
Research Article
Oridonin Alters Hepatic Urea Cycle via Gut Microbiota and
Protects against Acetaminophen-Induced Liver Injury

Mu-keng Hong,1,2 Hai-hua Liu,3 Gui-hong Chen,2 Jun-qing Zhu,1 Song-yuan Zheng,1

Di Zhao,2 Jianxing Diao,2 Hui Jia,2 Ding-ding Zhang,2 Shi-xian Chen ,1 Lei Gao ,2

and Juan Li 1

1Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
2Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medical, Southern Medical University,
Guangzhou, China
3Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China

Correspondence should be addressed to Shi-xian Chen; shixian@smu.edu.cn, Lei Gao; raygaolei@smu.edu.cn,
and Juan Li; lijuan@smu.edu.cn

Received 4 June 2021; Revised 22 August 2021; Accepted 11 September 2021; Published 21 October 2021

Academic Editor: Mario Zoratti

Copyright © 2021 Mu-keng Hong et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the western world. Oridonin (OD), which is
the major active ingredient of the traditional Chinese medicine Rabdosia rubescens, reportedly exerts anti-inflammatory and
antioxidative effects. Here, we first find that OD protects against APAP-induced hepatotoxicity. The results of hepatic tissue-
associated RNA-seq and metabolomics showed that the protective effects of OD were dependent upon urea cycle regulation.
And such regulation of OD is gut microbiota partly dependent, as demonstrated by fecal microbiota transplantation (FMT).
Furthermore, using 16S rRNA sequencing, we determined that OD significantly enriched intestinal Bacteroides vulgatus, which
activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway to regulate redox homeostasis against APAP by urea
cycle. In conclusion, our study suggests that the Bacteroides vulgatus-urea cycle-Nrf2 axis may be a potential target for
reducing APAP-induced liver injury, which is altered by OD.

1. Introduction

Acetaminophen (APAP) is a common analgesic and antipy-
retic drug. However, an APAP overdose can lead to severe
hepatotoxicity, acute liver failure (ALF), and death [1].
Under normal conditions, APAP is predominantly metabo-
lized via sulfation and glucuronidation in the liver. A small
amount of the drug is metabolized by cytochrome P450
enzymes into N-acetyl-p-benzoquinoneimine (NAPQI),
which is mainly detoxified by glutathione (GSH) [2, 3]. An
overdose of APAP results in excess NAPQI, which exhausts
hepatic GSH, leading to mitochondrial dysfunction and
damage, and thereby hepatocyte necrosis and ALF [4, 5].

The urea cycle, which is exclusively located in the liver,
the central organ for metabolism and detoxification, is a vital

process involving 5 enzymes (Cps1, Otc, Ass1, Asl, and
Arg1) that convert the highly toxic metabolic byproduct,
ammonia, into urea, following amino acid metabolism [6,
7]. Urea cycle dysregulation has been reported in some liver
diseases and causes high mortality, such as in hepatitis B
virus-related liver failure and nonalcoholic fatty liver disease
[8, 9]. Moreover, urea cycle-related amino acids arginine-
ornithine homeostasis plays a crucial role for liver injury
by adaptive immune response regulation [9]. Therefore, it
was necessary to assess the influence of the urea cycle on
APAP-induced liver injury.

Increasing studies suggest that the gut microbiota might
play a crucial role in hepatotoxicity induced by an overdose
of APAP [10]. Antibiotic-treated mice or germ-free mice can
attenuate APAP hepatotoxicity [11]. Gut-resident lactobacilli
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protect against liver injury and reduce the effects of APAP
overdoses by activating hepatic Nrf2 [12]. Furthermore,
recent studies suggest that the gut microbiota mediates the
hepatic urea cycle, amino acid metabolism, and bile acid bio-
synthesis reprogramming against hepatotoxicity [13]. Thus,
the gut microbiota is essential for hepatic detoxification and
modulating the host metabolism pathway through the gut
microbiota might be an effective therapeutic strategy against
APAP hepatotoxicity.

Oridonin (OD), the main component of Rabdosia rubes-
cens, has been described as a hepatoprotective agent in many
studies, most of which have focused on liver injury, liver
cancer, and hepatic fibrosis involving antiapoptosis and anti-
oxidative effects [14–17]. However, whether OD can amelio-
rate APAP-induced liver injury and its underlying
mechanisms remains unclear. Herein, we report that OD
alleviates APAP-induced liver injury. By integration of tran-
scriptome analysis and hepatic metabolomics, we revealed
that such protective effects were dependent upon urea cycle
regulation via the activation of the Nrf2 pathway. Further-
more, we determined that OD modulated the gut microbiota
against APAP hepatotoxicity and significantly enriched
intestinal B. vulgatus, which alleviates APAP-induced liver
injury through the urea cycle. Collectively, our study indi-
cated that OD alleviated APAP-induced injury by altering
the gut microbiota.

2. Materials and Methods

2.1. Animals and Drug Administration. Eight-week-old male
C57BL/6 mice were obtained from the SPF Biotechnology
Company (Beijing, China). Nrf2−/− mice were purchased
from the Jackson Laboratory (USA). Mice were gavaged with
300mg/kg APAP dissolved in phosphate-buffered saline
(PBS). OD was purchased from Shanghai Yuanye Bio-
Technology (Shanghai, China) and was dissolved in distilled
water. For OD treatment, mice were injected intraperitone-
ally with 20mg/kg OD 1h after APAP administration. All
mice were sacrificed after 24 h for the following experiments.
All animal experimental procedures were approved by the
local Animal Care and Use Committee of the Southern Med-
ical University.

2.2. RNA Sequencing. RNA from liver tissues was isolated
and checked for integrity and quantity using an RNA Nano
6000 Assay Kit (Agilent Technologies, Santa Clara, CA,
USA, production number: 5067-1511) with the Bioanalyzer
2100 system (Agilent Technologies, Santa Clara, CA, USA).
Following mRNA purification and cDNA synthesis, RNA
sequencing libraries were generated using a NEBNext
Ultra™ RNA Library Prep Kit from Illumina (New England
Biolabs, Ipswich, MA, USA) following the manufacturer’s
protocol. After estimating the quality of the libraries, the
samples were sequenced on an Illumina NovaSeq platform
(San Diego, CA, USA), and 150 bp paired-end reads were
generated.

2.3. Fecal DNA Isolation and 16S rRNA Amplicon
Sequencing. Briefly, the cecal content DNA was extracted

using the MinkaGene Tissue DNA kit (Magigene, Guang-
dong, China). The V3-V4 region of bacterial 16S rRNA
was amplified using specific barcoded primers, and all PCRs
were conducted using Phusion High-Fidelity PCR Master
Mix (New England Biolabs). The PCR products were puri-
fied using a Qiagen Gel Extraction Kit (Qiagen, Hilden, Ger-
many). Sequencing libraries were generated using a TruSeq
DNA PCR-Free Sample Preparation Kit (Illumina, USA)
according to the manufacturer’s instructions. The quality
of DNA libraries was assessed using a Qubit@ 2.0 Fluorom-
eter (Thermo Fisher Scientific, Waltham, MA, USA) and an
Agilent Bioanalyzer 2100 system. Finally, the samples were
sequenced on an Illumina NovaSeq platform.

2.4. Fecal Microbiota Transplantation (FMT). FMT was
performed according to an established protocol [18]. In
brief, recipient mice were orally gavaged with nonabsorb-
able antibiotics, including vancomycin (100mg/kg), neo-
mycin sulfate (200mg/kg), metronidazole (200mg/kg), and
ampicillin (200mg/kg), once daily for 5 d. Fresh cecal content
collected from donor mice (APAP group, APAP+OD group)
was diluted in PBS at 0.125 g/mL. Recipient mice were fed
transplant material for 3 d, following which mice were
gavaged with 300mg/kg APAP and sacrificed 24 h after
APAP was administered.

2.5. Targeted Metabolomics for Amino Acids. The samples
(100mg) were resuspended in liquid nitrogen and diluted
with water. Then, 50μL of the 100-fold diluted sample was
taken and homogenized with 200μL of acetonitrile/metha-
nol (1 : 1), which contained mixed internal standards. The
sample was left on ice for 30min and centrifuged at
12000 rpm for 10min at 4°C to remove the protein. Finally,
the supernatant was injected into the LC-MS/MS system
for analysis. An ultrahigh-performance liquid chromatogra-
phy coupled with a tandem mass spectrometry (UHPLC-
MS/MS) system (ExionLC™ AD UHPLC-QTRAP 6500+;
AB SCIEX Corp., Boston, MA, USA) was used to quantify
amino acids by Novogene Co., Ltd. (Beijing, China). The
separation was performed on an ACQUITY UPLC BEH
Amide column (2:1 × 100mm, 1.7μm), which was main-
tained at 50°C. The mobile phase, consisting of 0.1% formic
acid in water with 5mM ammonium acetate (solvent A) and
0.1% formic acid in acetonitrile (solvent B), was delivered at a
flow rate of 0.30mL/min. The solvent gradient was set as fol-
lows: initial, 80% B, 0.5min; 80–70% B, 2min; 70–45% B,
4min; 45–80% B, 6.01min; and 80% B, 9min. The mass spec-
trometer was operated in positive multiple reaction mode.
Parameters were as follows: ion spray voltage (5 500V), cur-
tain gas (35psi), ion source temperature (550°C), and ion
source gas of 1 (50psi) and 2 (65psi). To detect dysregulated
amino acids, one-way analysis of variance (ANOVA) was first
used to detect the differences among groups, and a post hoc
test (Tukey’s honestly significant difference; HSD) was used
to performmultiple comparisons. An unpaired t-test was used
to detect dysregulated metabolites between the two groups.

2.6. Quantification and Statistical Analysis. All continuous
variables were compared between groups using Student’s t
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-test. If there were more than two groups, one-way ANOVA
was first used, and then Tukey’s HSD method was used. All
statistical analyses were performed using GraphPad soft-
ware. The data are presented as the mean ± standard error
of mean (SEM). Statistical significance was described as ∗p
< 0:05, ∗∗p < 0:01, or ∗∗∗p < 0:001.

For further details regarding the materials used, please
refer to the supplementary information (available here).

3. Results

3.1. OD Mitigates APAP-Induced Liver Injury. We evalu-
ated whether OD could protect the liver from APAP-
induced injury (Figure 1(a)). Mice were treated with
20mg/kg OD 1h after administering APAP. OD attenu-
ated APAP hepatotoxicity in a dose-dependent manner,
and 20mg/kg could attenuate the syndrome induced by
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Figure 1: Oridonin (OD) alleviates APAP-induced liver injury. (a) OD structure. (b, c) Serum ALT and AST levels (n = 10). (d, e)
Representative H&E and TUNEL staining images of liver tissue in each group. (f, g) Hepatic GSH and SOD in each group (n = 6–8). (h)
Levels of serum MDA (n = 6–9). (i) mRNA levels of cytokines and chemokines in the liver (n = 6). (j, k) Western blot for Nrf2. The data
are presented as the mean ± standard error of mean ðSEMÞ. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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APAP according to ALT and AST levels (Figure S1A-B). At
24 h after administering APAP, serum ALT and AST levels
increased significantly, leading to centrilobular necrosis
(Figures 1(b)–1(d)). Compared to that in the APAP-treated
group, liver injury was remarkably attenuated in the OD-
treated group (Figures 1(b)–1(d)). TUNEL staining confirmed
these results (Figure 1(e)).

Increasing studies demonstrated that CYP2E1 converted
APAP to NAPQI and caused oxidative stress [19]. To inves-
tigate the potential for OD to affect drug metabolism, we
detected hepatic CYP2E1 expression. APAP administration
upregulated CYP2E1 expression, while OD administration
could not significantly affect CYP2E1 protein expression
(Figure S2A-B). To assess hepatic oxidative stress, we
determined hepatic GSH and SOD. APAP treatment
significantly decreased liver GSH and SOD, whereas GSH
and SOD in the OD-treated group were obviously improved
(Figures 1(f) and 1(g)). Furthermore, the level of serum
malondialdehyde, a product of oxidative damage, indicated
that OD diminished oxidative stress caused by APAP
overdose (Figure 1(h)). Additionally, OD also reduced the
hepatic expression of inflammatory factors (Figure 1(i)).
Nrf2 plays a pivotal role in redox homeostasis and APAP-
induced hepatotoxicity, and Nrf2-mediated gene regulation
is necessary for hepatic GSH synthesis, detoxification, and
transport [20]. Nrf2 in the APAP group was significantly
decreased compared to those in the vehicle group. The
expression levels of all these proteins were effectively
increased by OD (Figures 1(j) and 1(k)). These data
demonstrated that OD exhibits robust efficacy and
antioxidative effect against APAP hepatotoxicity.

3.2. OD Attenuates Urea Cycle Dysregulation against APAP
Hepatotoxicity. To further explore the mechanism underly-
ing the protective effects of OD, we performed tran-
scriptome analysis via RNA sequencing among the three
groups (vehicle, APAP, and APAP+OD). After treatment
with OD, the expression levels of 1327 of 1451 genes were
rescued (775 upregulated genes in APAP-treated mice
were downregulated by OD treatment, and 572 downregu-
lated genes in APAP-treated mice were upregulated by OD
treatment) (Figure 2(a) and Figure S3A). Then, we
performed pathway enrichment analysis of these rescued
genes using clusterProfiler [21]. Most of the significant
pathways were related to amino acid metabolism and
oxidative stress (Figure 2(b) and Figure S3B). Meanwhile,
by performing amino acid metabolomics, APAP cause
hepatic amino acid metabolism dysregulation and OD
relieved this dysfunction (Figure 2(c) and Figure S3C).

The urea cycle pathway is associated with amino acid
and nucleotide metabolic pathways and represents a net-
work of systemic nitrogen metabolism [9]. According to
the transcriptome results, the urea cycle was sharply sup-
pressed by APAP but was recovered by OD (Figure 2(d)
and Figure S3D). Consistent with the transcriptome results,
the mRNA levels of urea cycle-related gene and protein
levels were suppressed by APAP and were improved by
OD administration (Figures 2(e)–2(g)). The urea cycle-
related amino acids especially ornithine were reduced in

the APAP group compared with the control and OD
groups (Figure 2(h)). Pearson’s correlation analysis showed
significant correlations between these amino acids and
impaired hepatic functions and oxidative stress and
particularly that of ornithine (Figure 2(i)). Moreover,
accompanied by urea cycle disruption, APAP suppressed
serum urea production and increased serum ammonia,
whereas OD promoted urea production and decreased
serum ammonia (Figure 2(j)). Taken together, APAP
appears to disrupt the hepatic urea cycle, whereas OD
appears to attenuate the urea cycle dysfunction caused by
APAP (Figure 2(k)).

3.3. OD Attenuates APAP-Induced Liver Injury in a Urea
Cycle-Associated Manner. To further examine whether OD
alleviated APAP hepatotoxicity in a urea cycle-dependent
manner, we used H3B-120 (a potent Cps1 inhibitor) to
inhibit the urea cycle [22]. Mice were pretreated with H3B-
120 (20mg/kg) 12h before APAP administration. H3B-120
administration significantly increased serum ALT and AST
levels and diminished the protective effects of OD, which
indicated that OD attenuated APAP-induced liver injury in
a urea cycle-associated manner (Figures 3(a) and 3(b)). Liver
histology also confirmed these results (Figure 3(c)). Mean-
while, the APAP+H3B-120 group showed significantly
higher serum ALT and AST levels compared with the
APAP+OD+H3B-120 group (Figures 3(a) and 3(b)). These
data suggested that the protective effect of OD was partly
dependent on urea cycle, and other mechanisms need fur-
ther investigation.

Above data suggested that OD exhibits an antioxida-
tive effect against APAP hepatotoxicity through Nrf2 path-
way activation (Figures 1(j) and 1(k)). Additionally,
increasing studies suggested that urea cycle is an impor-
tant regulator of hepatic redox homeostasis. We further
explore the relationship between the urea cycle and Nrf2
pathway. Consistent with impaired hepatic functions,
H3B-120 administration also significantly inhibited expres-
sion of Nrf2 and relative antioxidative genes (Ho-1, Nqo1)
(Figures 3(d) and 3(e)). Meanwhile, Nrf2 pathway activa-
tion by OD was diminished after urea cycle inhibition
(Figures 3(d) and 3(e)). Moreover, the increases of hepatic
GSH and SOD by OD administration were markedly
exhausted by H3B-120 (Figures 3(f) and 3(g)). Thus, we
predicated that OD modulated the urea cycle to relieve oxi-
dative stress caused by APAP in an Nrf2-dependent manner.
In contrast to WT mice, serum ALT and AST levels were
increased and hepatic GSH and SOD levels were decreased
in Nrf2−/− mice (Figures 3(h)–3(k)). Monitoring of serum
ALT and AST levels and hepatic GSH and SOD levels indi-
cated no difference in liver injury and oxidative stress
between the control and OD groups upon deletion of Nrf2
in mice (Figures 3(h)–3(k)). Taken together, these results
suggested that OD altered the urea cycle to alleviate APAP
hepatotoxicity in an Nrf2-dependent manner.

3.4. OD Alters Urea Cycle and Attenuates APAP-Induced
Liver Injury in a Gut Microbiota-Associated Manner. Recent
studies have demonstrated that the gut microbiome is
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Figure 2: Continued.
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crucial for redox homeostasis and APAP hepatotoxicity.
Considering that the low bioavailability of OD suggests that
it may act as a potential substrate for gut microbiota and OD
could not directly inhibit hepatocyte apoptosis in vitro

(Figure S4A-B) [23], we hypothesized that the protective
effect of OD might be dependent on the gut microbiome.
To further investigate the contribution of the gut
microbiome to the protective effect of OD, we performed
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an FMT experiment. Following 1 week of antibiotic
treatment, recipient mice were randomly divided into 2
groups, which were subjected to microbiota transfer from
either APAP-treated mice or OD-posttreated (APAP and
APAP+OD) mice (Figure 4(a)). The levels of serum ALT
and AST were notably decreased in the group that received
the cecal contents from OD-treated mice (FMTOD)
compared to those in the group that received the
microbiota from APAP-treated mice (FMTAPAP)
(Figures 4(b) and 4(c)). Liver histology indicated that
FMTOD mice consistently exhibited smaller hepatic
necrosis areas compared with those in FMTAPAP mice
(Figure 4(d)). Additionally, the hepatic expression of
inflammatory factors was decreased in FMTOD mice
(Figure 4(e)).

Furthermore, we test whether the gut microbiota medi-
ated OD-induced urea cycle-Nrf2 pathway activation.
FMTAPAP mice showed serum ammonia accumulation
and urea production disruption compared to those in
FMTOD mice (Figures 4(f) and 4(g)). Moreover, the
FMTOD group exhibited significantly higher gene expres-
sion in relation to the urea cycle, compared to that in the
FMTAPAP group (Figure 4(h)). The mRNA results were
confirmed by the protein levels of Cps1 and Ass1
(Figures 4(i) and 4(j)). Meanwhile, with urea cycle upregula-
tion, the Nrf2 pathway was significantly activated in the
FMTOD group (Figures 4(i) and 4(j)). In line with the
expression changes, the levels of GSH and SOD in the
FMTOD group were higher than those in the FMTAPAP
group (Figures 4(k) and 4(l)).

3.5. OD Alters APAP-Induced Gut Dysbiosis and Enriches B.
vulgatus. Results in the current study showed that the pro-
tective effect of OD was strongly associated with the gut
microbiota. Therefore, we performed 16S rRNA sequencing
to examine the diversity of the intestinal microbiota commu-
nity. Principal coordinate analysis (PCoA) and the beta-
diversity revealed distinct microbiota composition clustering

for the APAP and OD treatment groups (Figures 5(a) and
5(b)). The alpha-diversity values showed no significant dif-
ference between the groups, including Chao1 and observed
operational taxonomic units (Figure S5A, B). Next, we
observed that OD changed the gut microbiota composition
at different taxonomic levels. Specially, at the family level,
OD increased the abundance of Akkermansiaceae and
Bacteroidaceae (Figure 5(c)). Moreover, at the genus level,
the abundances of Akkermansia and Bacteroides were
enriched in the OD groups, whereas Alistipes and Blautia
were enriched in the APAP groups (Figure 5(d) and
Figure S5C).

To further identify the specific bacterial phylotypes
between the APAP and OD groups, we computed the linear
discriminant analysis effect size and selected species based
on a linear discriminant analysis score > 3 (Figure 5(e)).
Gut microbiota changed substantially, and B. vulgatus was
significantly enriched in response to the OD treatment
(Figures 5(f)–5(h)), which the qPCR analysis confirmed
(Figure 5(i)). The abundance of B. vulgatus was correlated
with ALT and AST (Figures 5(j) and 5(k)). The OD treat-
ment alleviated the reduction of the tight junction markers
ZO-1 and occludin induced by APAP (Figure S5D-E).
These results indicate that disruption of the gut barrier
function and dysbiosis of the gut microbiota, induced by
APAP, were dramatically ameliorated by OD treatment.
The results suggest that OD can alter gut microbiota
composition and substantially enrich B. vulgatus.

3.6. B. vulgatus Enrichment by OD Alters Urea Cycle
Dysregulation against APAP Hepatotoxicity. B. vulgatus
was substantially enriched by OD treatment. Next, we
explored the potential association between B. vulgatus and
APAP-induced liver injury. Mice were orally administered
with either the vehicle (PBS) or B. vulgatus for 2 weeks prior
to APAP treatment. Administering B. vulgatus did not cause
a significant change in food intake and weight compared to
the vehicle group (Figure S6A-B). Interestingly, gavage
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with B. vulgatus lowered serum ALT and AST levels,
compared to those in the PBS-treated group (Figures 6(a)
and 6(b)). Additionally, B. vulgatus also reduced hepatic
expression of inflammatory factors (Figure 6(c)). Similarly,
administering B. vulgatus remarkably improved hepatic GSH
and SOD levels following APAP overdose (Figures 6(d) and
6(e)). These results were substantiated by H&E and TUNEL
staining, which indicated that administering B. vulgatus
greatly attenuated hepatic necrosis (Figure 6(f)). These
results indicated that it was B. vulgatus that showed potential
for protecting the liver from injury induced by APAP.

Notably, administering B. vulgatus significantly increased
the mRNA expression of Cps1, Otc, Ass1, and Asl in the liver
(Figure 6(g)). This change in expression levels was substan-
tiated by protein levels (Figures 6(h)–6(j)). In line with
results of OD administration, B. vulgatus increases the
abundance of urea cycle-related amino acids especially orni-
thine (Figure 6(k) and Figure S4). Accompanied by urea
cycle disruption, APAP suppressed serum urea production
and increased serum ammonia, whereas B. vulgatus
promoted urea production and decreased serum ammonia
(Figure 6(l)). Moreover, urea cycle inhibition with H3B-120
increased ALT and AST levels and eliminated the protective

effects of B. vulgatus (Figures 6(m) and 6(n)). These results
indicated that B. vulgatus enrichment by OD attenuated
APAP hepatotoxicity through the urea cycle-Nrf2 pathway.

4. Discussion

APAP hepatotoxicity is the most common cause of ALF in
the western world [24]. Hence, a comprehensive under-
standing of the underlying mechanisms is urgently needed
to develop more effective therapeutic approaches. Although
OD evidently exerts anti-inflammatory and antiapoptotic
effects on liver injury, there is no direct evidence supporting
the notion that OD protects against APAP hepatotoxicity,
and any underlying mechanism that might enable such pro-
tective activity has yet to be proposed, all of which limits its
clinical application [15]. In the present study, we firstly dem-
onstrated that OD could attenuate oxidative stress and liver
injury against APAP hepatotoxicity. Moreover, by integrat-
ing the data pertaining to the gut microbiota, hepatic tran-
scriptome, and metabolomics, we demonstrated that the
protective effects of OD are partly dependent on the B. vul-
gatus-urea cycle-Nrf2 axis, which alleviated APAP-induced
liver injury by reducing oxidative stress.
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Urea cycle dysregulation has been reported in some
liver diseases and causes high mortality [8, 9, 25]. Accumu-
lating studies suggested that urea cycle was crucial for liver
injury through adaptive immune response regulation and
highly toxic metabolic byproduct elimination [26]. Pres-
ently, by performing transcriptome and metabolomics anal-
ysis, we proved that APAP sharply disrupted the hepatic
amino acid metabolism pathway, especially the urea cycle,
the crucial component of amino acid metabolism. More
importantly, urea cycle inhibitor H3B-120 acutely exacer-
bated APAP hepatotoxicity and partly diminished the pro-
tective effect of OD. Therefore, urea cycle dysregulation
could aggravate APAP-induced liver injury and OD attenu-
ated APAP hepatotoxicity in a urea cycle-associated man-
ner. Increasing studies suggested that the urea cycle is an
important regulator of hepatic redox homeostasis [12].
Nrf2 is the key regulator for hepatic GSH, SOD, and other
antioxidative element syntheses [19, 20]. We further
explore the relationship between the urea cycle and Nrf2
pathway. Furthermore, urea cycle ablation inhibited the
Nrf2 pathway, while OD activated the urea cycle and
Nrf2 pathway. These findings suggested that urea cycle
altered hepatic redox homeostasis through Nrf2 activation.
Regulation on urea cycle might be a promising strategy
for APAP hepatotoxicity therapy.

Accumulating studies have indicated a relationship
between the gut microbiota and APAP-induced-liver injury
[27, 28]. Additionally, recent studies have suggested that tra-
ditional Chinese medicine, as effective and potential prebi-
otics, could modulate the gut microbiome to prevent the
development of various diseases [29]. Furthermore, it was
previously demonstrated that OD could inhibit infection
by Salmonella pullorum and protect intestinal health [30].
Thus, we speculated that the protective effect of OD might
be associated with gut microbiota. According to FMT exper-
iments, we found that OD alleviated APAP hepatotoxicity
and regulated the urea cycle-Nrf2 pathway in a gut
microbiota-associated manner. Of note, by performing 16S
rRNA sequencing, we observed that treatment with OD led
to the significant enrichment of B. vulgatus at the family-
genus-species level.

Another finding of this study is that B. vulgatus could
attenuate APAP-induced liver injury through the urea
cycle-Nrf2 pathway. B. vulgatus is widely described as the
main driver promoting the impact of branched-chain amino
acids in host metabolism [31]. Branched-chain amino acid
supplementation improves event-free survival in some
advanced liver diseases [32, 33]. Additionally, recent studies
showed that B. vulgatus suppresses proinflammatory
immune responses by decreasing gut microbial lipopolysac-
charide production [34]. B. vulgatus, a commensal bacterial
species, reportedly inhibits colonization by pathogenic
microbes [35]. These results indicate that B. vulgatus acts
as a probiotic in the body. In this study, we further demon-
strated that B. vulgatus could attenuate oxidative stress and
liver injury caused by APAP. In line with results of OD
administration, B. vulgatus could activate the urea cycle-
Nrf2 pathway, while these effects were diminished by urea
cycle inhibition. These results indicated that OD could

attenuate APAP-induced liver injury partly in a gut
microbiota-dependent manner, involving the enrichment
of B. vulgatus.

In conclusion, the current results demonstrate that OD
exerts a significant protective effect against APAP hepato-
toxicity, which is partly dependent on urea cycle. Moreover,
OD alters urea cycle against APAP hepatotoxicity through
gut microbiota modulation involving the enrichment of B.
vulgatus. Collectively, OD targets the B. vulgatus-urea
cycle-Nrf2 axis and is a potential therapeutic agent for
APAP-induced liver injury.
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