+ 0 (100)*

25/15 0 65.3 £ 1.7 (0) 78.7 £2.7 (0) 60.0 £ 2.3 (0) 37.3£8.7 (0)
-0.1 54.7 + 3.5 (16) 69.3 +8.1(12) 44.0 + 4.0 (27) 34.7 £1.3(7)
0.2 53.3+ 7.0 (18) 64.0 2.3 (19)* 413 + 4.8 31)* 29.3+2.7 (21)
0.4 50.7 + 3.5 (22) 48.0 2.3 (39)* 28.0 £6.1 (53)* 253 +5.3(32)
0.8 1.3+ 1.3 (98)* 2.7 £2.7 (97)* 0+ 0 (100)* 0+ 0 (100)*
-16 0+ 0 (100)* 0+ 0 (100)* 0+ 0 (100)* 0+ 0 (100)*

35/25 0 48.0 6.1 (0) 73.3 £3.5(0) 38.7 +2.7 (0) 42.7 +3.5(0)
-0.1 44.0 £4.0 (8) 57.3 +4.8 (22) 37.3 3.5 (4) 34.7 £2.7 (19)
0.2 40.0 £0 (17) 46.7 £7.0 (36) 26.7 £5.8 (31) 29.3+7.0 (31)
0.4 24.0 + 4.0 (50)* 25.3 £ 1.3 (66)* 22.7 £3.5 (41) 22.7 £2.7 (47)*
0.8 0+ 0 (100)* 0+ 0 (100)* 0+ 0 (100)* 0+ 0 (100)*
-1.6 0+ 0 (100)* 0+ 0 (100)* 0+ 0 (100)* 0+ 0 (100)*

Values after + and in parentheses are standard errors of means and % reduction of germination to control treatment, respectively. Asterisks denote a significant

difference of individual treatment compared to control according to Fisher‘s LSD test at a 0.05% probability level.

https://doi.org/10.1371/journal.pone.0253346.t001

FCG was higher for two populations (Ch and SGW2) under 25/15°C at 0 MPa compared to
the other two temperature ranges. There was a non-significant difference in germination for
the two populations (SGM2 and CP2) under all tested temperature regimes at 0 MPa. More-
over, germination of SGM2 was also considerable at 15/5°C (87%) and 35/25°C (73%). The
overall germination of CP2 was lower compared to the other populations, still it exhibited
about 40% germination at all tested temperature regimes. Therefore, these results suggest 25/
15°C as an ideal temperature for optimum germination of C. virgata and the other two alter-
nating temperature regimes (15/5°C and 35/25°C) can be considered sub-optimum thermal
conditions for C. virgata in terms of germination.

FCGs of all populations decreased with decreasing osmotic potential (MPa) levels (Table 1);
however, no considerable difference was observed in reduction percentages with decreasing
osmotic potential levels between populations at all three alternating temperature regimes (Fig
1). All populations exhibited 0% germination at -0.8 and -1.6 MPa at two sub-optimal thermal
conditions (15/5°C and 35/25°C). However, some seeds of the two GS populations (Ch and
SGM2) germinated at -0.8 MPa in the optimal thermal conditions (25/15°C), indicating the
germination ability of C. virgata even in arid regions and under drought conditions. Due to
the susceptibility of Ch and SGM2 against glyphosate [4], these two populations can easily be
controlled using the judicious use of glyphosate. However, the efficacy of glyphosate might be
decreased when applied to weed species suffering from abiotic stress (e.g., water stress) [23].
The reduced efficacy could be because of less herbicide absorption and translocation as herbi-
cides are largely translocated via vascular systems [24].

Reductions in germination percentages, compared to the control (0 MPa osmotic poten-
tial), were analyzed at all osmotic potential levels and alternating temperature regimes
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Fig 1. Reductions in germination percentage of two glyphosate-susceptible (Ch and SGM2) and glyphosate-resistant (SGW2
and CP2) populations of Chloris virgata at decreasing osmotic potential levels at different alternating temperature regimes. The
estimated parameters were presented in Table 2.

https://doi.org/10.1371/journal.pone.0253346.9001

(Table 1) for each population and were fitted using a three-parameter sigmoidal model (Eq 2)
to understand different water stress adaptability of the GR and GS populations in different
thermal conditions (Fig 1).

All the populations exhibited a 100% reduction in germination at the lowest osmotic poten-
tial level (-1.6 MPa) at all alternating temperature regimes (Table 1; Fig 1). At the two sub-opti-
mum thermal conditions (15/5°C and 35/25°C), both GR (SGW2 and CP2) and GS (Ch and
SGM2) populations displayed a 100% reduction in germination at the second-lowest osmotic
potential level (-0.8 MPa). At the same time, the two GS populations showed 2% and 3% (for
Ch and SGM2, respectively) germination at the optimum alternating temperature regime (25/
15°C) at -0.8 MPa osmotic potential, demonstrating the ability of the two GS populations to
germinate even in high water stress conditions than the GR populations. However, the ability
to germinate at higher water stress conditions does not imply higher water stress adaptability
of the plants. Water stress adaptability can rather be understood by observing a 50% reduction
in germination corresponding to osmotic potential treatment (x0) (Table 2).

The ‘x0’ values of all four populations were highest at the lowest alternating temperature
regime (15/5°C), compared to the two higher temperature regimes (25/15°C and 35/25°C).
The values of ‘x0’ were ranging from -0.23 MPa to -0.29 MPa for all populations at 15/5°C
compared to the lower %0’ values at the higher alternating temperature regimes 25/15°C and
35/25°C (ranging from -0.35 MPa to -0.52 MPa at 25/15°C and from -0.29 MPa to -0.43 MPa
at 35/25°C). These results suggest that at low temperatures, water stress adaptability of C. vir-
gata declined and therefore the moisture requirement for germination of C. virgata is lower at
a higher temperature. Therefore, at optimum thermal conditions, this weed species can germi-
nate in areas where a limited quantity of soil moisture is available. Due to the ability of C. vir-
gata to germinate in moisture stress conditions, this weed species could proliferate efficiently
in the areas where summer fallow conditions have been in practice, even if light rainfall occurs.
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Table 2. Estimated parameters of a three-parameter sigmoidal model [( f=a/ (1 + exp (ﬁ) b)} fitted to the germination data of two glyphosate-susceptible (Ch

and SGM2) and two glyphosate-resistant (SGW2 and CP2) populations of Chloris virgata in response to different alternate day/light temperature regimes and
osmotic potential levels.

Temperature (°C) Populations a b x0 (MPa) R?

15/5 Ch 101£6 -0.09 = 0.02 -0.24 + 0.03 0.98
SGM2 100+ 5 -0.11 £0.02 -0.27 £ 0.03 0.99
SGW2 100+ 3 -0.09 £0.01 -0.29 £ 0.01 0.99
CP2 100 £ 11 -0.16 £ 0.07 -0.23 £ 0.07 0.91

25/15 Ch 104 £ 10 -0.14 £ 0.05 -0.52 £ 0.08 0.97
SGM2 102 +4 -0.14 £ 0.02 -0.45 + 0.03 0.99
SGW2 103+ 8 -0.17 £ 0.05 -0.35 £ 0.06 0.97
CP2 104+ 7 -0.14 £ 0.04 -0.47 £ 0.05 0.98

35/25 Ch 101 +2 -0.12 £ 0.01 -0.39 £ 0.01 0.99
SGM2 1015 -0.13 + 0.03 -0.29 £ 0.03 0.98
SGW2 103+ 9 -0.15+0.05 -0.43 £ 0.07 0.97
CP2 103+7 -0.16 = 0.04 -0.39 + 0.06 0.98

Abbreviations: ‘a’ is an asymptote of the curve, ‘b’ is the slope of the regression curve, ‘x0’ is the osmotic potential level corresponding to 50% germination reduction and

‘R%’is a coefficient of determination. Values after + are standard errors of the mean.

https://doi.org/10.1371/journal.pone.0253346.t1002

It is important to note that the seed production potential of C. virgata (>>40,000 seeds plant™)
[1] could enhance the seed bank in the summer months.

The GR population SGW2 possessed the lowest %0’ value (indicating higher water stress
adaptability) at two sub-optimal temperature conditions (15/5°C and 35/25°C) as compared to
other populations (Table 2). On the other hand, the SGW2 population exhibited the highest
%0’ value (indicating lower water stress adaptability) at the optimum temperature regime (25/
15°C) compared to other populations. Moreover, the other three populations also displayed
varying water stress adaptability under different alternating thermal conditions. Population
CP2 showed similar characteristics to the GS populations (Ch and SGM2) in terms of water
stress adaptability despite having the GR status. Therefore, no distinctive behavior was
observed in terms of the water stress adaptability of the GS and GR populations. All the popu-
lations might have faced different agronomic practices in their initial generations for a longer
period and that could be the reason for varying water stress adaptability under different alter-
nating temperature regimes [14]. In the current study, all populations were grown in the same
environment at Gatton, Queensland. However, there is limited knowledge on the effect of
maternal environments and agronomic practices (followed at the seed collection sites) on C.
virgata germination ecology.

Chloris virgata is characterized as a summer annual grass species [1]. Previous research on
the germination response of a Queensland population of C. virgata to alternate temperature
regimes suggested 30/20°C as the ideal temperature for optimum germination [20]. The same
study also suggested that germination was lowest at a 15/5°C temperature regime. In the cur-
rent study, all populations exhibited considerable germination percentages, even at the lowest
alternating temperature regime (15/5°C) and 0 MPa osmotic potential (61%, 87%, 49%, and 47
for Ch, SGM2, SGW2, and CP2, respectively) (Table 1). These results suggest that C. virgata
has the ability to germinate in winter months, despite being a summer annual. Therefore,
Queensland’s farmers have been observing C. virgata throughout the year (Chauhan, personal
observations). This could be because of a “weed shift” (transformation in compositions by
weed populations due to agronomic practices) [25]. This type of the ‘weed shift’ behavior has
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previously been observed in many weed species such as Sonchus oleraceus L. [26], Sisymbrium
thellungii O. E. Schulz. [27] and Conyza bonariensis L. [28]. However, it should not be implied
that successful germination at low temperatures in laboratory conditions means successful sur-
vival in field conditions, as frost may kill weed species in winter. Therefore, future research
experiments should focus on C. virgata phenology, in which the weed is planted at intervals to
explore year-round survivability.

Seasonal weather parameters [mean maximum and minimum temperature (Fig 2A), and
mean monthly rainfall (Fig 2B)] were acquired for the past 30 years from the Australian
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Fig 2. Monthly weather conditions of three locations from where the four populations of Chloris virgata were
collected. (A) Monthly mean maximum and minimum temperature and (B) monthly mean rainfall. Ch was collected
from Chinchilla; CP2 from Cecil Plains; and SGM2 and SGW?2 from St George.

https://doi.org/10.1371/journal.pone.0253346.g002
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Bureau of Meteorology website for three locations from where the populations were collected
(Fig 2) to understand monthly weather conditions. The mean minimum and maximum tem-
peratures in summer months (November to February) and winter months (May to August) of
all three locations resemble the alternating temperature regimes (15/5°C, 25/15°C, and 35/
25°C) used in this study (Fig 2A). All three locations (Cecil Plains, Chinchilla, and St. George)
exhibited summer dominant rainfall (Fig 2B); however, some amount of rainfall was recorded
in the winter months as well.

All populations used in this study were collected from different agroecosystems [4] and pos-
sessed more than 40% germination at 0 MPa osmotic potential at the lowest alternating tem-
perature regime (15/5°C). Therefore, as discussed earlier, all populations can germinate in the
winter months if rainfall occurs. This could hinder different agricultural industries of the
regions from where all the populations were gathered, for instance, the beef and pork indus-
tries in Chinchilla and Saint George regions by degrading pasture land, grain industries of
the Saint George region by competing with winter grain crops. Also, the Cecil Plains region is
considered one of the most fertile regions in terms of cotton production in the Southern hemi-
sphere and the CP2 population exhibited more than 40% germination at two higher alternat-
ing temperature regimes (25/15°C and 35/25°C), demonstrating the ability to germinate in
summer months and compete with cotton crops of the Cecil Plains region.

Three more biological parameters (T-parameters) (T10, T50, and T90) were acquired from
R software using ‘SeedCalc’ package to further understand germination patterns of all the
populations at three alternating temperature regimes and different osmotic potential levels,
whereas T10, T50, and T90 represent incubation period (hours) required to attain 10% germi-
nation, 50% germination, and 90% germination, respectively (Table 3). The two lowest
osmotic potential levels (-0.8 and -1.6 MPa) were excluded for T-parameters because negligible
or no germination was observed at all alternating temperature regimes (Table 1).

Time of germination initiation (T10) for all populations at all the alternating temperature
regimes increased alongside increasing moisture stress levels (Table 3) and this trend remained
similar for the incubation period required to attain 50% and 90% germination (T50 and T90,
respectively) of all populations (Table 3). These outcomes are clear indications of delayed
water imbibition by the seeds of C. virgata in increasing water stress conditions.

In addition, the GR population SGW?2 exhibited a distinct pattern for T10, T50, and T90 at
all alternating temperature regimes and osmotic potential levels (Table 3). To elaborate, the
GR population SGW2 required a longer incubation time to reach 10%, 50%, and 90% germina-
tion at all alternating temperature regimes and osmotic potential levels as compared to other
populations. The SGW2 population required 138 hours to initiate the germination process
(T10) at 15/5°C (osmotic potential 0 MPa), which was higher than other populations at the
same temperature and osmotic potential, and it was similar for T-parameters (T10, T50, and
T90) at all alternating thermal conditions and osmotic potential levels.

The reduced germination percentage and delayed or extended germination characteristics
of the GR population SGW2, especially at the highest alternating temperature regime (35/
25°C), might be the expression of an escape mechanism against pre-planting weed manage-
ment operations (e.g., applications of burndown herbicides) in summer fallow conditions and
this particular population could guard itself against pre-plating burndown herbicide applica-
tion; therefore, securing successful survival. The SGW2 population also exhibited an ability to
germinate at the lowest alternating temperature regime (15/5°C) and thus may be capable of
germinating in winter months (Table 1) and competing with winter grains grown in the Saint
George region, such as wheat and barley.

Consequently, the SGW2 population could become considerably hard to control in winter
cereals. Pinoxaden, an ACCase inhibitor herbicide, is recommended to control grass weed
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species in winter cereals and it is the only chemical formulation available in the market to tar-
get grass weeds in winter cereals. However, our previous research suggested that pinoxaden
was not effective on all the four populations used in this study [4]. This might cause difficulties
in selecting herbicides in order to control C. virgata with other multiple weed species in the
same fields in winter cereals.

Results from the current study have direct implications for the development of integrated
weed management programs, selection of tillage timing, choosing a proper timing for herbi-
cide application to optimize efficacy, and adjusting crop calendars to achieve ecological based
control of this species. Data from this study could also aid in the development of resistance
simulation models to forecast the advancement and population dynamics of GR C. virgata.

Conclusion

The adaptability to varying temperature regimes and osmotic potential levels of the two GR
(SGW2 and CP2) and two GS (Ch and SGM2) populations of C. virgata revealed in this study
indicates the potential of this species to infest cropping regions and fallows of the south-east
region of Queensland, Australia. This study also stipulated the need for developing site-specific
weed control tactics rather than species-specific control measures, especially for GR popula-
tions of C. virgata. We acknowlede that the results of this study cannot be generalized because
only a limited number of GR and GS populations were used. Moreover, very often GR popula-
tions coexist with GS populations, and therefore replacement series experiments may provide
detailed information on their relative competiveness. An ability of C. virgata to exhibit consid-
erable germination at the lowest alternating temperature regimes (15/5°C) demonstrates its
year-round emergence possibilities, despite the summer annual life cycle, thus enriching seed
banks and ensuring infestation in subsequent years. This study suggests several research gaps
that need to be addressed in the future to achieve efficient control of C. virgata such as weed
phenology, glyphosate-alternatives, the efficacy of herbicides in moisture stress conditions,
and optimizing the benefits from tillage operations.
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