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The analysis of cardiac vibration signals has been shown as an interesting tool for the

follow-up of chronic pathologies involving the cardiovascular system, such as heart failure

(HF). However, methods to obtain high-quality, real-world and longitudinal data, that do

not require the involvement of the patient to correctly and regularly acquire these signals,

remain to be developed. Implantable systems may be a solution to this observability

challenge. In this paper, we evaluate the feasibility of acquiring useful electrocardiographic

(ECG) and accelerometry (ACC) data from an innovative implant located in the gastric

fundus. In a first phase, we compare data acquired from the gastric fundus with gold

standard data acquired from surface sensors on 2 pigs. A second phase investigates

the feasibility of deriving useful hemodynamic markers from these gastric signals using

data from 4 healthy pigs and 3 pigs with induced HF with longitudinal recordings. The

following data processing chain was applied to the recordings: (1) ECG and ACC data

denoising, (2) noise-robust real-time QRS detection from ECG signals and cardiac cycle

segmentation, (3) Correlation analysis of the cardiac cycles and computation of coherent

mean from aligned ECG and ACC, (4) cardiac vibration components segmentation (S1

and S2) from the coherent mean ACC data, and (5) estimation of signal context and a

signal-to-noise ratio (SNR) on both signals. Results show a high correlation between the

markers acquired from the gastric and thoracic sites, as well as pre-clinical evidence on

the feasibility of chronic cardiovascular monitoring from an implantable cardiac device

located at the gastric fundus, the main challenge remains on the optimization of the

signal-to-noise ratio, in particular for the handling of some sources of noise that are

specific to the gastric acquisition site.

Keywords: cardiac vibration signals, seismocardiogram (SCG), implantable devices, biomedical signal processing,

heart failure

1. INTRODUCTION

Patients suffering from chronic pathologies involving the cardiovascular system, such as heart
failure (HF), may benefit from a long-term remote monitoring of the main cardiovascular
parameters in order to early diagnose decompensation events or to adapt their therapy in a
personalized and continuous fashion (Cleland et al., 2006; Desai et al., 2017). The analysis of
cardiac vibration signals, interesting sources of information about the cardiac mechanical activity,
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has already shown remarkable results in this context, mainly
because the main components of these signals have been
associated with some useful hemodynamic markers (Plicchi et al.,
2002; Bordachar et al., 2008). Further, Micro-Electro-Mechanical
Systems (MEMS) sensor technology, commonly used to acquire
cardiac vibration signals, have improved significantly during the
last two decades in terms of size, cost, and resolution.

Cardiac vibration signals may be acquired non-invasively
from the chest, in a similar fashion as cardiologists apply the
stethoscope for listening to the phonocardiogram (PCG) (Jain
and Tiwari, 2014). The acquisition of accelerometry signals from
the chest of the patient, using in particular these MEMS devices,
leads to the observation of the seismocardiography (SCG) signal,
that is characterized by the presence of two main components, S1
and S2, which correspond to the first and second heart sounds
in the PCG, respectively. SCG acquisition and processing have
been widely developed during the last decade, with applications
ranging from coronary artery disease characterization, to cardiac
stress and heart failure monitoring (Inan et al., 2014). In
Donal et al. (2011) and Giorgis et al. (2012), a number of
features were extracted from chest accelerometry signals and
compared to classical hemodynamic echocardiography markers,
in order to optimize parameters of cardiac resynchronization
therapy devices implanted on HF patients. Furthermore, recent
developments of wearable or connected devices offer the
possibility to monitor the cardiac vibration signals in ambulatory
monitoring (Shandhi et al., 2019; Gupta et al., 2020). However,
methods to obtain high-quality, chronic and longitudinal cardiac
vibration data, that do not require the involvement of a medical
practitioner or the patient to correctly and regularly acquire these
signals, remain to be developed.

Implantable systems may be a solution to this observability
challenge. A number of studies have been focused on the
acquisition of accelerometric signals to measure cardiac
vibrations signals from inside the heart chambers in an
invasive manner (Hernández et al., 2013; Gallet et al., 2016).
These endocardial acceleration (EA) signals have two main
components known as EA1 and EA2, which are associated with
the first and second heart sounds, respectively. The peak-to-peak
values of the main cardiac vibration components of these signals
have been shown to be significantly correlated with meaningful
hemodynamic markers. Results shown by Plicchi et al. (2002)
demonstrated a significant correlation between the peak-to-peak
value of EA1 and the positive peak of the first derivative of the left
ventricular (LV) pressure, dP/dt (r = 0.83, P < 0.001), between
the peak-to-peak value of EA2 and the negative peak of LV
dP/dt (r = 0.92, P < 0.001) and the peak-to-peak value of EA2
with aortic diastolic pressure (r = 0.91, P < 0.001). All these
experiments were developed at baseline and during different
acute hemodynamic interventions. Such results were further
confirmed by Bordachar et al. (2011), obtaining a significant
correlation between the peak-to-peak value of EA1 and the
positive peak of LV dP/dt (r = 0.91, P < 0.001). Additionally,
Bordachar et al. (2008) evaluated the correlation between the
peak-to-peak value of S1 and LV dP/dt (r = 0.93, P < 0.001),
reaffirming the close relationship between EA and surface cardiac
vibration signals. These relationships demonstrate the usefulness

of cardiac vibration signals to infer and monitor hemodynamic
parameters in a more practical and simpler but precise way.

Implantable cardiac devices (ICD) such as cardiac
resynchronization therapy defibrillators, cardioverter-
defibrillators and pacemakers are normally used in the treatment
and follow-up of chronic heart diseases as heart failure (HF).
Some of these ICD already integrate accelerometer sensors to
observe and analyze cardiac accelerometry signals (ACC) from
subcutaneous or intra-cardiac sites, with the objective to predict
future HF events (Boehmer et al., 2017; Cao et al., 2020) or to
define automatic calibration protocols of the ICD parameters
(Delnoy et al., 2008; Hernández et al., 2013). Additionally, the
increasing study of cardiac vibration signals for the development
of ICD in the field of HF has led to the proposal of candidate
markers of the progression this disease, such as the presence of
an S3 component (Siejko et al., 2013; Thakur et al., 2017), and the
expansion of the analysis of these signals toward the multimodal
field by using 3D accelerometers (Calvo et al., 2018).

In past works, our group has proposed methods for the
acquisition and processing of cardiac mechanical signals from
accelerometers embedded into the stimulation lead of cardiac
implantable devices (Hernández et al., 2013; Gallet et al.,
2016; Calvo et al., 2018). Although these developments have
provided interesting results for the optimal handling of cardiac
resynchronization therapy in HF patients, not all patients may
benefit from an active cardiac implantable device (Ponikowski
et al., 2016; Yancy et al., 2017). Hence, the development of a
remote cardiac vibrations monitoring system offering integrated
management of multimodal parameters with a minimally
invasive device is currently needed in the chronic cardiovascular
diseases domain, to trigger very early and adequate medical
attention against the decompensation events.

This work explores the hypothesis that a cardiac vibration
signal may be captured from a small monitoring implant,
positioned at the gastric fundus, which could be delivered
through gastroscopy, in a minimally invasive manner. This
anatomical site seems a good candidate location for a long-term
cardiovascular monitoring since it is physically close to the heart.
However, ECG and ACC data acquired from this site may have
specific characteristics and noise conditions, particularly related
to the location and orientation of the device, as well as the
interference from the electrical and mechanical activities of the
gastric system. The objective of this paper is thus to characterize
ECG and ACC data acquired from the gastric fundus in pre-
clinical experimentation and to evaluate the feasibility to obtain
useful hemodynamic markers from these signals.

2. METHODS

This work is divided into two phases: Phase 1 is focused on the
comparison of the signals acquired from the gastric fundus with
data acquired through standard sensors from thoracic sites. A set
of cardiovascular markers are extracted from both the reference
and gastric signals and quantitatively compared. Phase 2 was
dedicated to the evaluation of the feasibility of the estimation of
longitudinal cardiovascular markers from the gastric site.
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2.1. Data Acquisition
2.1.1. Description of the Implantable Device
Most gastric implants currently available are prescribed to treat
gastric dysmotility syndromes and obesity. A number of works
have shown the safety and tolerance of these devices, as well
as recent developments on minimally invasive techniques to
deliver these implants, improving patient comfort and adherence
(Hasler, 2009; Carrano et al., 2020). The SentinHealth company
recently developed an innovative gastric implant prototype for
acquiring electrophysiological and mechanical cardiac data from
the gastric fundus (Dopierala et al., 2019). This implant may be
as well-tolerated as other gastric implants and could be delivered
using similar minimally invasive implanting techniques. Three
prototype versions of the device have been used in this work:
one semi-implantable version (V0) and two fully implantable
versions (V1 and V2):

• Prototype V0 (Figure 1A) is the only semi-implantable version
of the device. It is made up of two modules: (1) a gastric
module 30 mm long, 9 mm wide, 7 mm high, with each
end corresponding to a titanium electrode having 35 mm2

surfaces and 20 mm distance between electrodes. Electrodes
are connected to an ECG chip embedded into the capsule
(Figure 1B). (2) A reference ECG module composed of two
external electrodes attached to the thorax: one on the anterior
thorax and the other on the posterior thorax. These electrodes
are connected to an external electronic board encased in
a pig jacket (Figure 1C). Both ECG signals are acquired
synchronously with a 1 kHz sampling frequency.

• Prototype V1 (Figures 1D,E) consists of two interconnected,
implantable modules: the first module (located in the gastric
fundus) is 35 × 9 × 5.5 mm and embeds a 3D accelerometer
as well as an ECG acquisition device with two titanium
electrodes, with the same geometry as prototype V0, located
at each end of the capsule and electrically isolated from each
other by a body in PEEK. The second module, subcutaneously
implanted in the abdomen, is 70 × 30.5 × 16 mm and is
connected to the first module by a wire of 30 cm. It embeds two
AA batteries as well as the Bluetooth low energy chip (2.4 GHz)
that allows to communicate data to an external gateway for
further processing. ECG sampling rate in this version is 1 kHz
while ACC sampling rate is 4 kHz acquired in the bandwidth
0–1 kHz. The gastric module weight is 3.3 g.

• Prototype V2 (Figures 1F,G) differs from the previous one
by two main aspects: firstly, the gastric capsule geometry,
size and material were redesigned to be closer to a final
device built in one piece (for future development). One of the
electrodes is a part of the casing that is made in titanium.
To ensure an electrical isolation of the rest of the casing, a
coating with epoxy resin was applied at the surface of the
titanium. The other electrode is an isolated titanium part
(see Figure 1E). Secondly, the communication components
have been transferred inside the gastric module. For that, a
specific antenna was designed to optimize the performance
of Bluetooth transmission from the stomach. The antenna is
located at one end of the gastric capsule and overmolded in
epoxy resin. The geometry and material of the subcutaneous

module has not been changed from the V1. This module
embeds only the AA battery. Regarding technical aspects, the
gastric module in this version is 40 × 13.5 × 5.5 mm and its
weight is 7 g. Also the ECG chip was changed to optimize the
current consumption with a sampling rate of 498 Hz.

The implant rests in a low battery consumption mode while
not measuring any signal, in order to extend the battery life
and is programmed to automatically switch to the active mode
for a duration of 30 s, in order to acquire the simultaneous
ECG and ACC signals. The 30 s duration has been selected
as a good compromise between energy consumption and the
minimal number of cardiac cycles required to obtain a stable
representation of the mean cardiac cycle observed from the
intragastric ECG and ACC signals. Furthermore, the final device
is intended to embed battery in a first generation. Next generation
of the device aims to embed a rechargeable battery to be
powered wirelessly, in order to increase the lifespan and the
patients follow-up.

2.1.2. Data Acquired for Phase 1
In order to validate the measurements taken from the gastric site,
ECG and ACC data were simultaneously acquired from standard
thoracic locations, used as gold-standard, and the proposed
gastric location using two experimental setups:

1. Setup 1 was focused on the validation of ECG data.
459 recordings each one of 30 s duration were acquired
using the V0 prototype over a 14-day period, from one
pig. Each recording consists of synchronous data from a
standard bipolar surface ECG (gold standard reference) and
a gastric ECG.

2. Setup 2 was focused on the validation of ACC data. Two
recordings were acquired simultaneously from a second pig,
with prototype V1 and an external digital stethoscope (3MTM

Littmann, USA), used as a gold standard PCG. A Valsalva-
like respiratory maneuver was applied during data acquisition
in order to evoke hemodynamic modifications that can
be observable from both acquisition sites. Data acquisition
was performed acutely, under anesthesia, with ventilator-
assisted respiration and consisted of one stage of continuous
positive inspiratory pressure (CPP) of 30 cmH2O of 15 s
duration, followed by a 10 s apnea at atmospheric pressure
(Gallet et al., 2016). The main objective of this setup was to
validate if the evolution of the markers obtained from the
gastric and reference sites during the Valsalva-like maneuver
are correlated.

2.1.3. Data Acquired for Phase 2
Implant prototypes V1 and V2 were used to acquire data from
the gastric fundus of 4 healthy pigs and 3 pigs with induced
chronic ischemic HF, leading to acute decompensated HF. Each
system has been implanted for a minimal duration of one week,
with a maximum of 2 weeks. During this period, animals are
kept within individual cages with controlled temperature and
normal feeding conditions. Caregivers take care of pigs daily
to ensure that they are healthy and the device does not induce
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FIGURE 1 | Implant prototypes used for acquiring the ECG and ACC data. (A) Schematic representation of the implant prototype V0. (B) Physical design of the

gastric implant prototype V0. (C) Physical design of the external module of prototype V0. (D) Schematic representation of the implant prototype V1. (E) Physical

design of the implant prototype V1. (F) Schematic representation of the implant prototype V2. (G) Physical design of the gastric module of the implant prototype V2.

any problem such as pain or loss of appetite. The gateway
is placed above cages at a distance of about 1 m to the pig.
Data are recorded from the implant during 30 s every hour,
with random acquisition cessation periods related to some
technical problems (sometimes the scheduled acquisition was not
performed or sometimes the device was not able to communicate
with the server). The whole acquired database results in a
total of 999 30-s recordings, with the distribution shown in
Table 3.

All animal experiments were previously submitted to an
ethics committee, in accordance with the French regulation and
conducted in specialized structures with dedicated site approval,

by a team composed of qualified staff who has completed
regulatory training in animal testing and experimental surgery.

2.2. Data Processing
Figure 2 summarizes the signal processing chain applied to
the cardiac data: (1) ECG and ACC data denoising, (2) noise-
robust real-time QRS detection from ECG signals and cardiac
cycle segmentation, (3) correlation analysis of the cardiac cycles
and computation of the coherent mean from aligned ECG and
ACC segmented cycles, (4) segmentation of cardiac vibration
components (S1 and S2) from the coherent mean ACC data, and
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FIGURE 2 | Global diagram of the processing chain applied to the acquired data. Dashed-line arrows represent the ECG signal pipeline and solid-line arrows

represent the ACC axes pipeline.

(5) estimation of signal context and a signal-to-noise ratio (SNR)
on both signals.

2.2.1. ECG and ACC Data Denoising

2.2.1.1. Baseline Removal
ECG and ACC signals are affected by low-frequency noise
from two main different sources. The first noise source is
from the instrumentation. Indeed, each transition from the low
consumption mode to the active mode generates a low-frequency
transitory state during the first 5 s of data acquisition. In order
to exploit as much of the signal as possible, a baseline removal
process is applied to the signals, managing to process 29 s from
each signal, and having to remove just the first second, where
the transitory state may saturate the amplifiers and completely
impede the acquisition of any useful data. The second source of
noise are the electrophysiological and mechanical components of
electrogastrographic and respiratory activity, that are captured by
the electrodes and the accelerometer.

The baseline removal process is thus applied to ECG
and ACC data and is based on a locally weighted linear
regression algorithm (Šarlija et al., 2017). In order to reduce the
computational cost of the baseline removal process, the linear
regression algorithm is applied over 4-s windows and each signal
is downsampled to 400 Hz in each window. The linear regression
algorithm output is the baseline representation of the signal,
which is directly subtracted from the original signal, preserving
its main features (Šarlija et al., 2017). The norm of the 3D
ACC vector is computed before applying the baseline removal
process, and it is treated as a new ACC axis from this point, by

representing an ACC component independent of the direction
of acceleration.

2.2.1.2. Signal Filtering
Filtering methods are widely documented in the literature for
ECG and cardiac vibration signal analysis. The combination
of independent high-pass and low-pass fifth-order Butterworth
filters is applied to the signals using zero-phase forward
and reverse digital IIR filtering, and defining different cutoff
frequency values concerning the signal type. The selected
band for the ECG signals is 20–50 Hz in order to reduce
the amplitude of the T-wave and emphasize the R peak to
facilitate the subsequent QRS detection process. The band for
the ACC signals is 20–40 Hz, considering the frequency bands
that contain most of the energy of the signal in local cardiac
accelerometer signals (Giorgis et al., 2012; Cordero Álvarez,
2020). Figures 3A,B show representative examples of filtered
ECG and ACC signals, respectively.

2.2.2. QRS Detection From ECG Signals
Aiming to facilitate the QRS detection process, a locally
conducted normalization based on the local minima/maxima
values was applied to the ECG filtered signal. This normalization
algorithm is presented and described in detail by Šarlija et al.
(2017). The only modification applied in this work to the original
normalization algorithm is the use of the median value instead
of the mean for clipping the lowest values of the normalization
signal. This change corresponds to the robustness presented by
the median value to outliers, improving the algorithm stability
even against some particularly noisy signals. After normalizing
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the ECG signal, a robust, real-time QRS detector based on a
multi-feature probabilistic method was used to identify the R
peak positions from the ECG signal (Doyen et al., 2019). This
detector was used because the target signals were suspected to
be highly-artifacted, and it was necessary to handle them with
a detector designed for such conditions. Figure 3A shows one
example of the normalized ECG with its respective detected
R peaks.

After applying the QRS detection algorithm to the ECG
signals, the heart rate is calculated by using the median duration
of all cardiac cycles. The cardiac cycles are segmented by taking
0.05 ∗ 60/HR seconds before the R peak as the starting point of
each cardiac cycle. It is a dynamic delay established to preserve
the complete waveform of the QRS complex, independently of
the heart rate variation among the signals in the whole dataset.
The cardiac cycle segmentation process is directly applied to the
ECG signal and subsequently projected to all axes of the ACC
signal because both signals were simultaneously acquired.

2.2.3. Correlation Analysis of Cardiac Cycles
Once the cardiac cycle start points are defined, the median cycle
duration is used to resize all the cycles through a zero-padding
technique. This applies to both ECG and ACC signals. Later,
in the case of ECG signals, the normalized cross-correlation
between each pair of cycles is computed, and the dominant
group of cycles with a correlation coefficient higher than 0.6 is
used to compute a coherent mean cardiac cycle. It is possible to
directly apply this process because all the ECG cycles are aligned
by the occurrence time of each R peak and the result of the
maximum correlation value. Figure 3C shows an example of the
ECG cardiac cycles aligned and the corresponding coherentmean
cardiac cycle.

The correlation analysis for the ACC signals is slightly more
complex because the exact starting point of S1 and S2 vary
independently of the occurrence time of the R peak,mainly due to
beat-to-beat modifications of the inotropic state and the preload
and afterload conditions. Therefore, it is necessary to apply
independent phase correction stages for S1 and S2 in order to
increase the inter-cycle correlation at the moment of calculating
the coherent mean cardiac cycle (Donal et al., 2011; Giorgis
et al., 2012). After applying the phase optimization to each ACC
cycle, the dominant group of cycles with a correlation coefficient
higher than 0.6 is used to compute the coherent mean cardiac
cycle, independently over each ACC axis. Considering the ACC
signals can not be normalized because it would affect the relation
between the cardiac vibration components and the hemodynamic
markers, outlier cycles are removed according to their energy
(an outlier is a value that is more than three scaled median
absolute deviations away from the median), aiming to remove
the cycles which contain particular noises, such as pig growls,
gastric sounds, or vibrations that could disturb the coherent
mean cycle calculation.

2.2.4. Cardiac Sound Segmentation (S1 and S2)
Giorgis et al. (2012) proposed an effective algorithm to estimate
the timings of S1 and S2 using the coherent mean of the ACC
signals. Firstly, the coherent mean cycle is normalized, and the

absolute (Abs) and squared (Sqr) envelopes are computed. Then,
a dynamic threshold between 0.1 and 0.7 is used to identify S1 in
the first half of the cycle. S1 is detected by searching the points
where Abs or Sqr cross the threshold (fixing the R-peak time as
the earliest possible time to define the start point of S1). Similarly,
S2 is identified in the cycle segment between the end of S1 and
the end of the cycle. The result of implementing this algorithm is
the starting and ending times of S1 and S2. These values can be
defined as follows:

• t0 = Reference instant for the start of cardiac cycle (obtained
from ECG).

• t1 = Start of S1
• t2 = End of S1
• t3 = Start of S2
• t4 = End of S2
• t5 = End of cardiac cycle

Hence, S1 corresponds to the signal segment between t1 and
t2, S2 corresponds to the signal segment between t3 and t4,
and finally, the union of the signal segments t2-t3 and t4-t5 are
considered as the signal background. This process is applied over
each ACC axis, as well as the norm. An example of the result of
this process is shown in Figure 3D.

2.2.5. Signal Context Estimation and SNR
Aiming to quantitatively assess the quality of the signals, different
features are considered to estimate the SNR. Based on the context
variables presented by Giorgis et al. (2012) to setting the control
algorithm that automatically recognizes the context of the ACC
signals to segment S1 and S2, the following quality measures are
proposed in this work:

• The percentage of coherent ECG cycles.
• The percentage of coherent ACC cycles over each axis.
• The S1 contrast, defined as the ratio between the

standard deviation of S1 and the standard deviation of
the signal background.

• The S2 contrast, defined as the ratio between the
standard deviation of S2 and the standard deviation of
the signal background.

In order to estimate the general data quality of each recording,
three successive classification stages were applied, using the
quality measures defined above.

1. The first stage is related to the analysis of the coherent
cardiac cycles in the ECG and ACC signals. Indeed, in
stable cardiovascular conditions and sinus rhythm, the relative
number of coherent cardiac cycles may be considered as a
marker of signal quality. In this stage, only the recordings with
three or more coherent cycles in the ECG and at least one of
the ACC axis were preserved. This relatively low threshold
for the number of coherent cardiac cycles was considered
appropriate since two other quality assessment phases follow
the classification phase.

2. The second stage is based on the detection of S1 and S2 in
the ACC signals. In this stage, only the signals with S1 and
S2 contrast higher than 2 were preserved. This value was
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FIGURE 3 | Data processing chain applied to the electrophysiological and mechanical cardiac data. (A) ECG signal after applying baseline removal, filtering,

normalization, and QRS detection processes. (B) ACC axes after applying the baseline removal and filtering processes, the N-axis represents the norm. (C)

Segmented and aligned ECG cardiac cycles in the left, and the corresponding coherent mean cardiac cycle in the right. (D) Coherent mean cardiac cycle on each

ACC axis with their respective envelopes, including candidate detections for S1 and S2. The vertical dotted lines represent t1, t2, t3, and t4 in red color for Abs and

black for Sqr.

selected because it means that the content of S1 and S2 can
stand out over the signal background by having twice the
standard deviation.

3. The third stage concerns the estimation of the duration and
the peak-to-peak values of S1 and S2. Since the different
envelopes will provide different S1 and S2 detection instants

for each ACC axis (as shown in Figure 3D), an algorithm
should be applied to fuse the local detections of each axis
and envelope to obtain the final S1 and S2 detection instants.
The contrast measures described above were used to define
the final detection instants of S1 and S2 as follows: (1) each
detection instant is replicated on the four ACC axes to analyze
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its global performance by computing the corresponding
contrast of such detection over each axis. (2) The detections
with a contrast value lower than 2 are discarded on the
corresponding axis. (3) Two relevance vectors are created with
the contrast measures, one for S1 and another for S2, where
the higher the contrast measure, the higher the relevance
value assigned to the corresponding detection. (4) A weighted
average between the detection instants is computed by using
the relevance vectors as weights. The result of this weighted
average operation is used as the final detection of S1 and S2.
Figure 4 shows a representative example of the final detection
instants estimated for the recording shown in Figure 3D.
After estimating the final values of t1, t2, t3, and t4 for each
recording, the recordings for which the duration or peak-to-
peak value of S1 or S2 represent an outlier were removed.

Additional SNR estimators were used to validate the quality
analysis and to obtain quantitative results that can be compared
with the literature. The SNR for a given heartbeat in the
ECG signals is calculated by considering the power of R peak
amplitude as the signal portion and the power of the segments
between the QRS complex, T-wave, and P-wave as the noise-
only portion of the signal, as shown in Figure 5. This analysis
is performed in a similar manner on the ACC signals, by
considering two different signal portions (the absolute amplitude
of S1 and the absolute amplitude of S2), and the noise-only
portion being the segment between S1 and S2, as shown in
Figure 5. The SNR for a given heartbeat was computed using
Equation (1). Then the analysis is carried out over all available
heartbeats by considering an average SNR.

SNR = 10× log10

(

S2

1
M

∑M
m=1 |xm|

2

)

(1)

where S is the signal portion value and xm is a particular sample
of the total M samples making up the noise-only portion of
the signal.

Note that ECG signals were initially filtered to reduce the
amplitude of P and T-waves. In order to facilitate the comparison
with other works in the literature, an alternative Band-pass filter
between 5 and 50Hzwas applied to the raw ECG signals, allowing
for the visualization of the T and P waves. ECG signals filtered
between 20 and 50 Hz are thus noted “QRS-ECG” while ECG
signals filtered between 5 and 50 Hz were noted “TP-ECG.”

2.3. Validation With Gold Standard
References
In addition to the data processing chain explained above, other
evaluation measures were applied to the surface and gastric data,
with the objective of validating the gastric signals and to obtain
results comparable with the literature in the field. Regarding
the ECG signals, comparisons were mainly focused on QRS
detection and the estimation of heart rate. In a first step, QRS
detection was applied to the reference, surface signals and the
obtained detections were subsequently reviewed manually to
correct possible detection errors, in order to constitute the set of
reference QRS instants. Quantitative QRS detection performance

from the gastric site was estimated by calculating the sensitivity
and the positive predictive value (+P), with respect to the QRS
reference instants. A QRS detection from the implant signal is
considered as true positive (TP) if it lies within a centered window
of 50 ms from the corresponding reference QRS instant. All
remaining QRS detections from the implant are considered as
false positives (FP). False negatives (FN) occur when no detection
from the gastric site is found within the matching reference
window (Doyen et al., 2019). Also, the time difference between
a TP detection and its corresponding reference QRS instant
(Jitter) is reported. All records acquired during session 1 were
used for this comparison. A Wilcoxon rank-sum test was applied
to statistically compare markers obtained from the reference
and gastric sites. In these analyses the level of significance was
set to 0.05.

Regarding ACC signals, all measures were computed
concerning S1 and S2 separately. The main objective is to
compare the evolution of the derived markers acquired
from the reference PCG signal with those obtained from
the intragastric ACC signals during the application of the
Valsalva-like maneuver. Therefore, the quantitative marker
used for comparison is the correlation of the time-profiles of
the main heart sound variables (duration and peak-to-peak
values) with respect to those obtained from the PCG reference.
The time-profiles are created by measuring the heart sound
variables throughout the entire recording. The time-profiles
associated with heart sound duration were computed using a
sliding window of four cardiac cycles. Concerning implant ACC
data, a mean cycle per axis was computed inside the window and
the global duration of heart sounds was calculated after applying
the algorithm described in the third stage of section 2.2.5 to
estimate the final detection instants of S1 and S2, obtaining
a global duration time-profile of the implant to be compared
with the duration time-profile of the reference PCG. On the
other hand, time-profiles of peak-to-peak values were computed
independently on each ACC axis of the implant, calculating the
mean of peak-to-peak values for each heart sound in a sliding
window with the size of two cardiac cycles. Each peak-to-peak
time-profile of the implant was compared with the time-profile
obtained from the PCG reference.

3. RESULTS

3.1. Comparison of Gastric and Thoracic
Data
Figure 6 shows examples of data acquired from the thoracic
(reference) and gastric sites for ECG (Figure 6A) and ACC
(Figure 6B). ECG signals in this figure were band-pass filtered
between 5 and 50 Hz and the coherent mean cycle of a
representative recording is shown. The differences in signal
morphology and amplitude between the surface and gastric
devices are mainly explained by the significantly different dipoles
that are observed. Nevertheless, even in the shorter gastric
dipole, the main ECG waves are easily identifiable and a correct
QRS detection for instantaneous heart rate estimation may
be expected.
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FIGURE 4 | Example of the final detection instants estimated for S1 and S2 on a representative recording. Vertical dotted lines represent the start and the end of S1 in

red and S2 in black.

FIGURE 5 | Representation of the signal of interest and noise segments of the cardiac cycle in the ECG and ACC signals to compute the SNR.

Table 1 shows a quantitative comparison between the ECG
signals captured with the implant and the external ECG signals
taken as gold standard reference. The estimated SNR are
significantly lower on the implant data with respect to the
reference. This is expected, due to the different noise sources
associated with the gastric site. Furthermore, also significant
differences are observed between the values for coherent cycles
percentage and inter-cycle correlation, although both signals
provided similar high and acceptable values for these markers.
Finally, the sensitivity and positive predictive value for QRS
detection are satisfactory, with a jitter lower than 10 ms. These
results suggest that a suitable HR estimation may be performed
from the gastric implant.

Figure 6B shows coherent mean cardiac cycles of ACC and
PCG (reference) signals that were band-pass filtered between 20
and 40 Hz. The reference PCG sensor observes cardiac vibrations
in a different site, with a different angle and with a different
transducer than the gastric site. This explains the differences in
morphology between the PCG and ACC signals. However, from

this first qualitative analysis we can hypothesize that the instant
of occurrence of heart sounds, as well as the relative variation of
their amplitudes or energies between the CPP and apnea phases
could be correctly estimated from the gastric site. This evolution
of the duration of S1 and S2 from the CPP to the apnea phases
is presented in Figure 7A, while the evolution of the peak-to-
peak amplitude is shown in Figure 7B. Similar dynamics can be
observed between the ACC data acquired from the gastric site
and the reference PCG. Nevertheless, it is possible to see how
the similarity between time profiles is mainly perturbed during
the transition moment between the CPP and apnea phases, more
precisely, around the 16th second. This disturbance is caused by
a sudden increase in the noise captured by the sensors during the
transition moment between phases, and it is more evident over
S2 in both duration and peak-to-peak values but mainly reflected
over the Z-axis.

Table 2 shows quantitative results of the comparison between
the ACC signals of the implant and the PCG reference. The
correlation values between the time profiles of the duration of
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FIGURE 6 | Example of implant and gold standard signals comparison. Dash-dotted lines correspond to the implant signals and solid lines correspond to the gold

standard reference signals. (A) Coherent mean cycles of ECG signals taken from one representative recording. Note that the differences in signal morphology and

amplitude between the surface and gastric devices are mainly explained by the significantly different dipoles that are observed. (B) Coherent mean cycles of ACC and

PCG signals during both respiratory phases taken from the recording 2.

TABLE 1 | Validation of ECG recordings with a gold standard reference.

ECG

Source

TP-ECG

SNR [dB]

Rpeak-ECG

SNR [dB]

Coherent cycles

percentage [%]

Inter-cycle

correlation

QRS detection

Sensitivity

[%]

+P

[%]

Jitter

[ms]

Surface 28.4 ± 3.4 38.4 ± 6.1 100.0 ± 0.1 0.98 ± 0.01
97.6 ± 4.7 98.2 ± 3.5 6.0 ± 3.4

Implant 21.6 ± 7.5* 30.3 ± 5.8* 99.2 ± 2.9* 0.94 ± 0.05*

*p < 0.05 vs. reference.

TABLE 2 | Validation of ACC recordings with a gold standard reference.

Heart

sound

Correlation between the implant and the PCG reference

Recording 1 Recording 2

X Y Z N X Y Z N

Duration

time-profile

S1 0.991 0.961

S2 0.874 0.950

Peak-to-peak

time-profile

S1 0.988 0.996 0.989 0.994 0.959 0.975 0.987 0.975

S2 0.918 0.956 0.971 0.958 0.877 0.888 0.962 0.887

S1 and S2 are high and acceptable for both recordings, always
presenting a higher correlation for S1 compared to S2. The
algorithm to estimate the final detection instants of S1 and S2 by
fusing the local detections from all the ACC axes of the implant is

of utmost importance in these results because it allows estimating
the global times of S1 and S2, even if it is not possible to detect
one of the cardiac sounds in any axis. In the same way, the
time profiles of the peak-to-peak values show high correlation
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FIGURE 7 | Example of implant (ACC) and gold standard (PCG) signals evolution over time. Dash-dotted lines correspond to the implant signals and solid lines

correspond to the gold standard reference signals. The white background corresponds to the CPP stage and the gray background corresponds to the apnea stage.

(A) Time-profiles of the duration of S1 and S2 measured on the recording 1. (B) Time-profiles of the peak-to-peak values of S1 and S2 measured on the recording 1.

TABLE 3 | Description of the data acquired for phase 2 and summary of the signal quality results.

Pig

ID

Implant

version
Class

Time

frame

in days

Total

number of

recordings

Removed

at stage

1

Removed

at stage

2

Removed

at stage

3

Recordings

finally

preserved

# % # % # % # %

1 V1 Healthy 7 95 0 0.0% 18 18.9% 18 18.9% 59 62.1%

2 V1 Healthy 14 163 7 4.3% 22 13.5% 23 14.1% 111 68.1%

3 V1 Healthy 14 232 2 0.9% 16 6.9% 39 16.8% 175 75.4%

4 V1 Healthy 14 316 7 2.2% 40 12.7% 61 19.3% 208 65.8%

5 V2 Induc. HF 13 70 1 1.4% 10 14.3% 12 17.1% 47 67.1%

6 V2 Induc. HF 14 73 0 0.0% 4 5.5% 18 24.7% 51 69.9%

7 V2 Induc. HF 13 50 1 2.0% 10 20.0% 10 20.0% 29 58.0%

All – – 89 999 18 1.8% 120 12.0% 181 18.1% 680 68.1%

values for all axes of the implant, and mainly for the Y and
Z axes, showing how the measures performed by the implant
are highly correlated with the PCG reference through the whole

recording time. These results suggest that a suitable measuring of
the variation of cardiac vibration signals can be performed using
the ACC data from the implant.
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FIGURE 8 | Signal acceptance distribution over time. Green dots represent the recordings finally preserved, black dots represent all discarded recordings.

3.2. Estimation of Longitudinal Digital
Markers From Gastric ECG and ACC Data
Table 3 shows the results of the recordings removed in each stage
of the quality analysis, and the recordings kept to be analyzed in
depth. These results show that it was possible to identify coherent
cycles in most of the signals, having to remove just 1.8% of the
recordings because they did not have enough coherent cycles at
the ECG or ACC signals. This low rejection percentage reflects a
goodQRS detection process and correlation analysis, opening the
possibility to perform basic heart rate variability analysis using
this technology. Most of the removed recordings corresponded
to stages 2 and 3, with rejection rates of 12.0 and 18.1%,
respectively. These percentages mainly reflect the complexity to
identify and suppress all the different types of noise sources
present in the ACC data (such as pig growls and digestive sounds
and movements), basically because stages 2 and 3 removed the
recordings where the noise level is so high that it prevents
detecting S1 and S2 correctly. After this quality assessment
process, 68.1% of the total data were preserved. For these
preserved recordings, the data quality allowed for a successful
detection of S1 and S2 in the four axes, favoring the possibility of
identifying useful and reliable hemodynamic markers from these
signals by having more trustworthy information sources.

Although these results show challenges to exploit a higher
percentage of the acquired data, it is worth noting that
continuous data acquisition along the day in the monitoring
context of chronic diseases as HF is unnecessary. Figure 8 shows
the distribution of rejected and preserved recordings over time,
revealing that rejected signals are dispersed along all acquisition
days for all the pigs, still allowing to preserve several useful
recordings during each day. Furthermore, it is possible to see how
the percentage of preserved recordings is higher than 60% for 6 of
the 7 pigs regardless of whether they are healthy or pathological.

Where the lowest percentage was obtained by the last pig (58%),
but it is still comparable with the other pigs in terms of the
distribution of preserved recordings over time, also considering
that pig 7 had the fewest recordings available.

The estimation of the final detection instants of S1 and S2
allows to analyze the duration of the different cardiac cycle
phases, such as the systole, diastole, and the S1 and S2 durations,
where systole starts at t1 and ends at t3 and diastole corresponds
to the total cycle duration minus the systole (Donal et al.,
2011). Table 4 presents the mean and standard deviation of
these variables for each pig. These results justify the procedure
to detect S1 in the first half of the cardiac cycle because the
mean duration of S1 is statistically lower than half of the mean
total cycle duration for all pigs, assuring that S1 duration is
not restricted by the search space. Additionally, it is possible
to discern a pattern related to the HR between healthy and
pathological pigs, where the 4 healthy pigs present a higher HR
than the 3 pathological pigs. This pattern is better observed in
Figure 9 through the scatter plot of the recordings relating the
HR, systole, and diastole duration. A graphical representation of
the mean and standard deviation of each one of these variables
is also included. Although this pattern is evident in the data, it is
not statistically supported to classify the pigs between healthy or
pathological, considering all the characteristics that can influence
the HRV as age, gender, weight, etc, and the limited number of
pigs involved in the experiment.

The most relevant aspect to be analyzed about the estimation
of hemodynamic markers, is the morphology of S1 and S2,
i.e., the duration and amplitude of these cardiac components.
Figure 10 shows through boxplots and scatter plots the statistical
distribution of data according to the peak-to-peak values and
duration of S1 and S2. Aiming to condense the information of
the peak-to-peak values from the 4 ACC axes, it was decided to
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TABLE 4 | Statistics of cardiac cycle duration.

Pig ID
Heart rate

Total cycle

duration

Systole

duration

Diastole

duration

S1

duration

S2

duration

[BPM] [ms] [ms] [ms] [ms] [ms]

1 92 ± 19 675 ± 124 291 ± 51 384 ± 102 168 ± 31 184 ± 38

2 89 ± 22 711 ± 155 297 ± 67 414 ± 124 152 ± 31 170 ± 41

3 92 ± 16 668 ± 99 297 ± 64 371 ± 93 142 ± 33 167 ± 42

4 98 ± 17 629 ± 95 276 ± 45 352 ± 76 153 ± 28 172 ± 36

5 77 ± 20 819 ± 174 366 ± 113 453 ± 149 189 ± 36 192 ± 49

6 63 ± 9 966 ± 132 358 ± 71 608 ± 137 199 ± 34 173 ± 34

7 74 ± 17 849 ± 169 383 ± 100 466 ± 175 199 ± 27 191 ± 43

All 89 ± 20 704 ± 155 303 ± 73 401 ± 127 159 ± 36 174 ±40

FIGURE 9 | Scatter plot of the cardiac cycle duration between healthy and pathological pigs. The crosses represent the mean and standard deviation of each

population along the three axes.

compute a magnitude measure by using the Euclidean norm of
the peak-to-peak values from the 4 ACC axes. Additionally, this
process ensures that even the recordings missing one or more
of their ACC axes could be included in the analysis. Results in
Figure 10 show that the median of peak-to-peak values of S1 are
slightly higher than those of S2 for all pigs, which is consistent
with the literature, both in PCG and SCG (Siejko et al., 2013;
Ashouri et al., 2017; Sørensen et al., 2018). The scatter plot of
peak-to-peak values suggests a reduction of the magnitude from
the pathological recordings, and it is shown in S1 and S2. The
difference between healthy and pathological pigs is more notable
regarding the S1 and S2 duration, especially for S1, where the
notches in the box plot do not overlap, concluding, with 95%
confidence, that the true medians of S1 duration between healthy
and pathological pigs do differ. These differences in peak-to-
peak values and duration of heart sounds are expected between
healthy and pathological pigs. Indeed, it has been previously
reported that modifications of the inotropic state, which is
particularly affected in HF, have a direct consequence on the

amplitude and duration of S1 (Plicchi et al., 2002; Boehmer et al.,
2017).

Table 5 shows the mean value and standard deviation of SNR
measures from all cardiac cycles in the ECG and ACC signals.
SNR measures obtained for the ECG signals show the highest
values in the QRS-ECG configuration, as it was also presented
with the SNR values of the gold standard signals in Table 1. Such
phenomena are evident because the cut-off frequency values used
for the QRS-ECG configuration were more restricted than the
values used for the TP-ECG, suppressing in this way a bigger part
of the noise in the signals and highlighting the R peak, which was
the purpose of using both configurations in different stages of the
processing pipeline. These values are also comparable with those
found in the literature (Sahoo et al., 2016; Chatterjee et al., 2020).

SNR results from ACC signals represent a satisfactory signal
quality when compared to the literature (Yu et al., 2013; Deborah
et al., 2016; Cordero Álvarez, 2020). Although there are some
differences in the equations used to compute the SNR in the ACC
signals in the literature, the results can be comparable in terms
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FIGURE 10 | Statistical distribution and scatter plot of the norm of the peak-to-peak values between all ACC axes and the duration of S1 and S2 between healthy

and pathological pigs. The crosses in the scatter plot represent the mean and standard deviation of each population.

TABLE 5 | SNR of ECG and ACC signals.

Pig

ID

Signal-to-noise ratio (SNR) [dB]

ECG S1 S2

TP QRS ACC_X ACC_Y ACC_Z ACC_N ACC_X ACC_Y ACC_Z ACC_N

1 14.7 ± 5.3 21.0 ± 4.0 13.2 ± 5.3 14.3 ± 5.5 14.3 ± 5.7 15.1 ± 5.4 9.7 ± 5.3 10.3 ± 5.4 10.1 ± 5.3 11.2 ± 5.4

2 17.3 ± 6.1 22.9 ± 5.1 15.3 ± 5.7 16.0 ± 6.1 15.7 ± 5.8 15.8 ± 6.0 11.0 ± 6.0 12.5 ± 6.1 11.6 ± 5.8 12.0 ± 6.0

3 15.8 ± 6.1 22.3 ± 4.3 14.9 ± 5.8 14.4 ± 5.5 15.9 ± 5.5 15.1 ± 5.5 10.6 ± 5.6 10.7 ± 5.8 11.4 ± 5.5 11.5 ± 5.9

4 16.2 ± 5.7 21.2 ± 3.8 14.5 ± 5.9 15.8 ± 5.8 15.5 ± 6.1 15.4 ± 5.8 9.8 ± 5.7 11.9 ± 6.4 11.9 ± 6.2 11.4 ± 6.0

5 15.8 ± 6.6 23.5 ± 5.7 15.4 ± 6.4 15.9 ± 6.4 16.7 ± 6.9 15.8 ± 5.8 10.8 ± 6.3 11.9 ± 6.8 12.2 ± 6.6 11.7 ± 5.8

6 22.2 ± 6.2 31.0 ± 6.3 17.7 ± 5.3 18.2 ± 5.5 17.9 ± 5.3 17.2 ± 4.7 13.7 ± 5.7 13.0 ± 6.2 11.8 ± 5.6 12.5 ± 5.1

7 21.6 ± 5.9 25.4 ± 5.3 16.7 ± 6.6 18.2 ± 6.7 17.9 ± 6.2 19.4 ± 6.3 13.1 ± 6.5 14.7 ± 7.3 13.7 ± 5.9 14.7 ± 6.2

All 17.6 ± 6.0 23.9 ± 4.9 15.4 ± 5.9 16.1 ± 5.9 16.3 ± 5.9 16.3 ± 5.6 11.3 ± 5.9 12.1 ± 6.3 11.8 ± 5.8 12.1 ± 5.8

of the ratio given in dB. The mean SNR of S1 is higher than the
SNR of S2 because the absolute amplitude of S1 is usually higher
than S2 and both values are measured against the same signal
background noise.

4. DISCUSSION

This paper presented, to our knowledge, the first characterization
of electrophysiological and 3D accelerometer data acquired
from the gastric fundus in pre-clinical experimentation. Results
obtained from Phase 1 showed a satisfactory correlation levels

between the markers obtained from the gastric implant and those
obtained from surface, standard sites. In particular, the variation
over time of markers as HR and cardiac sounds duration
and amplitude were highly correlated with the reference,
which is the main focus of the proposed device for long-
term monitoring of chronic diseases such as HF (Cleland
et al., 2006; Ponikowski et al., 2016; Yancy et al., 2017).
Although these results were obtained from a limited number
of observations, and may warrant further comparisons, we
consider them sufficient to move forward to the feasibility study
on Phase 2.
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Results related to the estimation of longitudinal digital
markers from the implant show that electrophysiological
sensors contain a mix of different bioelectrical sources,
mainly ECG, electromyographic, electrogastrographic, and
impedance modifications at the electrode-tissue interface
due to respiratory, gastric and general movement of the
animal. In general, the SNR is high enough to perform
robust QRS complex detection and basic HRV analysis
from these electrophysiological signals. Concerning cardiac
vibration signals, the main sources of noise are from the
pig growls as well as digestive sounds and movements.
These sources cause an abrupt reduction on the SNR and
signal contrast of ACC data that may fall below 5 dB and 2
respectively. This fact is directly reflected in the high percentage
of recordings rejected in the second stage of the quality
evaluation process, which depend on a contrast level above
2. Respiratory movement and general motor activity of the
pig are also observable, but can be more easily attenuated
or canceled. A data quality assessment phase has thus been
proposed to select a subset of the acquired data, containing
exploitable information.

When SNR values higher than 6 dB or cardiac sounds
contrast higher than 2 are observed, S1 and S2 components
can be correctly segmented from the accelerometer signal
and hemodynamic markers can be estimated from these data.
The obtained values associated with the morphology of S1
and S2 agree with the literature in the field, regarding the
duration (Schmidt et al., 2010; Giorgis et al., 2012) and
the amplitude (Siejko et al., 2013; Dopierala et al., 2019)
of both cardiac components. Furthermore, considering that
previous studies have correlated the amplitude of S1 with the
left ventricular dP/dt (Plicchi et al., 2002; Bordachar et al.,
2008, 2011; Boehmer et al., 2017), it is worth noting that
S1 showed a lower mean peak-to-peak value and a higher
duration on HF pigs with respect to healthy pigs, indicating a
possible negative inotropic function of HF pigs. Modifications
between HF and normal pigs are also observed on S2.
However, these results do not have any statistical significance
at this stage and further preclinical evaluations have to be
performed, using the exact same instrumentation on both
groups. Nevertheless, the qualitative correspondence between
the obtained results and those from the literature, highlights
the feasibility to derive reliable and traceable markers related
to the hemodynamic disturbances associated with HF from the
gastric fundus.

In terms of information obtained from the implant, the
change in orientation through time represents one interesting
aspect, which was considered as a prospective source of
information (results not shown in this paper). Since the device
is properly fixed to the gastric fundus, so these changes in
orientation are not related to movements of the device within
the stomach (which would be a major source of error), but
to movements of the coupling between the heart, diaphragm,
and adjacent gastric structures. In addition to compensating

for these movements, the accuracy of an implantable 3D
accelerometer can be used to extract potentially valuable
information. Further work is going in this direction. It is
worth mentioning that some technical issues linked to the
implant prototypes construction have to be approached in
future versions. Some of the main identified problems are
listed below:

• Sometimes the implant was restarted for reasons unrelated
to the acquisition protocol and the schedule was no
longer available.

• The application on the gateway was not robust enough. It was
necessary to reboot the gateway to relaunch the application. If
this action was performed too late, some data was lost.

• The cloud infrastructure was only in the first release for proof
of concept and was not continuously stable.

5. CONCLUSION

This work shows initial, preclinical evidence on the feasibility of
chronic cardiovascular monitoring from an implantable cardiac
device located at the gastric fundus. The main challenge remains
on the optimization of the signal-to-noise ratio, in particular
for the handling of some sources of noise that are specific to
the gastric acquisition site. Ongoing work is directed toward the
proposal of adaptive methods that will activate data acquisition
on the implant when specific noise-level criteria are met and on
further preclinical evaluation.
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