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Esophageal squamous cell carcinoma (ESCC) accounts for themain esophageal cancer type, which is related to advanced stage and
poor survivals. /erefore, novel diagnostic biomarkers are critically needed. In the current research, we aimed to screen novel
diagnostic biomarkers based on machine learning. /e expression profiles were obtained from GEO datasets (GSE20347,
GSE38129, and GSE75241) and TCGA datasets. Differentially expressed genes (DEGs) were screened between 47 ESCC and 47
nontumor samples. /e LASSO regression model and SVM-RFE analysis were carried out for the identification of potential
markers. ROC analysis was carried out to assess discriminatory abilities./e expressions and diagnostic values of the candidates in
ESCC were demonstrated in the GSE75241 datasets and TCGA datasets. We also explore the correlations between the critical
genes and cancer immune infiltrates using CIBERSORT. In this study, we identified 27 DEGs in ESCC: 5 genes were significantly
elevated, and 22 genes were significantly decreased. Based on the results of the SVM-RFE and LASSO regression model, we
identified five potential diagnostic biomarkers for ESCC, including GPX3, COL11A1, EREG, MMP1, and MMP12. However, the
diagnostic values of only GPX3, MMP1, and MMP12 were confirmed in GSE75241 datasets. Moreover, in TCGA datasets, we
further confirmed that GPX3 expression was distinctly decreased in ESCC specimens, while the expression of MMP1 andMMP12
was noticeably increased in ESCC specimens. Immune cell infiltration analysis revealed that the expression of GPX3, MMP1, and
MMP12 was associated with several immune, such as T cells CD8, macrophages M2, macrophages M0, and dendritic cells
activated. Overall, our findings suggested GPX3, MMP1, and MMP12 as novel diagnostic marker and correlated with immune
infiltrates in ESCC patients.

1. Introduction

Esophageal cancer (EC) is one of the most common ma-
lignancies worldwide, which is always accompanied by high
morbidity and mortality [1]. Esophageal cell squamous
carcinoma (ESCC) accounts for over 80% of all cases of EC
in China [2]. Surgery, radiation therapy, and chemotherapy

are the only treatment options that are currently available;
despite the significant progress that has been made in the
treatment of this illness, the patient survival rate within five
years is still extremely low [3, 4]. /is is due to the fact that
the only treatment options that are currently available are
those three. Metastatic ESCC patients have a five-year
survival rate of fewer than 5% [5]. ESCC often spreads to
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the liver, lung, bone, and brain [6]. For the detection of
ESCC, they are ineffective because they lack appropriate
sensitivity and specificity [7]. /erefore, novel and reliable
molecular biomarkers to complement and improve on
current ESCC screening strategies are urgently needed.

/e investigation of gene expression profiles using
microarrays has become a frequent method for locating
important hub genes and important pathways [8]. In this day
and age of integrated bioinformatics, it is not a problem to
get data; rather, the task of normalization appears to be
a challenging one. It is possible to perform prognosis studies
on cancer patients using microarray techniques in addition
to identifying genes associated with various diseases and
potential antitumor medication targets [9, 10]. In addition,
microarray techniques have an important ability in ana-
lyzing the associations between the expression of functional
genes and their modulation [11, 12]. In the field of clinical
research, they are also responsible for contributing ideas for
the diagnosis and treatment of specific disorders. We found
that there have been studies exploring the diagnostic genes
of many types of tumors, but the application of machine-
learning for the identification of novel diagnostic bio-
markers for ESCC was rarely reported. In the current study,
we performed a joint analysis in multidatabases to explore
diagnostic marker genes for ESCC patients.

2. Materials and Methods

2.1. Microarray Data. /e microarray dataset GSE20347,
GSE38129, and GSE75241 was downloaded from the Gene
Expression Omnibus (GEO) database. /e GSE20347 dataset
included 17 pairs of ESCC and nontumor specimens, whereas
the GSE38129 dataset included 30 pairs of ESCC and non-
tumor specimens. Due to the fact that the GSE38129 datasets
share a platform and are important for merging data from
a variety of datasets, they have been combined into ametadata
cohort for the purpose of doing additional integration
analysis. In addition, the combat function contained inside
the “SVA” software package in R was utilized in order to
eliminate the batch effect. In addition, the validation cohort
comprised 15 pairs of ESCC tissues and neighboring normal
tissues, which were taken from the GSE75241 datasets.

2.2. Identification of Differentially Expressed Genes (DEGs).
/eDEG analysis was carried out with the help of the Limma
program [13]. In order to evaluate the changes in gene
expression, an empirical Bayesian methodology was adop-
ted, and moderated t-tests were utilized./e DEGs are genes
that had an adjusted p value that was lower than 0.05 and
had an absolute fold change that was higher than 3.

2.3. GO Term and KEGG Pathway Enrichment Analysis.
/e biological importance of DEGs was investigated using
GO term enrichment analysis, which included biological
processes, cellular components, and molecular functions.
/is research was conducted using the “GOstats” program
included in Bioconductor. /e KEGG pathway enrichment
analysis of DEGs was carried out by the “GeneAnswers”

Bioconductor program in order to identify important
pathways that are closely associated with the beginning and
development of ESCC. In order to reach statistical signifi-
cance and achieve significant enrichment, a p value of less
than 0.05 was required.

2.4. Novel Diagnostic Biomarkers Screening. When doing
five-fold cross-validation, a technique known as least ab-
solute shrinkage and selector operation (LASSO) and sup-
port vector machine-recursive feature elimination (SVM-
RFE) were employed, respectively, to filter the critical genes
[14, 15]./en, in order to filter the essential diagnostic genes,
we pooled the results that the LASSO and SVM-RFE al-
gorithms had produced. /e genes that were shared by the
two methods were incorporated, and the expressions of
novel genes were checked for accuracy using the GSE75241
datasets.

2.5. Diagnostic Value of Critical Genes in ESCC. In order to
determine whether or not the found biomarkers had any
predictive power, we constructed a ROC curve by comparing
the levels of mRNA expression in 47 ESCC tumor specimens
to 47 nontumor tissues. /e value of AUC was used to
measure the diagnostic efficiency in distinguishing ESCC
specimens from nontumor specimens, and this finding was
then verified using the GSE75241 dataset.

2.6. Estimation of Immune Cell Abundance. Based on the
reference signature matrix of 547 genes, we employed
CIBERSORT to analyze the percentages of various immune
cells in tumor and nontumor specimens. When we ran the
program with the default LM22 feature matrix at 1000
permutations, we submitted the data of gene expressions
generated from the sample mixture file to the CIBERSORT
web page (https://cibersort.stanford.edu/). A mixture sam-
ple’s relative immune cell fraction was estimated using
CIBERSORT and can be applied to compare immune cell
populations within and across studies.

2.7. Statistical Analysis. All statistical analyses were con-
ducted using R (version 3.6.3, R Core Team, Massachusetts,
USA). p< 0.05 was considered statistically significant.

3. Results

3.1. Identification of DEGs in ESCC. Extensive retrospective
analysis was performed on the GSE20347 and GSE38129
GEO datasets, which contained data on 47 ESCC and 47
nontumor samples. We used the Limma package to remove
batch effects before analyzing the metadata DEGs. /ere
were a total of 27 DEGs collected: 5 genes were significantly
elevated, and 22 genes were significantly decreased
(Figure 1(a)).

3.2. GO and KEGG Pathway Enrichment Analyses of DEGs.
Later, we carried out GO assays using the “clusterProfiler” R
package and observed that, in the BP group, the DEGs were
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mainly involved in extracellular structure organization, skin
development, extracellular matrix organization, epidermal
cell differentiation, and keratinocyte differentiation. In the
MF group, the DEGs were mainly involved in serine hy-
drolase activity, serine-type peptidase activity, metal-
lopeptidase activity, receptor ligand activity, and
extracellular matrix binding (Figure 1(b)). However, the
results of KEGG did not show any significant terms.

3.3. Identification and Validation of Diagnostic Feature
Biomarkers. Researchers made use of two distinct algo-
rithms in their search for possible biomarkers. Regression
analysis carried out with the LASSO algorithm helped re-
duce the number of DEGs, which led to the identification of
eight biomarkers for ESCC (Figure 2(a)). /e SVM-RFE
algorithmwas used to narrow down the features of the DEGs
to a selection of five characteristics (Figure 2(b)). In the end,
the four traits that were found to overlap between these two
methods, known as GPX3, COL11A1, EREG, MMP1, and
MMP12, were chosen (Figure 2(c)). GSE75241 dataset was
utilized to check the expressions of five characteristics to
obtain more accurate and reliable results. ESCC tissue had
significantly higher levels of GPX3, MMP1, and MMP12
expression than normal tissues (Figure 3(a)). However,
regarding the levels of expression of COL11A1 and EREG,
there was not a discernible difference between the two
groups (Figure 3(b)).

3.4. Diagnostic Effectiveness of Novel Biomarkers in ESCC.
/e diagnostic abilities of GPX3, MMP1, and MMP12 in
discriminating ESCC from nontumor specimens confirmed
excellent diagnostic values, with an AUC of 0.939 (95% CI
0.879–0.986) in MMP12, AUC of 0.959 (95% CI
0.916–0.990) in MMP1, AUC of 0.985 (95% CI 0.963–0.100)
in GPX3, AUC of 0.962 (95% CI 0.922–0.990), and AUC of
0.924 (95% CI 0.853–0.979) (Figure 4). Moreover, a powerful

discrimination ability was demonstrated in the GSE75241
dataset with an AUC of 0.920 (95%CI 0.791–0.100) in GPX3,
AUC of 1.000 (95% CI 1.000–1.000) in MMP12, and AUC of
1.000 (95% CI 1.000–1.000) in MMP1 (Figure 5(a)). How-
ever, the AUC for COL11A1 and EREG was 0.556 and 0.707
(Figure 5(b)).

3.5. Pan-Cancer Expression Landscape of GPX3, MMP1, and
MMP12 Based on TCGA Datasets. We conducted pan-
cancer assays based on TCGA datasets to investigate the
putative roles of GPX3, MMP1, and MMP12 in malig-
nancies. According to our findings, the GPX3 expression is
markedly decreased in most cancers (Figure 6(a)), while
MMP1 andMMP12 expression was distinctly upregulated in
most types of tumors (Figures 6(b) and 6(c)). According to
our findings in Figure 7(a), we found that MMP1 and
MMP12 expression was markedly elevated in ESCC samples
compared to nontumor samples, while the GPX3 expression
was decreased (Figures 7(b) and 7(c)). However, the results
of paired t-test did not show a distinct difference of GPX3
expressions between ESCC samples and nontumor samples
(Figure 7(d)), while the MMP1 and MMP12 expression was
also further confirmed by the use of paired t-test
(Figures 7(e) and 7(f )).

3.6.CorrelationofGPX3,MMP1,andMMP12Expressionwith
Tumor-Infiltrating Immune Cells (TICs). /e CIBERSORT
tool in R programming language was used to conduct ad-
ditional studies to verify the association between GPX3,
MMP1, and MMP12 expression and the TME. Figure S1(a)
shows the establishment of 22 types of immune cell profile in
ESCC samples and nontumor samples, and the relationship
between these TICs was exhibited by the use of heatmap
(Figure S1(b)). Subsequently, we compared the proportions
of TICs in the ESCC samples with those in the nontumor
samples, and we found that differences in B cells naı̈ve,
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Figure 1: Identification of DEGs in ESCC and their enrichment analysis. (a) A total of 139 DEGs were obtained between ESCC specimens
and nontumor specimens, which were shown in the heat map. (b) Representative results of GO analyses in TCGA.
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Figure 3: /e expression of GPX3, COL11A1, EREG, MMP1, and MMP12 in ESCC specimens and nontumor from GSE75241 datasets.

4 Journal of Oncology



COL11A1

1 − specificity

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0

AUC: 0.962
95% CI: 0.922−0.990

EREG

1 − specificity

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0

AUC: 0.924
95% CI: 0.853−0.979

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

GPX3

1 − specificity

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0

AUC: 0.985
95% CI: 0.963−1.000

MMP1

1 − specificity

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0

AUC: 0.959
95% CI: 0.916−0.990

MMP12

1 − specificity

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0

AUC: 0.939
95% CI: 0.879−0.986

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: ROC curve of the five diagnostic markers using GSE20347 and GSE38129 datasets.
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Figure 5: ROC curve of the five diagnostic markers using GSE75241 datasets.
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plasma cells, T cells CD8, T cells CD4 näıve, T cells CD4
memory resting, T cells CD4 memory activated, T cells
follicular helper, T cells regulatory (Tregs), monocytes,
macrophages M0, macrophages M1, macrophages M2,
dendritic cells activated, mast cells resting, and neutrophils

were statistically significant (Figure S1(c)). Moreover, we
observed that the GPX3 expression was associated with the
expression of T cells CD8, mast cells resting, T cells regu-
latory (Tregs), macrophages M2, T cells CD4 memory
resting, monocytes, dendritic cells resting, T cells gamma
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Figure 6: /e pan-cancer analysis using TCGA datasets.
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Figure 7: /e expression of GPX3, MMP1, and MMP12 between ESCC specimens and nontumor specimens from TCGA datasets using
(a–c) unpaired t-test and (d, e) paired t-test. ∗∗∗p< 0.001, ∗∗p< 0.01, and ∗p< 0.05.
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delta, neutrophils, T cells CD4 memory activated, B cells
naı̈ve, plasma cells, T cells CD4 näıve, macrophages M1,
T cells follicular helper, dendritic cells activated, and mac-
rophagesM0 (Figure 8(a)). MMP1 expression was associated
with the expression of macrophages M0, dendritic cells
activated, macrophages M1, T cells CD4 memory activated,
neutrophils, plasma cells, T cells CD4 naı̈ve, mast cells
resting, T cells CD4 memory resting, monocytes, T cells
regulatory (Tregs), and T cells CD8 (Figure 8(b)). MMP12
expressions were related to the expressions of macrophages
M0, dendritic cells activated, macrophages M1, T cells CD4
memory activated, neutrophils, T cells CD4 naı̈ve, plasma
cells, T cells follicular helper, T cells CD4 memory resting,
T cells regulatory (Tregs), monocytes, mast cells resting, and
T cells CD8 (Figure 8(c)).

4. Discussion

/e most common kind of esophageal cancer found all over
the world is ESCC [16]. ESCC ranks as the fourth greatest
cause of death from cancer-associated causes in China [17].
Even with the recent advances that have been made in di-
agnosis and therapy, the outlook for ESCC remains dismal
[18, 19]. Patients diagnosed with ESCC have a survival rate
of fewer than 30 percent after 5 years. Despite the fact that
various biomarkers for ESCC have been discovered, the
therapeutic relevance of the majority of them has not been
validated [20, 21]. /erefore, there is an immediate need for
research into more effective biomarkers for the diagnosis
of ESCC.

To the best of our knowledge, this is the first retro-
spective study that has used GEO databases to look for
diagnostic indicators that are associated with immune cell
infiltration in patients with ESCC. Two cohorts were drawn
from the GEO datasets, and the data were subjected to an
integrated analysis. /ere were 27 DEGs in total: five genes
showed distinct increases, whereas 22 genes showed distinct
decreases. /e results of enrichment analyses revealed that
the dysregulated genes were primarily involved in matrix
organization, skin development, extracellular, extracellular
structure organization, epidermal cell differentiation, and
keratinocyte differentiation. In the MF group, the abnormal
expressed genes were primarily involved in serine hydrolase
activity, serine-type peptidase activity, metallopeptidase
activity, receptor ligand activity, and extracellular matrix
binding. A total of five diagnostic indicators have been
discovered using two machine-learning algorithms, in-
cluding the following: GPX3, COL11A1, EREG, MMP1, and
MMP12. In addition, we used GSE75241 datasets to further
demonstrate our findings, and the diagnostic value of GPX3,
MMP1, and MMP12 was further confirmed.

/e human matrix metalloproteinases (MMPs) family
belongs to the metzincin superfamily [22]. Extracellular
matrix degradation is aided by MMPs, which catalyze
proteolytic processes [23]. Several types of cancers are af-
fected by MMPs in different ways [24, 25]. As of this writing,
a total of 24 MMPs have been discovered (MMP1, 2, 3, 4, 5,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 23a/23b,
24, 25, 26, 27, and 28). Liu et al. reported that lymph node

metastases, microvessel density, and an advanced TNM
stage were all linked to ESCC patients with elevated MMP1
expression. Multivariate and Kaplan–Meier analyses found
that MMP1 was a significant independent predictor of
overall survival of ESCC patients. In vitro experiments
showed that MMP1 overexpression improved cell viability,
colony formation, and cell movement capacities. /e op-
posite effect was observed when MMP1 was knocked down
in ESCC cells. /e PI3K/AKT pathway was activated when
MMP1 was expressed ectopically in tumor cells, resulting in
tumor development and metastasis [26]. In addition, the
prognostic values of MMP12 have been reported in several
previous studies [27–29]. In this study, according to the
results of GSE20347, GSE38129, GSE75241, and TCGA
datasets, we further confirmed that MMP1 and MMP12
expressions were distinctly increased in ESCC specimens
compared with nontumor samples. ROC assays also con-
firmed their diagnostic value in screening ESCC samples
from normal samples. Overall, the results from machine-
learning, together with previous findings, suggested MMP1
and MMP12 as critical diagnostic and prognostic factors for
ESCC. However, research on the role of MMP1 and MMP12
in ESCC progression needed to be conducted in both vitro
and animal models.

Glutathione peroxidase (GPX) is an important peroxide
that has been demonstrated to be widely involved in non-
toxic compounds, the reduction of toxic peroxides into
hydroxyl compounds, and the decomposing of enzymes
[30, 31]. Growing studies have confirmed that GPX reduces
the occurrence and development of tumors [32, 33]. It has
been found that the methylation of GPX3, a member of the
GPX family of tumor-suppressor genes, increases the risk of
breast, live, and cervical cancer substantially [34–36]. In
ESCC, GPX3 has been reported to be lowly expressed in
ESCC and its overexpression promoted the migration and
invasion of ESCC cells via regulating FAK/AKT pathway
[37]. Our findings were consistent with previous findings.

/e role of the tumor microenvironment (TME) in the
development of the tumor was proven by an increasing
amount of evidence [38]. /e malignant characteristics of
cancer, such as immortal proliferation, resistance to apoptosis,
and evasion of immune surveillance, are thought to be at least
partially caused by cooperative interactions between cancer
cells and the cells that sustain them [39, 40]. As a result, the
TME exerts a considerable amount of impact over the ther-
apeutic response and clinical outcome in cancer patients./us,
we evaluated the correlation between GPX3, MMP1, and
MMP12 expressions and immune cell infiltration in ESCC.
Interesting, we found that the expression of GPX3,MMP1, and
MMP12 was distinctly associated with the expressions of many
immune cells. /erefore, the positive correlation between the
amounts of several immune cells and the expressions of GPX3,
MMP1, and MMP12 in ESCC patients suggested that GPX3,
MMP1, and MMP12 were responsible for the maintenance of
an immune-active condition in TME.

However, our present study has some limitations. Firstly,
considering the limited size of the sample, it will be necessary
to do extensive clinical tests. Secondly, we fail to evaluate the
expression profile of GPX3, MMP1, and MMP12 in the
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serum/plasma samples in patients with ESCC. Analyzing the
biomarkers present in the serum and plasma samples could
be an effective way to evaluate the response to treatment in
real time. Additionally, the function of GPX3, MMP1, and
MMP12 remained largely unclear, and their function and
mechanism were worth further exploration by molecular
function experiment. We plan to better incorporate more
data sets to demonstrate our findings in the next paper. In
order to make these more accurate, we intend to obtain
tumor specimens in addition to clinical data and demon-
strate the accuracy of the results via tests.

5. Conclusion

We identified GPX3, MMP1, and MMP12 as novel di-
agnostic genes for ESCC. Our research also provided

methods to evaluate those that had a higher potential to
benefit from immunotherapy and identified a number of
candidate therapeutic targets that could provide a more
efficient form of treatments.
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Figure 8: Relationships between (a) GPX3, (b) MMP1, (c) MMP12, and infiltrating immune cells in ESCC.
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