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Abstract

Background: Investigation of insecticide resistance mechanisms is considered a vital first step towards the creation
of effective strategies to control resistant mosquitoes and manage mosquito-borne diseases. Our previous study
revealed that NYD-OP7 may be associated with deltamethrin resistance in Culex pipiens pallen. However, the precise
function of NYD-OP7 in deltamethrin resistance is still unclear. In this study, we investigated the role of NYD-OP7 in
the molecular mechanisms underlying pyrethroid resistance.

Results: Knockdown of NYD-OP7 not only increased the susceptibility of the mosquitoes to deltamethrin in vivo but

also simultaneously repressed both expression and enzyme activity of its downstream effector molecule,
phospholipase C (PLC) and expression of several insecticide resistance-related P450 genes. Knockdown of PLC also
sensitized the mosquitoes to deltamethrin and reduced the expression of the P450 genes.

Conclusions: Our results revealed that NYD-OP7 and its downstream effector PLC contribute to deltamethrin
resistance by regulating the expression of P450s in Cx. pipiens pallens.
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Background

Mosquitoes can transmit numerous serious infectious
diseases, such as malaria, dengue fever, Zika, West Nile
fever, chikungunya, yellow fever, Rift Valley fever, La
Crosse encephalitis, Japanese encephalitis and filariasis
[1-10]. Chemical insecticides are one of the mainstay stra-
tegies for the control of mosquito vectors. Unfortunately,
the heavy reliance on pesticide has led to the development
of resistance in vectors, making insecticide use ineffective
[11]. Resistance to insecticides has been reported in many
mosquito species, implicating a major obstacle for the
control of vector-borne diseases [12—14].

Many studies have indicated that insecticide resistance is
actually a complex phenotype of polygenic inheritance
phenomenon [15-19]. To date, three major mechanisms
are responsible for insecticide resistance in mosquitoes:
alterations in the target sites, increased metabolic detoxifi-
cation, and reduced cuticular penetration [20-22]. In
addition, many genes that are not associated with the
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above-mentioned mechanisms may be involved in insecti-
cide resistance. For example, several Anopheles gambiae
genes, such as sodium/calcium exchanger, peptidases, and
genes responsible for lipid and carbohydrate metabolism,
were highly expressed in an insecticide-resistant strain [16].
The upregulation of protease genes were also observed in
pyrethroid resistant Cx. quinquefasciatus [23]). A previous
study in our laboratory also identified several differentially
expressed genes, such as arrestin, glycogen branching en-
zyme or prophenoloxidase gene, between the deltamethrin-
susceptible (DS) strain and deltamethrin-resistant (DR)
strain in Cx. pipiens pallens [24—26]. However, the potential
roles of these genes in the development of the resistance
phenotype are unclear. Further functional characterizations
are needed to help in understanding the relationships
between these genes and resistance processes.

Opsins, which belong to the G-protein-coupled recep-
tor (GPCR) superfamily, are primarily involved in the
visual signaling cascade [27]. In invertebrates, activation
of the downstream effector molecule phospholipase C
(PLC) is critical in the phototransduction cascades [28].
Previous studies have indicated that GPCR members
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have broader and more diverse functions than as light
sensors in animals. For example, OPN3 is an asthma
susceptibility gene that plays a role in immune modula-
tion [29]. Rhodopsin may serve as the ATP-independent
phospholipid flippase [30]. UV-sensitive and blue
color-sensitive opsins were found to be overexpressed in
DDT-resistant Drosophila, suggesting opsins may be
associated with insecticide resistance [31]. The GPCR
signaling pathway can regulate resistance-related P450
genes in Cx. quinquefasciatus [32].

In our previous study, suppression subtractive
hybridization (SSH) analysis revealed that NYD-OP7
(GenBank: AY749413), which belongs to the invertebrate
Gq-coupled opsin subfamily, was overexpressed at the
transcriptional level in the laboratory-selected DR strain
of Cx. pipiens pallens [33]. Furthermore, the overexpres-
sion of NYD-OP7 increased the resistance of Aedes
albopictus C6/36 cells to deltamethrin in vitro [34]. Al-
though these results suggest NYD-OP?7 is associated with
deltamethrin resistance, there are still many unanswered
questions regarding the functions of NYD-OP7 in the
development of the resistance. In particular, the mecha-
nism underlying the regulation of insecticide resistance
by NYD-OP7 needs to be elucidated.

In this study, the expression levels of NYD-OP7 in the
laboratory DS and DR strains of Cx. pipiens pallens were
detected using western blotting, and our previous SSH
and quantitative real-time (qPCR) analyses results were
validated. The roles of NYD-OP7 and its downstream ef-
fector molecule PLC on insecticide resistance were also
preliminarily investigated in vivo.

Methods

Mosquito strains

In this study, two laboratory strains of Cx. pipiens pallens
were used. In 2010, the DS strain [50% lethal concentra-
tion (LCsp) = 0.01 ppm] was obtained from the Jiangsu In-
stitute of Parasitic Diseases in Wuxi (Jiangsu Province,
China) and then maintained in our laboratory without ex-
posure to any insecticides. The DR strain was selected
from the early fourth-instar larvae of the DS strain with
deltamethrin. Before selection, LCsq was determined using
a larval bioassay and then used as the selection concentra-
tion. Finally, 58 generations of the DR strain were reared
with an LCsq of 7.3 ppm. The mosquitoes were main-
tained at 28 °C, 70-80% relative humidity, and a constant
light/dark photoperiod (16/8 h).

RNA extraction and cDNA synthesis

Total RNA was extracted from 5 female mosquitoes
from each group by using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA), according to the manufacturer’s
protocol. The integrity of the isolated total RNA was
assessed using 1% agarose gel electrophoresis. The purity
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and concentration were checked with a spectrophotom-
eter (NanoDrop, Wilmington, DE, USA). The RNA was
used for cDNA synthesis only if the gel electrophoresis
showed clear bands of 28S and 18S and the ratio of
0OD260/0D280 was within the range between 1.8 and
2.0 [35, 36]. cDNA was synthesized from 500 ng of total
RNA by using the PrimeScriptRT Reagent Kit (TaKaRa,
Tokyo, Japan), according to the manufacturer’s protocol.

gPCR analysis

qPCR was performed using the LightCycler® 96 Instrument
(Roche, Basel, Switzerland) with Power SYBR Green PCR
Master Mix (Applied Biosystems, Foster, USA), according
to the manufacturer’s protocol. The reaction volume (20 pl)
contained the Power SYBR Green PCR Master Mix,
specific forward and reverse primers (Additional file 1:
Table S1) and diluted cDNA. The PCR conditions were as
follows: 50 °C for 2 min and 95 °C for 10 min, followed by
40 cycles at 95 °C for 15 s and 60 °C for 1 min. Both mel-
ting curve analysis and gel electrophoresis of the amplifica-
tion products were performed to confirm that the primers
amplified only a single product of the expected size. In
addition, the qPCR products were sequenced for confir-
mation. The raw threshold cycle (Ct) values were used to
quantify the target gene expression for each sample. The
relative expression levels were normalized to the internal
control p-actin by using the 27" method [37]: target
gene /B-actin = 28Ct ACt= Ctg-actin — Cliarget gene- Lhree
technical and biological replicates were performed for
qPCR analyses.

Preparation of NYD-OP7 antibody

The amino acid sequence of NYD-OP7 was submitted
to the BepiPred 1.0 server (http://www.cbs.dtu.dk/ser-
vices/BepiPred/), and the epitope (CVASGATT
ASDEKA) was predicted. The peptide of 14 amino acids
was chemically synthesized and used as an immunogen
to immunize 2 female New Zealand white rabbits. Before
inoculation, the 2 rabbits were bled to obtain 30 to 50
ml of preimmune serum as the negative control. The
primary immunization consisted of 1000 pl of the
immunogen [1 pg/pl, dissolved in phosphate-buffered
saline (PBS)] mixed with an equal volume of Freund’s
complete adjuvant. For the subsequent immunizations,
500 pl of the immunogen (1 pg/pl, dissolved in PBS) was
mixed with an equal volume of Freund’s incomplete
adjuvant. After 4 immunizations, the antiserum was
harvested and subjected to affinity purification (SAB
Biotech, Nanjing, China). The sensitivity of the developed
NYD-OP7 antibody was measured by enzyme-linked
immunosorbent assay (ELISA, ELISA > 1:128,000). We
checked the specificity of the antibody by western blot,
which showed only one band and the same molecular
weight as the target protein.
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Western blot analysis

Proteins were extracted from the DS and DR strains of
Cx. pipiens pallens with the RIPA lysis buffer (Beyotime,
Shanghai, China) containing the protease inhibitor
PMSE, according to the manufacturer’s instructions. The
concentrations were determined using the BCA Protein
Assay Kit (Pierce, Rockford, USA). Up to 40 g of pro-
tein per lane was used for performing sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
with 12% gels. SDS-PAGE was performed at 80 V for 30
min and 120 V for 80 min. The proteins were then
transferred to a polyvinylidene fluoride membrane for 40
min at 300 mA by using the Trans-Blot SD Cell and
Systems (Bio-Rad, Hercules, CA, USA). NYD-OP7 was
detected using the prepared polyclonal antibody (1:1000)
at 4 °C overnight and horseradish peroxidase—conju-
gated goat anti-rabbit secondary antibody (1:2000, Beyo-
time) for 2 h at 28 °C. The anti-tubulin monoclonal
antibody (1:1000; CW Biotech, Beijing, China) was used
as the internal control [24]. Chemiluminescence was de-
tected using BeyoECL Plus (Pierce), according to the
manufacturer’s instructions.

Microinjection

The dsRNA of NYD-OP7 (dsNYD-OP?7), siRNA of PLC
(siPLC), and negative control (NC) were designed and
synthesized by GenePharma (Shanghai, China; Add-
itional file 2: Table S2). NC is a sequence generated from
a nematode which showed no homology compared to
mosquitoes. Two controls were used: an equivalent vol-
ume of DEPC water or NC. The microinjection experi-
ment was performed using day 1 post-emergence female
mosquitoes. About 360 ng of dsNYD-OP7, 364 ng of
siPLC, or 350 ng of NC were injected into the side of
the protocoel of the female mosquitoes with a microin-
jector (Drummond’s Nanoject II, # 3-000-205A, Pennsyl-
vania, USA) attached to 3.5" needles (Drummond
Scientific Company, # 3-000-203-G/X). Then, the mos-
quitoes were maintained in the insectary at 28 °C and a
constant light/dark photoperiod (16/8 h) with 70-80%
relative humidity. Three days post-injection, gene silen-
cing efficiency on random selected mosquitoes was de-
termined using qPCR, and the remaining mosquitoes
were then selected for subsequent experiments.

CDC bottle bioassay

The resistance of the mosquitoes to insecticides was de-
tected using the CDC bottle bioassay. The diagnostic
dose used in the present study was determined using the
calibration assay (http://www.cdc.gov/parasites/educa-
tion_training/lab/bottlebioassay.html). In each bottle, 20
adult female mosquitoes were exposed to deltamethrin,
and a bottle coated with acetone was used as the con-
trol. The final concentration of deltamethrin was 7.5
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mg/ml. The numbers of dead and alive mosquitoes were
recorded at 15 min intervals for 2 h (15, 30, 45, 60, 75,
90, 105 and 120 min) or until all the mosquitoes died.
The mosquitoes were considered dead if they could not
fly or maintain an upright posture on the surface of the
bottle. The total percentage mortality against time was
calculated for all the replicates. The experiment was re-
peated 3 times.

PLC enzyme activity assay

PLC enzyme activity was analyzed in the dsNYD-OP?7,
siPLC, NC, and DEPC groups. Non-blood-fed female
adult mosquitoes were rinsed 3 times with ddH,O to
remove food particles and molted skin. PLC enzyme ac-
tivity of the mosquitoes was detected using the tissue
phospholipase C activity of continuous circulation colori-
metric assay kit (Genmed Scientifics Inc., Wilmington,
USA), according to the manufacturer’s protocol. The pro-
tein content in the supernatant was measured using the
Enhanced BCA Protein Assay Kit (Beyotime). Each group
was composed of 25 mosquitoes, and all the assays were
performed in duplicate.

Statistical analysis

The data were analyzed using Student’s t-test and
Chi-square test. A P-value < 0.05 was considered statisti-
cally significant. All results were presented as mean and
SEM values of 3 independent experiments.

Results

NYD-OP?7 is differentially expressed in a DR strain of Cx.
pipiens pallens

Expression of NYD-OP7 in the DS and DR strains of
Cx. pipiens pallens were analyzed using western blotting.
The level of NYD-OP7 expression in the DR strain was
2.2-fold higher than that in the DS strain (Fig. 1a, b).
This finding further strengthened the evidence linking
the overexpression of NYD-OP7 with deltamethrin
resistance.

Role of NYD-OP7 in deltamethrin resistance

To identify the effects of NYD-OP7 on deltamethrin re-
sistance, we injected dsNYD-OP7 into the DR strain.
qPCR showed that the knockdown efficiency of NYD-OP7
was 45% when compared with the NC group (Fig. 2a). On
the basis of the results of the CDC bottle bioassay, the
group injected with dsNYD-OP7 showed a higher morta-
lity rate compared to the NC group at 75, 90, 105 and 120
min, suggesting that knockdown of NYD-OP7 can
sensitize mosquitoes to deltamethrin (Fig. 2b).

To clarify how NYD-OP7 plays a role in deltamethrin
resistance, we tested changes in the expression and
enzyme activity of its downstream effector PLC. The ex-
pression and enzyme activity of PLC decreased by 52%
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Fig. 1 Identification of NYD-OP7 in the deltamethrin-susceptible (DS) and deltamethrin-resistant (DR) strains of Culex pipiens pallens. a Western
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and 65%, respectively, in the dsNYD-OP7 group when
compared to the NC group (Fig. 3a, b).

Since the GPCR signaling pathway can regulate P450
genes, which are strongly associated with the enhanced
metabolic detoxification of insecticides, we also investi-
gated the expression levels of a number of P450 genes.
The qPCR results revealed a significant decrease in the
expression levels of 5 P450 genes (CYP4G15, CYP9ALI,
CYP9J39, CYP9J40, and CYP9/43) in the dsNYD-OP7
group when compared with the control (Fig. 4). Thus,
our results indicate that the NYD-OP7/PLC regulatory
signaling pathway, which governs P450 gene expression,
may play a role in the regulation of resistance to delta-
methrin in mosquitoes.

Role of PLC in deltamethrin resistance

To confirm our hypothesis that the NYD-OP7/PLC regu-
latory signaling pathway is involved in deltamethrin re-
sistance, we performed the knockdown of PLC. The
qPCR results showed that the knockdown efficiency of

PLC was 59% when compared with the control group
(Fig. 5a). Moreover, the enzymatic activity of PLC in the
siPLC group decreased by 62% (Fig. 5b). The CDC bottle
bioassay showed the mortality rate of the siPLC group
increased significantly at 90, 105 and 120 min (Fig. 5c),
functionally confirming the involvement of PLC in delta-
methrin resistance. Further examination of P450 expres-
sion in the siPLC group revealed reduced expression of
CYP4G15, CYP9AL1, CYP9J39, and CYP9/43 (Fig. 6).
However, inhibition of PLC had no effect on the expres-
sion of CYP9J40. Collectively, these results suggest that
NYD-OP7 and its downstream effector PLC contribute
to deltamethrin resistance by regulating the expression
of P450s.

Discussion

Many diverse proteins with multiple functions are being
identified. Opsin, which belong to a class of multifunc-
tional proteins, has the roles of photoreceptor and the
phospholipid flippase in human beings [30]. Our
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previous studies showed that NYD-OP7, which belongs
to the GPCR family, may be involved in the development
of insecticide resistance in Cx. pipiens pallens [34].
However, the exact mechanism is still unclear. Given the
critical functions of the GPCR family in many essential
biological and physiological processes, GPCRs have already
been used as important targets for therapeutic interven-
tions and provide a novel means of medical treatment for
humans [38]. In insects, the GPCR signal transduction sys-
tem has been shown to affect behavior, reproduction,
osmoregulation, development and metabolism [39-41].

Moreover, recent studies have indicated that GPCRs could
mediate insecticide resistance and provide opportunities for
identifying new targets or vector control [32, 42].
Thus, a better understanding of the detailed role of
NYD-OP7 and its signaling pathway in insecticide re-
sistance would be helpful for the management and
the control of mosquito-borne diseases.

In invertebrates, NYD-OP7 is a member of the
Gq-coupled opsin subfamily, and an important step of
the Gq-GPCR-mediated phototransduction pathway is
activation of PLC [43]. In this study, knockdown of
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NYD-OP7 resulted in a simultaneous reduction in the
mRNA transcriptional levels and enzyme activity of PLC
in Cx. pipiens pallens. Furthermore, knockdown of
NYD-OP7 or PLC resulted in decreased levels of resist-
ance to deltamethrin in the mosquitoes. These findings
suggest the potential role of the NYD-OP7/PLC signaling
pathway in insecticide resistance in Cx. pipiens pallens.
P450s, which are phase I detoxification enzymes, are
involved in the catabolism and anabolism of a diverse
array of endogenous and xenobiotic compounds, such as
insecticides [44]. The GPCR-mediated signaling pathway
has been considered as a general regulatory factor for

the expression of P450s in mosquitoes [32]. Thus, we
hypothesized that the NYD-OP7/PLC signaling pathway
may play a role in insecticide resistance through the
regulation of the expression of P450 genes. To test our
hypothesis, we examined the expression of P450 genes
in dsNYD-OP7-injected mosquitoes and found that 5
P450 genes were downregulated after the knockdown of
NYD-OP7. Knockdown of PLC decreased the expression
of four P450 genes (one gene belongs to the CYP4
family and the other three genes belong to the CYP9
family). In insects, members of the CYP4 and CYP9 fam-
ilies have been associated with xenobiotic metabolism and
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play important roles in insecticide resistance [45-47].
Thus, our findings provide evidence that the NYD-OP7/
PLC signaling pathway is involved in the development of
resistance to deltamethrin in Cx. pipiens pallens by regu-
lating the expression of the resistance-related P450 genes.

To date, the regulatory mechanisms of P450s are un-
clear. The expression of the resistance-related P450s is
regulated by a variety of genetic and epigenetic factors.
Our results revealed the role of the NYD-OP7/PLC sig-
naling pathway in the regulation of P450 gene expres-
sion in mosquitoes. It is worth noting that CYP9J40 was
regulated only by NYD-OP7, and its expression was not
influenced by PLC. One explanation could be that the
GPCR-mediated signaling pathway and its regulation of
P450 expression is a complex network. PLC is not the
only downstream effector regulated by NYD-OP7. Other
downstream components may interact with NYD-OP7
to regulate other P450s.

In conclusion, our study demonstrates that the
NYD-OP7 and its downstream effector PLC signaling
pathway contribute to deltamethrin resistance by regu-
lating the expression of P450 genes in Cx. pipiens pal-
lens, which provides novel insights into the role of the
GPCR signaling pathway in insecticide resistance. Our
results also offer a reference for further studies on the
regulation of the P450 genes in mosquitoes and other in-
sect species.

Conclusions

In this study, we investigated the roles of NYD-OP7, which
showed higher expression in the laboratory-selected DR
strain of Cx. pipiens pallens. Depletion of NYD-OP7 by
RNAI not only increased the susceptibility of the mosqui-
toes to deltamethrin but also simultaneously repressed both
activity and expression of the downstream effector
molecule, PLC, and expression of several insecticide
resistance-related P450 genes. Knockdown of PLC also
sensitized the mosquitoes to deltamethrin and reduced the
expression of the P450 genes. These results show that
NYD-OP?7 and its downstream effector PLC play significant
roles in pyrethroid resistance.
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