
ORIGINAL RESEARCH
published: 13 August 2019

doi: 10.3389/fmolb.2019.00064

Frontiers in Molecular Biosciences | www.frontiersin.org 1 August 2019 | Volume 6 | Article 64

Edited by:

Gennady Verkhivker,

Chapman University, United States

Reviewed by:

Peng Tao,

Southern Methodist University,

United States

Carter Tribley Butts,

University of California, Irvine,

United States

Vladimir N. Uversky,

University of South Florida,

United States

*Correspondence:

Arvind Ramanathan

ramanathana@anl.gov

Specialty section:

This article was submitted to

Biological Modeling and Simulation,

a section of the journal

Frontiers in Molecular Biosciences

Received: 29 March 2019

Accepted: 16 July 2019

Published: 13 August 2019

Citation:

Demerdash O, Shrestha UR,

Petridis L, Smith JC, Mitchell JC and

Ramanathan A (2019) Using

Small-Angle Scattering Data and

Parametric Machine Learning to

Optimize Force Field Parameters for

Intrinsically Disordered Proteins.

Front. Mol. Biosci. 6:64.

doi: 10.3389/fmolb.2019.00064

Using Small-Angle Scattering Data
and Parametric Machine Learning to
Optimize Force Field Parameters for
Intrinsically Disordered Proteins
Omar Demerdash 1,2, Utsab R. Shrestha 1,2, Loukas Petridis 1,2,3, Jeremy C. Smith 2,3,

Julie C. Mitchell 1,2 and Arvind Ramanathan 4,5*

1 Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States, 2University of Tennessee/Oak Ridge

National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States, 3Department of Biochemistry and

Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States, 4Computational Sciences and

Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States, 5Data Science and Learning Division,

Argonne National Laboratory, Lemont, IL, United States

Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions

(IDRs) play important roles in many aspects of normal cell physiology, such as signal

transduction and transcription, as well as pathological states, including Alzheimer’s,

Parkinson’s, and Huntington’s disease. Unlike their globular counterparts that are defined

by a few structures and free energyminima, IDP/IDR comprise a large ensemble of rapidly

interconverting structures and a corresponding free energy landscape characterized by

multiple minima. This aspect has precluded the use of structural biological techniques,

such as X-ray crystallography and nuclear magnetic resonance (NMR) for resolving their

structures. Instead, low-resolution techniques, such as small-angle X-ray or neutron

scattering (SAXS/SANS), have become a mainstay in characterizing coarse features

of the ensemble of structures. These are typically complemented with NMR data if

possible or computational techniques, such as atomistic molecular dynamics, to further

resolve the underlying ensemble of structures. However, over the past 10–15 years, it

has become evident that the classical, pairwise-additive force fields that have enjoyed

a high degree of success for globular proteins have been somewhat limited in modeling

IDP/IDR structures that agree with experiment. There has thus been a significant effort to

rehabilitate these models to obtain better agreement with experiment, typically done by

optimizing parameters in a piecewise fashion. In this work, we take a different approach

by optimizing a set of force field parameters simultaneously, using machine learning to

adapt force field parameters to experimental SAXS scattering profiles. We demonstrate

our approach in modeling three biologically IDP ensembles based on experimental

SAXS profiles and show that our optimization approach significantly improve force field

parameters that generate ensembles in better agreement with experiment.
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1. INTRODUCTION

Our understanding of classical structure-function paradigm of
proteins was first established by recognizing a unique three-
dimensional (3D) structure of specific amino acid sequence
(Anfinsen, 1973). However, in the late ’90s, it was reported
that many proteins remain natively unfolded while biologically
active (Wright and Dyson, 1999). Such intrinsically disordered
proteins or regions (IDPs/IDRs) do not fold autonomously
into stable 3D structures; however, they may possess short-
transient secondary structure (Uversky, 2011; Das and Pappu,
2013; Latysheva et al., 2015). IDPs typically have an abundance
of charged and polar residues while lacking hydrophobic
groups. In addition, a recent study suggests IDPs, even with
a low net charge, and high hydrophobicity, possess extended
conformations in water (Riback et al., 2017). The 3D structure
of IDPs is specifically influenced by their sequence, e.g., a linear
sequence patterning of oppositely charged residues was found
to govern the conformational dimension in polyampholytic
IDPs (Das and Pappu, 2013).

Despite the interconverting ensemble of conformations and
absence of structured region, IDPs play a vital role in many
cell physiology, such as signal transduction and transcription
(Habchi et al., 2014; Latysheva et al., 2015; Wright and
Dyson, 2015; Mollica et al., 2016). Interest in IDPs also stems
from their association with multiple diseases, such as cancers
[p53 (Wells et al., 2008) and HPV (Uversky et al., 2006)],
diabetes, cardiovascular, and neurodegenerative disorders (e.g.,
Alzheimer’s and Parkinson’s diseases) (Uversky et al., 2008;
Knowles et al., 2014). Therefore, IDPs not only exemplify a new
paradigm for understanding disorder-function relationships but
also provide insights on pathological mutations that can lead to
serious human diseases (Latysheva et al., 2015).

Nuclear magnetic resonance (NMR) spectroscopy (Wells
et al., 2008; Pérez et al., 2009, 2013; Robustelli et al., 2012;
Jensen et al., 2014; Arai et al., 2015; Lee et al., 2016; Arbesü
et al., 2017), single-molecule Förster resonance energy transfer
(smFRET) (Hofmann et al., 2012; Fuertes et al., 2017), cryo-
electron microscopy (cEM) (Busch et al., 2015; Levine et al.,
2015) and small-angle X-ray scattering (SAXS) (Wells et al.,
2008; Receveur-Bréchot and Durand, 2012; Arbesü et al., 2017;
Fuertes et al., 2017; Riback et al., 2017; Drulyte et al., 2018)
are widely being used to study the disordered structures of
IDPs. However, they lack a complete atomic or molecular
description of disorder due to instrumental resolution and the
ensemble-averaged nature of the measurements, which present
a steep challenge to the unambiguous interpretation of the
measurements (Fuertes et al., 2017; Kosciolek et al., 2017; Best
et al., 2018; Drulyte et al., 2018; Riback et al., 2018). Therefore,
molecular dynamics (MD) simulations are often combined with
experiments for determining the ensemble of 3D structures of
IDPs (Huang et al., 2017).

At the heart of running atomistic molecular dynamics (MD)
simulations is a set of empirical potential energy functions from
which forces are derived for characterizing the time evolution
of a system (typically a protein, or a set of proteins, or other
bio-molecules) (Karplus andMcCammon, 2002). These potential
energy functions are typically referred to as a force field (FF).

The last four decades of FF development have been critical
in enabling studies of bio-molecular systems in the context of
ligand binding, enzyme reactions, protein folding/misfolding
and other complex biological phenomena, such as self-assembly
(Karplus, 2002).

Current FFs for proteins and other bio-molecules are
mature in the sense that they have been rigorously validated
for benchmark systems, have an underlying methodology for
parameterization, and are being continuously improved upon
as discrepancies between simulation results and experimental
physical observables arise (Lopes et al., 2015). These deficiencies
become particularly noticeable with current advances in
sampling ability of MD on modern computer hardware and
algorithmic improvements in the software, enabling limitations
in sampling to be ruled out as the deficiency (Tiwary et al., 2015).
One notable deficiency of standard, pairwise additive force fields
is in their ability to correctly capture the experimentally observed
properties of intrinsically disordered proteins (IDP) and partial
disorder. While empirical force fields have demonstrated a
high degree of success in reproducing experimentally derived
physical properties of globular proteins, which are characterized
by a few relevant, compact conformations, they are deficient
in capturing the many transient conformational states and
corresponding free energy minima characteristic of IDPs (Huang
and MacKerell, 2018). This is best demonstrated in the tendency
of empirical force fields to predict a small set of overly compact
conformations, in contrast to experimental prediction of a
large ensemble of more extended, less compact conformations
where the protein interacts much more with solvent (Nettels
et al., 2009; Best et al., 2014; Piana et al., 2014, 2015; Skinner
et al., 2014). Indeed, this observation, as well as hydration free
energy calculations on small molecules being observed to be too
unfavorable (Shirts et al., 2003; Shirts and Pande, 2005) compared
with experiment, have pointed to standard force fields being
excessively solvophobic.

These observations have led researchers to tune the non-
covalent energetic parameters in an effort to create a more
balanced picture of protein-water interactions. While it could
be argued that more complicated functional forms may be
necessary, it is highly desirable to be able to preserve the
current simple functional forms if possible, given their history
of success in capturing an array of biophysical phenomena
of interest, and their easy implementation on GPU and other
high-performance platforms.

Efforts at rehabilitating FFs for use with IDP/IDR have focused
on adjustment of short-ranged non-covalent contributions to
protein-water interactions through tuning of van der Waals
energetics, modeled in all cases by a Lennard-Jones potential
with a 6–12 functional form (Best et al., 2014; Piana et al.,
2015; Robustelli et al., 2018). In addition to reparameterization
of protein-water interactions, closer attention has been paid
to the underlying water model, recognizing the advantages of
recently parameterized four-site water models, such as TIP4P-
Ew (Horn et al., 2004) and TIP4P/2005 Vega and Abascal (2005),
over simpler three-site models, such as TIP3P (Best and Mittal,
2010). Given the overly compact nature of simulated IDP, it
was also considered natural to reparameterize the side-chain
and backbone torsional parameters, and a number of groups
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have pursued this line of research (Nerenberg and Head-Gordon,
2011; Rauscher et al., 2015; Huang et al., 2017; Song et al., 2017;
Robustelli et al., 2018). Reparameterization of torsional potentials
is likely necessary for a different reason, namely, the fact that
torsional potentials implicitly have a degree of short-ranged non-
bonded character. Despite the continuous progress in improving
FF accuracy, our ability to recapitulate gross experimental
observables, such as neutron reflectivity/scattering profiles from
MD simulations has therefore remained extremely challenging.

For IDPs, small-angle X-ray and neutron scattering (SAXS
and SANS, respectively) are ideal experimental methods for
investigating the ensemble of IDP structures, as traditional
imaging methods, such as X-ray crystallography or nuclear
magnetic resonance (NMR), by themselves are not able to resolve
the large number of rapidly interconverting structures of which
the IDP ensemble is composed Bernado and Svergun (2012),
Kikhney and Svergun (2015). Indeed, low-resolution methods,
such as SANS/SAXS are ideal for conformationally polydisperse
systems, such as IDP whose conformational ensemble is very
large and consists of structures that are rapidly interconverting
among themselves. SAXS and SANS are able to provide coarse
structural information about the structural ensemble, such as
compactness and overall size and shape. Due to the fact that
the SAXS/SANS scattering intensities constitute an average over
many different structures, these methods must be complemented
by additional higher-resolution experimental data, such as NMR
observables (Grishaev et al., 2005; Marsh et al., 2007; Marsh and
Forman-Kay, 2009; Wang et al., 2009; Schwieters et al., 2010), or
simulation-based methods (Bernado et al., 2007; Pelikan et al.,
2009; Yang et al., 2010; Rozycki et al., 2011) to elucidate the
structures of which the ensemble is composed. Therefore, given
the important role of MD simulations as a complement to the
interpretation of SAXS/SANS data, it is imperative that the
underlying force field be accurate.

Here, we studied three IDPs with varying molecular
weight and different charge-hydrophobicity characteristics (see
Figure 1A): RS-peptide (24 residues), PaaA2 (63 residues),
and SH4UD (95 residues). RS-peptide is highly charged
IDR without any structured region in Serine/arginine-rich
proteins, such as serine/arginine-rich splicing factor 1 (SRSF1)
and plays a significant role in RNA metabolism, including
transcription, RNA splicing and RNA export (Xiang et al.,
2013). The phosphorylation of serine residues in RS repeats
regulates peptide’s interaction and subcellular localization,
whereas it undergoes several cycles of phosphorylation and
dephosphorylation during splicing (Xiang et al., 2013). PaaA2
is the antitoxin domain of toxin-antitoxin (TA) module in
the human pathogen E. coli O157, which neutralizes the toxin
domain such that TA module copes with different sources
of stress (Sterckx et al., 2014, 2016). The TA module is also
associated with the establishment of persister phenotype and
virulence mechanisms (Sterckx et al., 2016). It has two preformed
helices connected by a flexible linker in the absence of a binding
partner, however is, classified as IDP due to a high degree of
conformational flexibility from SAXS and NMR studies (Sterckx
et al., 2014). Proto-oncogene non-receptor human tyrosine
kinase c-Src is a multi-domain protein (Tatosyan and Mizenina,

2000; Pérez et al., 2009) that encompasses an N-terminal IDR
containing the Src homology 4 (SH4) and unique (U) domains
hereafter refer as SH4UD. Several studies suggest the high activity
of the c-Src kinase in a wide variety of human cancers, such
as colon, breast, pancreas, and brain (Wheeler et al., 2009).
The phosphorylation in SH4UD induces a global electrostatic
perturbation forcing c-Src kinase to untie from the membrane
(Pérez et al., 2009).

In this work, we have implemented a method to optimize
FF parameters against experimental SAXS and SANS intensities
in ForceBalance (Wang et al., 2014)—these observables
can be understood as ensemble-averaged properties with
derivable gradients and Hessians with respect to force field
parameters. Starting with the most recent and comprehensive
reparameterization of an IDP force field (Robustelli et al., 2018)
from the D. E. Shaw research group, we optimized the water
and protein backbone Lennard-Jones σ and ǫ, as well as the
barrier heights of protein backbone torsions, as was done in their
study. We sought to determine whether we could systematically
improve on the parameters they had derived, as our initial set of
parameters was their optimized IDP force field named a99SB-
disp. We found that through our systematic reparameterization
using ForceBalance that we could achieve improved agreement
with experimental SAXS profiles for 3 systems: RS-peptide,
PaaA2, and SH4UD. We will henceforth refer to our version of
the algorithm as ForceBalance-SAS (small-angle scattering). A
key advantage of our approach is that nearly any experimental
observable can be encoded as an ensemble-averaged property,
for which analytic gradients and approximate Hessians with
respect to force field parameters that are being optimized
can be obtained.

2. METHODS

2.1. Parameter Optimization With
ForceBalance-SAS
ForceBalance-SAS parameterization proceeds through an
iterative non-linear least-squares minimization of the squared
residual between experimental and calculated properties
using analytical gradients and approximate Hessians (Gauss-
Newton approximation whose term consists of a product of
first derivatives) with respect to a set of FF parameters. A
flowchart illustrating our approach is shown in Figure 1. Each
iteration consists of a MD simulation with the current set
of FF parameters, followed by a calculation of the objective
function, gradient, and approximate Hessian (at the current
set of FF parameter values), and an optimization step using
Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt,
1963) followed by a regularization to avoid overfitting.

The Levenberg-Marquardt algorithm is used, because it is
both gradient- and Hessian-based. Moreover, if the initial
parameters are far from the local minimum, it is able to converge
faster than the Gauss-Newton algorithm. Lastly, the Levenberg-
Marquardt algorithm is ideal due to its intrinsic ability to
incorporate an adaptive trust radius (Dennis et al., 1981; More
and Sorensen, 1983), effectively enabling the algorithm to change
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FIGURE 1 | Flowchart depicting the ForceBalance-SAS algorithm. An initial set of parameters is input, followed by MD simulation and calculation of

ensemble-averaged small-angle scattering intensities. After the simulation stops, the residual between the simulated and experimental scattering intensities is

calculated, along with the gradients and Hessians of the residual. If the desired convergence criteria are met, the algorithm stops, and the new force field parameters

are output; if not, optimization is performed, a new set of parameters are obtained, and a simulation with the updated parameters are performed, completing the

cycle. The current implementation of the ForceBalance (Wang et al., 2014) approach is demarcated from our approach using dotted lines.

the size of the step according to how well the objective function
was improved in the previous step, as shown in the following
equation framed in the context of the fitting task presented in
this work:

(JTJ+ γ I)δ = JT(Aexp − 〈Acalc(λ)〉), (1)

and

Jij =
∂Acalc

i

∂λj
. (2)

In the above equation,Aexp is the set of experimentally measured
observables, 〈Acalc〉 is corresponding calculated set of ensemble-
averaged observables, λ are the parameters (here, FF parameters)
whose values we are optimizing, δ is the step taken at the current
step of the optimization, and γ is the parameter controlling
the adaptive trust radius. In this work, the initial trust radius

was set to 1.0, which is larger than the default of 0.1 in the
standard ForceBalance approach. Aminimum trust radius of 0.05
was allowed (the default in standard ForceBalance is 0.0). An
adaptive damping factor controlling how much the trust region
can vary from the initial value was set to the default value used
in ForceBalance of 0.5. Regularization is achieved by means of
a harmonic penalty function that constrains FF parameters to a
physically reasonable range of values as follows:

R(λ) =
λ2

α2 , (3)

where R(λ) is the harmonic penalty function, λ is the FF
parameter, and α corresponds to the radius within which the
parameter value can vary. In this work, α is determined by
ForceBalance automatically according to the magnitudes of λ,
and were 0.0529177, 2.4784, and 96.4853 for van der Waals
σ , van der Waals ǫ, and torsional barrier heights, respectively.
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If convergence criteria are met, the algorithm stops and the
optimized FF parameters are output. If not, the cycle continues
with a simulation at the new set of parameters.

Our method rests on the ability of ForceBalance-SAS to
directly optimize a set of FF parameters with respect to
the experimental SAXS and SANS scattering intensities. Any
condensed phase observable can be calculated from rigorous
statistical mechanical principles. In the isobaric-isothermal
ensemble, the ensemble-averaged observable 〈A〉 (in our specific
case, 〈I(q)〉, the small-angle scattering intensity—described in
Equation 6), for all experimentally observed scattering vectors,
I(q) for a given set of FF parameters λ is:

〈A〉λ =
1

Q(λ)

∫

A(r,V , λ) exp(−β(E(r,V , λ)+ PV))dRdV , (4)

where Q(λ) =
∫

exp(−β(E(r,V , λ) + PV) is the isothermal-
isobaric partition function. Here, E is the potential energy, β is
1

kBT
, T represents the temperature, P is the pressure, and V is

the volume. In practice, 〈A〉 is not evaluated through a direct
integration of Equation (4), but rather is sampled numerically
by MD assuming ergodicity. Analytic gradients of properties A
with respect to FF parameters λ can be obtained by analytically
differentiating Equation (4):

∂〈A〉λ

∂λ
= 〈

∂A

∂λ
〉λ − β(〈A

∂E

∂λ
〉λ − 〈A〉λ〈

∂E

∂λ
〉λ). (5)

The above terms are calculated for each value of I(q) in
the experimental (and simulated) scattering profile. Thus, the
primary objective of ForceBalance-SAS is to improve the
agreement between experimental and calculated SAXS intensities
by minimizing the following residual term:

χ2 =
1

Nq

Nq
∑

i=1

( Iexp(qi)− 〈Icalc(qi)〉

σexp(qi)

)2
, (6)

where Iexp(qi) and Icalc(qi) are the experimental and calculated
intensities, respectively, at a given wavenumber qi, σexp(qi) is the
experimental error in the measurement of Iexp(qi), and Nq is the
number of observations of qi obtained.

While the expression for the gradient of a property with
respect to the FF parameters is analytic, gradients of the potential
energy with respect to FF parameters are themselves calculated
with three-point finite difference using a step size of 10−9. In this
work the FF parameters λ were the σ and ǫ of protein backbone
Lennard-Jones, and the barrier heights of protein backbone
torsions. The final simulation parameters were achieved for
RS-peptide and PaaA2 after 18 and 4 cycles of ForceBalance-
SAS (Figure S1), respectively, which amounted to the desired
reduction in χ2 of at least 50%.

2.2. SAXS/SANS Calculations
The experimental SAXS data for RS-peptide and PaaA2 were
taken from (Rauscher et al., 2015) and (Sterckx et al., 2014),

respectively. SH4UD SAXS data was provided by Hugh M.
O’Neill, which was measured at X-Ray Laboratory, Spallation
Neutron Source, Oak Ridge National Laboratory. SAXS/SANS
scattering intensities I(q) were calculated from MD snapshots
using the crysol/cryson algorithms in the ATSAS package
(Svergun et al., 1995; Franke et al., 2017). Since crysol/cryson
are based on use of implicit solvent, it is essential that its
parameter modeling the difference in solvation between the
protein surface and bulk be optimized. To achieve this, we
averaged the coordinates of all snapshots saved for the simulation
of each iteration, and then fit the averaged coordinates to the
experimental SAXS/SANS to optimize the solvation parameter;
this optimization was done internally within crysol/cryson and
details of how this is done can be found in (Svergun et al., 1995).
This optimized value was used for the calculated SAXS/SANS
of each of the snapshots. Since the calculated and experimental
SAXS can have different number of q points, a spline-based
interpolation of the calculated and experimental SAXS/SANS
curves was used to match the number of q points between
the two. Finally, the calculated SAXS/SANS intensities will
necessarily have different amplitudes owing to aspects of the
experiment not accounted for in the calculation. To match the
amplitudes between calculation and experiment, a linear fit was
performed between the SAXS/SANS I(q) profile averaged over all
snapshots and the corresponding experimental I(q). These fitting
parameters were then used for the calculated intensities I(q) of
the individual snapshots.

2.3. MD Simulations
The initial MD simulations (step 1 of Figure 1) of three
systems (RS-peptide, PaaA2, and SH4UD) were conducted using
GROMACS 5.1.2 (Van der Spoel et al., 2005; Hess, 2008;
Abraham et al., 2015) using newly developed a99SB-disp FF
parameter set (Robustelli et al., 2018). The energy of the system
was minimized using 1,000 steepest decent steps, which was
followed by 1 ns of equilibration using NVT and NPT ensembles.
Finally, 1 µs of production runs were performed using the NPT
ensemble. The snapshots saved at the end of the 1 µs simulations
were further utilized for ForceBalance-SAS optimization.

For each cycle of ForceBalance-SAS, as part of our
optimization procedure (step 2 in Figure 1), each protein was
then simulated for 5 ns of production at each iteration in
the isothermal-isobaric (NPT) ensemble at 1 atm and 298
K, preceded by 50 ps of equilibration. Achieving statistical
convergence of the target scattering property is critical. Our
choice of 5 ns of production for each iteration of ForceBalance-
SAS was determined heuristically by running a single iteration
at a range of production lengths from 0.5 ns to 50 ns.
Scattering intensity and Kratky curves were calculated for each
simulation length. We used the χ2 metric (Equation 6 above)
to quantitatively evaluate whether the global features of the
scattering profiles at various time-windows from the simulation
trajectory (50, 25, 10, 5, 2.5, 1, 0.5 ns) were sufficiently captured
(see Figure S2). We found that a choice of 5 ns to have better
χ2 fit to the experimental data and our choice of 5 ns was an
expedient compromise between computational cost and accuracy
for each cycle of the optimization. Note that the choice of 5

Frontiers in Molecular Biosciences | www.frontiersin.org 5 August 2019 | Volume 6 | Article 64

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Demerdash et al. ML-Derived Force Fields for Disordered Proteins

ns production runs was made based prior to the start of the
optimization step. We do note that this length of the simulations
may affect the overall quality of fits obtained (see Discussion).

Thermostating (in steps 1 and 2 of Figure 1) was performed
using GROMACS (Van der Spoel et al., 2005; Hess, 2008;
Abraham et al., 2015)modified Berendsen thermostat (Berendsen

FIGURE 2 | Three prototypical IDP systems chosen for the ForceBalance-SAS approach indicate diverse structural characteristics. (A) The mean normalized

hydrophobicity vs. the absolute net charge (Uversky) plots indicate that the RS-peptide system is more disordered than the other two systems. The red line is used to

mark the boundary between disordered proteins vs. more folded/globular proteins; the gray highlighted area is indicative of the region that is enriched for folded/

globular proteins (Uversky, 2011). (B) Comparison of the SAXS determined experimental radius of gyration (Rg) values vs. the Rg values predicted using simulations

from the original FF (red dots) and the optimized FF (blue dots). The theoretical Rg values predicted from the Flory equation for IDPs (see Results section) is shown in

black, along with expected standard deviations (gray dotted lines). The corresponding Rg values for a globular protein with the same number of amino acid residues is

shown for reference (gray solid line). Additional details of the sequence/structural properties of the IDP ensembles considered here are provided in the supporting

information.

FIGURE 3 | ForceBalance-SAS based simulations generate IDP ensembles that are better fit to the experimental SAXS observables at shorter timescales. (A) The

scattering profiles for RS-peptide showing the experimental data (black dots with error bars) along with the predicted SAXS scattering profiles from the original FF

simulations (red lines) vs. the optimized FF simulations (blue lines). For clarity, the χ2 values between the experiment and the respective simulations are shown in the

legend. (B) The Kratky plot from experiments (black dots), and predicted profiles from simulations (red line corresponding to the original FF, blue line—optimized FF).

For clarity, the error bars from the experiments are excluded. (C,D) Highlight the same comparison for the PaaA2 system. The factor improvement (FI) in the χ2 values

between the optimized and original FFs are listed above each protein system.
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et al., 1984) with separate coupling of the protein and solvent
to a heat bath at 298 K. Initial velocities assigned according to
the Maxwell-Boltzmann distribution at 298 K. Barostating was
performed with the Parrinello-Rahman method (Parrinello and
Rahman, 1981). A 2-fs timestep was used, and covalent bonds
between hydrogen and heavy atoms were constrained using the
LINCS algorithm (Hess et al., 1997; Hess, 2008). A 12-Å distance
cutoff was used for van der Waals and the real-space component
of electrostatics. Long-range electrostatics were calculated using
Particle Mesh Ewald (Darden et al., 1993) with a grid spacing of
1.6Å. Coordinate snapshots were saved every 100 ps. Simulations
were run on a GPU-enabled version of Gromacs (v. 2019) on a
single node equipped with two Tesla K80s.

2.4. Sequence-Structure Property
Predictions
Per-residue disorder prediction was performed with the PONDR
(Prediction of Natural Disordered Regions; Obradovic et al.,
2003) algorithm using the VLXT model whose predictions
are based on the integration of predictions made by three
different neural networks. We used the web server CIDER
(Holehouse et al., 2017) to ascertain relationships between

the charged residue content of a sequence and its structural
ensemble propensities.

3. RESULTS

SAXS and SANS scattering intensities were implemented as
force field parameter fitting targets in ForceBalance-SAS. As
the intensities are condensed-phase observables, much of the
optimization machinery in ForceBalance-SAS was ideal for
this purpose and modification to incorporate SAXS/SANS was
straightforward. As our initial set of force field parameters,
we used the most state-of-the-art IDP-specific force field,
a99SB-disp, which has been developed and validated using a
comprehensive IDP benchmark consisting of a range of protein
systems and experimental observables. To have continuity with
their work and previous efforts, we optimized the σ and ǫ of
the water and protein backbone atoms’ Lennard-Jones, as well
as the protein backbone torsion barrier heights. Unlike previous
efforts, we are able to optimize all of these simultaneously and,
importantly, are able to directly target the agreement of calculated
and experimental SAXS scattering profiles. This is an ideal
experimental target, as it directly reports on how contracted or

FIGURE 4 | Longer timescale simulations using the ForceBalance-SAS optimized FF parameters preserve improvement with experimentally observed scattering

profiles. (A) The scattering profiles for RS-peptide showing the experimental data (black dots with error bars) along with the predicted SAXS scattering profiles from

the original FF simulations (red lines) vs. the optimized FF simulations (blue lines). For clarity, the χ2 values between the experiment and the respective simulations are

shown in the legend. (B) The Kratky plot from experiments (black dots), and predicted profiles from simulations (red line corresponding to the original FF, blue

line—optimized FF). For clarity, the error bars from the experiments are excluded. (C,D) Highlight the same comparison for the PaaA2 system. The factor improvement

(FI) in the χ2 values between the optimized and original FFs are listed above each protein system. Note that the FI in each simulation has decreased compared to the

shorter timescales (Figure 3)—however, still preserves the overall trends. It is also notable that the fits of the MD simulations to the longer q values are poorer in

both cases.
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expanded protein conformations in the ensemble are, a protein
property that force fields have notable difficulty in capturing.

3.1. ForceBalance-SAS Enables Better
Agreement Between Experimental and
Simulated Ensembles
We chose three prototypical IDP systems that are of biological
interest: (1) RS-peptide (Xiang et al., 2013), (2) prokaryotic
type II antitoxin module PaaA2 from the human pathogen E.
coli O157, and (3) the N-terminal regulatory region consisting
of the SH4 unique domain (SH4UD) of the C-Src family of
non-receptor tyrosine kinases. An examination of the mean
hydrophobicity vs. net charge of these three IDP systems, also
referred to as the Uversky plots (Uversky, 2011), shows that
the RS-peptide system is more disordered than the other two
systems (Figure 2A). Not surprisingly, the secondary structural
content for the RS-peptide is significantly lower, given that its
absolute charge is much higher compared to the other two
IDP systems. Indeed from experimental data, such as circular
dichroism (CD) and nuclear magnetic resonance (NMR), PaaA2
consists of at least two partially formed α-helices (Sterckx et al.,
2014) and SH4UD consists of several transient helices (Pérez
et al., 2009; Arbesü et al., 2017). We performed calculations with
the CIDER (Classification of Intrinsically Disordered Ensemble
Relationships) web server to further parse the sequence-structure
relationships based on the fraction of positively and negatively
charged residues in the sequence. The diagram of states generated
by CIDER shows the propensity of some structure for both
PaaA2 and SH4UD (Figure S3), in accord with CD and NMR
predictions. RS-peptide presents an interesting case in that

TABLE 1 | Original and optimized torsion angle parameters for RS-peptide.

Atom types comprising torsion Original FF Optimized FF % Change

C–N–CT–C 0.142260 0.145503 2.280

C–N–CT–C 1.40164 1.40177 0.001

C–N–CT–C 2.27610 2.27026 −0.256

C–N–CT–C 0.334720 0.334548 −0.051

H1–CT–C–O 3.34720 3.34905 0.055

H1–CT–C–O 0.334720 0.331802 −0.872

H1–CT–C–OB 3.34720 3.34574 −0.044

H1–CT–C–OB 0.334720 0.334634 −0.026

HB–N–C–OB 8.36800 8.36773 −0.003

HB–N–C–OB 10.4600 10.4603 0.003

N–CT–C–N 0.824250 0.826095 0.224

N–CT–C–N 6.04588 6.05070 0.080

N–CT–C–N 2.00414 2.00474 0.030

N–CT–C–N 0.0799100 0.0797917 −0.148

N–CT–C–N 0.0167400 0.0197590 18.035

The left-hand label of each row indicates the four atom types of which each torsion is

composed. C, backbone carbonyl carbon; N, backbone amide nitrogen; CT, aliphatic

carbon (Cα in this context); O, backbone carbonyl oxygen; H1, hydrogen bound to Cα;

HB, hydrogen bound to backbone amide nitrogen.

it is predicted to be collapsed or expanded, depending on
context, but lies very close to the region corresponding to an
expanded polyelectrolyte, which is supported by NMR and CD.
The experimental observations from NMR and CD are further
supported by predictions using the sequence-based prediction
method PONDR (Prediction of Natural Disordered Regions),
which predicts order for residues 16–35 and 52–75 for PaaA2 and
SH4UD, respectively (Figures S4A,B); RS-peptide was too short
in length for PONDR to make any prediction.

We next examined how the experimentally determined radius
of gyration (Rg) varies with the amino-acid chain length. The
experimental Rg values are obtained through Guinier fits to
the scattering profiles. Notably, the experimentally determined
Rg values for the three IDPs aligns closely with the theoretical

predictions of R
Flory
g from the Flory equation: R

Flory
g = (2.54 ±

0.01) × N(0.522±0.01), where N represents the number of amino-
acid residues in the IDP of interest. As shown in Figure 2B,

the agreement between experimental Rg and R
Flory
g is quite

remarkable. However, we note that when considering the
simulated ensembles, the original a99SB-disp FF overestimates
the Rg values for the PaaA2 protein where as the optimized
FF underestimates the Rg for the SH4UD ensemble. On the
other hand, the ForceBalance-SAS optimized FF overestimates
the Rg values for the SH4UD ensemble, while being close
to the experimentally observed Rg values for the RS-peptide
and PaaA2 system. Note that for the SH4UD system, we did
not explicitly optimize the FF parameters—we just took the
optimized parameters from the PaaA2 simulation and used it to
simulate the SH4UD system (see section 3.3).

The Guinier fits to the SAXS profiles for the three IDP systems
provide a gross summary of their conformational ensembles;
however, the Rg value by itself does not sufficiently capture
all of the information contained in the scattering profiles.
We therefore posited that even though the ForceBalance-SAS
may underestimate the overall Rg values, its ability to fit the
simulated ensembles to experimentally observed SAXS profiles
may be better. To test this hypothesis, we used the χ2 metric
(Equation 6) to assess the quality of the fit. By optimizing
the aforementioned set of force field parameters, we were able
to reduce the discrepancy with experiment by a factor of 3.3
and 4.2 for RS-peptide and PaaA2, respectively, where the
factor of improvement is simply the ratio of the χ2 value
obtained with the original parameters to that obtained with the
optimized parameters.

Visual inspection of the I(q) vs. q profile for RS-peptide
(Figure 3A), as well as the Kratky plot (Figure 3B) of q2I(q) vs. q
(Figure 2), reveal more information about the specific aspects of
protein structure that have been improved. In general, the lower
q values report on low-resolution protein behavior, such as how
contracted or expanded the structures in the ensemble are, while
larger q values can report more on finer scale detail. The Kratky
plot is useful for quantifying disorder in a polymer chain. For
the RS-peptide example, it is clear that the original FF predicts
a more disordered ensemble, while both the experiment and
the optimized FF based simulations predict some local structure

Frontiers in Molecular Biosciences | www.frontiersin.org 8 August 2019 | Volume 6 | Article 64

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Demerdash et al. ML-Derived Force Fields for Disordered Proteins

TABLE 2 | Original and optimized Lennard-Jones parameters for RS-peptide.

Original FF Optimized FF

Atom type σ ǫ σ ǫ % Change σ % Change ǫ

C 0.339967 0.359824 0.339966 0.359787 –0.000235359 –0.0104181

H 0.106908 0.0656888 0.106908 0.0656513 –0.000374220 –0.0570937

HB 0.106908 0.0656888 0.106908 0.0657721 –0.000374220 0.126688

N 0.325000 0.711280 0.325000 0.711355 0.000123099 0.0105384

N3 0.325000 0.711280 0.324998 0.711156 –0.000492395 –0.0173983

OB 0.295992 0.878640 0.295992 0.878593 –0.000135163 –0.00539543

O2 0.295992 0.8786401 0.295992 0.878633 0.000135163 –0.000784472

OW-tip4pd 0.316500 0.998989 0.316502 0.998914 0.000505619 –0.00750471

C, backbone carbonyl carbon; H, hydrogen bound to N-terminal nitrogen; HB, hydrogen bound to backbone amide nitrogen; N, backbone amide nitrogen; N3, N-terminal amine

nitrogen; OB, backbone carbonyl oxygen; O2, C-terminal carboxyl oxygen; OW-tip4pd, water oxygen of TIP4P-d model.

in the ensemble. It is interesting to note that the χ2 value
has also significantly improved (3.21 with the original FF vs.
0.98 with the optimized FF), indicating that the ensemble from
the optimization process has indeed improved the similarity to
the experimental data. For the RS-peptide there is evidence of
improvement at high q values as well, indicating that fine-scale
protein-solvent structural details have been improved.

The I(q) vs. q plot for PaaA2 shows marked improvement
for the optimized set of parameters in all parts of the profile
(Figures 3C,D), and while an improvement is seen for RS-
peptide the effect is not as strong (Figure 3A). As can be seen
in Figure 3C, improvement is seen at lower q values for both RS-
peptide and PaaA2, suggesting that the problem with predicting
an overly compact ensemble has been remedied.

In light of the well-appreciated importance of sampling the
rugged conformational landscape of IDPs, we extended our
simulations of RS-peptide and PaaA2 using the parameters
obtained from the shorter 5-ns simulation lengths to 0.459 and
0.512 µs, respectively. We found that the optimized parameters
yield an improvement in χ2, albeit more modest than that of the
shorter simulation (Figure 4). We note too that the discrepancies
between the experimental and simulated ensembles are more
apparent at higher q ranges, indicating that fine scale interactions
are not as well-modeled as global interactions. Nonetheless, this
demonstrates that major features of the ensemble that inform
the optimization, namely those reflecting large scale interactions,
are captured at shorter timescales and are transferrable to
longer timescales.

Given the improvements in agreement with experimental
observables, it is instructive to ascertain which optimized
parameters differed the most from their original values. For
both RS-peptide (Tables 1, 2) and PaaA2 (Tables 3, 4), it was
the torsional barrier heights that changed the most from their
original values. Interestingly, the van der Waals parameters
changed little from their original values. This is perhaps expected,
given the relatively longer history of attention to balancing
solute-solvent, and protein-water, interactions through these
terms. This notion is supported by a separate set of calculations
where we optimized only the van der Waals parameters for
RS-peptide in PaaA2. When only the van der Waals parameters

TABLE 3 | Original and optimized torsion angle parameters for PaaA2.

Atom types comprising torsion Original FF Optimized FF % Change

C–N–CT–C 0.142260 0.144172 1.344

C–N–CT–C 1.401640 1.380281 −1.524

C–N–CT–C 2.276100 2.233383 −1.877

C–N–CT–C 0.334720 0.355767 6.288

H1–CT–C–O 3.347200 3.287138 −1.794

H1–CT–C–O 0.334720 0.356079 6.381

H1–CT–C–OB 3.347200 3.326153 −0.629

H1–CT–C–OB 0.334720 0.355767 6.288

HB–N–C–OB 8.368000 8.378679 0.128

HB–N–C–OB 10.460000 10.438641 −0.204

N–CT–C–N 0.824250 0.845297 2.553

N–CT–C–N 6.045880 6.088597 0.707

N–CT–C–N 2.004140 2.015231 0.553

N–CT–C–N 0.079910 0.068819 −13.880

N–CT–C–N 0.016740 0.023640 41.219

Refer to the Table 1 legend for an explanation of the atom types.

were optimized, the factors of improvement of the χ2 values were
only 1.98 and 1.3 for RS-peptide and PaaA2, respectively.

3.2. ForceBalance-SAS Improves
Agreement With NMR Chemical Shift
Observables for PaaA2
These observations also led us to the next question: do the
optimized FF parameters allow us to improve agreement with
other (independent) experimental observables, such as NMR? We
posited that the improvement in agreement with respect to the
gross structural details of the IDPs from SAXS data should also
translate to agreement between NMR and MD simulations using
the optimized FF. To test this hypothesis, we examined the PaaA2
system in greater detail. While previous work (Sterckx et al.,
2014) used both NMR and SAXS data to refine conformational
ensembles of PaaA2 using the Flexible-Meccano (Charavay et al.,
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TABLE 4 | Original and optimized Lennard-Jones parameters for PaaA2.

Original FF Optimized FF

Atom type σ ǫ σ ǫ % Change σ % Change ǫ

C 0.339967 0.359824 0.339979 0.360922 0.0034457 0.30501

H 0.106908 0.0656888 0.106920 0.0654144 0.010798 –0.41769

HB 0.106908 0.0656888 0.106920 0.0656251 0.010957 –0.097042

N 0.325000 0.711280 0.324998 0.710731 –0.00064537 –0.077150

N3 0.325000 0.711280 0.325006 0.711554 0.0018022 0.038575

OB 0.295992 0.878640 0.295998 0.879181 0.0019788 0.061544

O2 0.295992 0.878640 0.295969 0.879181 –0.0079152 0.061544

OW-tip4pd 0.316500 0.998989 0.316512 0.998715 0.0036472 –0.027465

Refer to the Table 2 legend for an explanation of the atom types.

FIGURE 5 | ForceBalance-SAS improves agreement with NMR chemical shift observables for the PaaA2 ensemble. (A–D) Panels highlight the comparison between

the average experimental (x-axis) chemical shift vs. predicted (y-axis) chemical shift values for N, Cα , C, and Cβ atoms, respectively. Predictions from the optimized FF

(blue dots) are compared with the original FF (red dots) simulations along with the R2 value for the fits (shown as black lines). Error bars are not highlighted for clarity.

2012) approach, here we used the optimized FF parameters to
recapitulate the NMR chemical shift observables.

For each conformer in the MD trajectories from the original
FF and the optimized FF, we used the program ShiftX2 (Han
et al., 2011) to determine the chemical shifts of the backbone
atoms: N, Cα , and C, along with the side-chain: Cβ . We
then plotted the agreement between the average experimental
chemical shifts with the predicted chemical shifts. As shown in
Figures 5A–D, the ForceBalance-SAS optimized FF parameters
result in ensembles that are in better agreement with the
experimental data, notably for Cα and Cβ atoms. The agreement
for the backbone Nitrogen atoms is also significantly improved
compared to the original FF, indicating that our approach results
in ensembles that better agree with NMR data. Further, for
each of the atom types, a non-parametric bootstrap test (p-
values) for significance also indicated that these correlations are
significant (Table 5).

TABLE 5 | Summary of the statistical significance in comparing NMR observed

chemical shifts with the FF parameters (original and optimized) for PaaA2 system.

Original FF Optimized FF

Atom type R2 Standard error p-value R2 Standard error p-value

N 0.11 0.123 1.31E-05 0.42 0.072 1.23E-14

Cα 0.84 0.056 5.67E-27 0.91 0.039 5.68E-35

Cβ 0.99 0.009 4.52E-72 1.00 0.005 5.53E-85

C 0.44 0.108 9.64E-10 0.63 0.090 5.42E-14

These were calculated using the sckit.learn package (Pedregosa et al., 2011;

Buitinck et al., 2013).

This led us to further examine the generated ensembles. Each
ensemble in Figure 6 is colored using the Rg value corresponding
to that conformation. The experimentally determined ensemble
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FIGURE 6 | Comparison of the PaaA2 Ensembles determined from experiments and simulations highlight regions of long-range interactions between the two

α-helices. (A) A cartoon depiction of the PaaA2 ensemble determined using SAXS and NMR techniques using Flexible-Meccano. (B) Shows the normalized mean

distance matrix showing the various interactions between residues; shades of blue indicate proximity in the chain—implying the increased likelihood of interactions.

(C) Cartoon representation of the PaaA2 ensemble from the original FF along with the (D) normalized mean distance matrix. Note that many of the conformations are

in the extended state—indicating less likelihood of interactions between the α-helices. (E) Cartoon representation from the PaaA2 ensemble from the optimized FF

simulation along with the (F) normalized mean distance matrix. The conformations generated by the optimized FF are more compact than the other two datasets

mainly because the sampling from the optimization runs are limited.

(Flexible-Meccano, Figure 6A) shows the presence of large-
scale fluctuations in the orientation between the two α-
helices. Each conformer in the ensemble is colored using
its Rg value to highlight the nature of compactness (darker
shades of red indicate larger Rg , implying less compact states).
To better characterize the nature of these fluctuations, we
chose to examine the average (normalized) distance matrix
for the experimental ensemble (Figure 6B). This provides us
a qualitative measure of the long-range interactions between
specific regions of the PaaA2 ensemble. The MD simulations
from the original FF capture some of the large-scale fluctuations,
however is not fully representative of the experimental data
(Figure 6C). Notably, within the experimental ensemble, there
are some interactions between the two α-helices, which are
not represented in the original FF simulations (Figure 6D).
Although visually the average distance matrices look similar, the
ensemble generated from the MD simulations using the original
FF is dominated by mostly extended states (thus de-emphasizing
the interactions between the two α-helices). The simulations
from the optimized FF, on the other hand highlight mostly
compact conformations (Figure 6E). An examination of the
distancematrix (Figure 6F) also shows that there are significantly
larger number of interactions between the two α-helices and
only localized fluctuations in their relative orientations. We

posit that this observation may be a consequence of limited
sampling of the conformational landscape (∼5 ns every iteration
of the optimization).

3.3. ForceBalance-SAS Optimized FF
Parameters Are Partially Transferable at
Shorter Timescales
We lastly sought to determine whether our optimized parameters
would improve the experimental SAXS agreement for an
independent test case. We hypothesized that an appropriate test
case would be a protein with a similar charge/hydrophobicity
(Uversky) profile, as this has been shown to predict relative
disorder/order. For the training system PaaA2, a protein close
on the Uversky plot is SH4UD. For this system, we were able
to observe a reduction in χ2 from 9.7 to 7.2 (Figure 7A), with
improvements in agreement seen in the mid-range to high q
regions of the Kratky plot (Figure 7B). Note that this simulation
(with the PaaA2 FF parameters) was carried out only for 5 ns—
corresponding to the same timescales of the optimization cycle.
Although the improvement in the χ2 value is somewhat limited
in the high q values, we still observe that the ensembles have a
better agreement with the SAXS observables.
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FIGURE 7 | FF parameters learned from the PaaA2 simulations used to simulate the SH4UD IDR improves the fit to experimental SAXS data. Although the factor of

improvement (FI) is lower than the other two systems (A), the fit to the experimental data as seen from the Kratky plot (B) shows better agreement in the mid-q range.

This allows us to determine that the parameters learned from one simulation can be used reasonably on other proteins as well. Further fine-tuning may be essential to

obtain better fits (especially with solvent-protein interactions). (C) and (D) highlight the same information as in (A) and (B) but for longer timescales. Note that the

factor of improvement has reversed.

However, when we extend the simulations to about 0.3 µs,
we find that the agreement between experimental SAXS and the
MD ensemble deteriorates (see Figures 7C,D). This observation
is significant, given the fact that the PaaA2 ensemble consists of
two well-defined α-helices (a feature is mostly well-described by
existing FFs) and the SH4UD consists of only transient helices,
which are not fully captured at the timescales of our current
simulations. Further studies would be necessary to validate these
simulations (and the transferability of the FF parameters at longer
timescales) against available experimental data.

4. DISCUSSION

We have presented a proof-of-concept demonstration to
optimize a set of FF parameters using small-angle scattering
data on a protein-by-protein basis. We started with a few
assumptions, including that (1) simulations would be initiated
from a single starting structure (for e.g., from an experimental
crystal structure), (2)MD simulations would be performed under
some equilibrium conditions without necessitating enhanced
sampling techniques, such as replica exchange, and (3) longer
time-scale simulations (O(µs) would not be accessible for all
systems of interest. Such assumptions, especially in the context
of IDP systems may seem limiting, given that both enhanced

sampling and ensemble MD simulation techniques are known
to improve the overall ability of MD simulations to “match”
experimental observations (Lee and Chen, 2016; Holehouse
et al., 2017; Bhattacharya and Lin, 2019). We believe that
the optimization scheme outlined here can be extended in a
straightforward way for ensemble MD strategies, and it would
need some modifications for enhanced sampling strategies. This
is a direction that we will pursue in the near future.

The fact that our method seemed to change the torsional
parameters much more than the van der Waals is noteworthy.
As mentioned previously, the torsional components are covalent
energetic degrees of freedom, but also implicitly contain a degree
of non-covalent character, given the larger 1-4 separation of the
atoms (as opposed to the 1–2 and 1–3 separations for bond
stretching and angle bending, which can more definitively be
considered purely covalent). It is therefore likely that short-
ranged non-covalent energetics that are not explicitly accounted
for in typical force field functional forms are being folded into the
torsional term.

We note that the fitting procedure used in ForceBalance-
SAS improves the agreement with independent observations,
such as NMR chemical shifts. NMR chemical shifts represent
effective local measurements for conformational changes in
an ensemble and provide a powerful technique to characterize
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IDP/IDR ensembles in the context of their biological function
(Pérez et al., 2009; Sterckx et al., 2014; Arbesü et al., 2017).
Our optimization procedure takes into account only the SAS
measurements. However, by fitting our MD ensembles to
SAS curves, we also found that it consequently improved the
agreement of local measurements. In the context of modeling
IDP/IDR ensembles, our approach therefore represents a
complementary approach to using multiple experimental
methods to capture atomistic details of these systems.
Whereas approaches such as Flexible-Meccano (and other
tools) utilize all of the available experimental data to model
IDP/IDR ensembles, our iterative approach can be modified
to take into account gross structural features first, and then
followed by further tuning FF parameters to recapitulate
fine-grained features.

We also showed that the optimized FF parameters developed
for an IDP could be transferred (in a limited manner) to
other IDPs. Although the improvement in agreement between
experiments and simulations was only marginal, we were still
able to recapitulate some of the finer grained details of the
SH4UD ensemble better than the original FF at short simulation
length. The parameters that get optimized most likely depend
on the amount of sampling carried out at each iteration.
While preliminary testing indicated that calculated SAXS profiles
appeared to converge at about 5 ns for each iteration, it is
likely that this may not hold for all IDP systems of interest,
especially those that are larger than the systems studied here.
Indeed, the rugged free energy/conformational landscapes of
IDP are very different from those of systems such as neat
water to which the parent ForceBalance method had been
previously applied (Wang et al., 2013, 2014; Laury et al.,
2015). Nonetheless, the fact that longer simulations at 100s
of nanoseconds performed with parameters obtained from a
5-ns simulation length still show improved agreement of the
MD ensemble with the experimental SAXS supports the view
that major signatures of the full ensemble are captured and
can be optimized against to yield the observed improvement at
longer timescales. Further work on the reproducibility of our
approach is also needed, especially in the context of benchmark
IDP/IDR ensembles that have been recently made available
(Varadi et al., 2013). To this end, the effect of the simulation
length in ForceBalance-SAS on the resulting parameters will be
investigated in the future.

We are endeavoring to enhance this method on a number of
fronts. We plan on addressing the sampling issue by deploying
this method on more powerful supercomputers so that longer
simulations in each cycle of the algorithm are less onerous.
We also note that in all cases, the ability to optimize in the

higher q range was poorer than in the low q range, as is
best depicted in the Kratky plots. This indicates that in the
current regime, we are optimizing global scale interactions
better than fine scale interactions. Therefore, it is only natural
that a worthwhile objective is to differentially weight the
contributions of different q regions to the objective function
during the optimization. Furthermore, current work is focused
on optimizing FF parameters using the experimental data of
multiple protein targets simultaneously, which should enhance
the transferability of the optimized parameters. Nonetheless, for
those who are interested in detailed simulation studies of specific
systems, the current system-by-system approach is useful.
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