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Abstract
The application of logistic regression (LR) and Cox Proportional Hazard (CoxPH) 
models are well- established for evaluating exposure– response (E– R) relationship 
in large molecule oncology drugs. However, applying machine learning (ML) 
models on evaluating E– R relationships has not been widely explored. We devel-
oped a workflow to train regularized LR/CoxPH and tree- based XGboost (XGB) 
models, and derive the odds ratios for best overall response and hazard ratios 
for overall survival, across exposure quantiles to evaluate the E– R relationship 
using clinical trial datasets. The E– R conclusions between LR/CoxPH and XGB 
models are overall consistent, and largely aligned with historical pharmacometric 
analyses findings. Overall, applying this interpretable ML workflow provides a 
promising alternative method to assess E– R relationships for impacting key dos-
ing decisions in drug development.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Currently, novel machine learning (ML) models focus on predictions but have 
not been widely applied to evaluate exposure– response (E– R) relationships yet.
WHAT QUESTION DID THIS STUDY ADDRESS?
We aim to apply an interpretable ML workflow for E– R analysis on real clinical 
trial datasets from large molecule oncology drugs.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This study demonstrated that our interpretable ML workflow provides a plau-
sible alternative method for odds ratio and hazard ratio calculations and E– R 
relationship evaluations. The ML approaches are robust for the analysis, in-
cluding all available covariates without rigorous covariate selection, and we 
recommend including the control arm when available to better inform the ML 
models.
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INTRODUCTION

Exposure– response (E– R) analysis is an indispensable part 
in clinical drug research and development regulatory de-
cision making over the last decades.1 According to the US 
Food and Drug Administration (FDA) issued Guidance 
for Industry on E– R Relationship,2 E– R analysis aims at 
examining the relationships between drug exposure vari-
ables, such as plasma concentration and drug efficacy/
safety. The main purpose of E– R analysis is to support and 
justify dose selection at each phase of new drug clinical 
research and development.3 Thus, the key question to be 
addressed by the E– R analysis is: does higher dose and 
consequently the higher pharmacokinetic (PK) exposure 
lead to higher efficacy and/or higher safety risk? However, 
E– R analysis is often based on the efficacy and safety data 
at a single dose level for large molecule oncology drugs 
(e.g., monoclonal antibodies [mAbs]), which can be con-
founded by some baseline covariates that impact both 
efficacy and PK exposure, leading to false- positive E– R 
relationship, when some of these confounders are left 
out from the traditional pharmacometric approaches.4,5 
In addition, the E– R relationship can be nonlinear given 
the potential saturation of pharmacological effects at high 
dose levels of mAbs. Although a dataset from a single- 
dose level may pose challenges in accurately recovering 
the E– R ground truth, it is worth exploring novel analysis 
approaches to overcome the methodological limitations 
of the traditional statistical approaches, such as logistic 
regression (LR) and Cox proportional hazard (CoxPH) 
models. These triggered the research ideas of applying 
novel machine learning (ML) approaches as an alternative 
method to address confounders by including a more com-
prehensive list of covariates and accounting for nonlinear 
relationship between covariates and hazard rate as well 
as the complex interactions among covariates. There were 
publications in this area using simulated data,6 and we are 
aiming for exploring the ML methods for E– R analysis in 
real clinical trial datasets here.

Multivariable LR, CoxPH models, and case- matching 
analysis are well- established as standard pharmacometric 
approaches for E– R analysis in oncology trials.7– 9 The LR 
models are typically used to estimate the binary/categor-
ical end point, such as the best objective response (BOR). 
The analysis with time- to- event end points, such as time 
to overall survival (OS), are done by CoxPH models. The 

traditional multivariable LR/CoxPH approach does not 
apply regularization and to avoid multicollinearity, only 
the most influential covariates are selected by forward 
addition and backward elimination. The linear and tree- 
based ML methods contain regularization terms that 
allow including many more covariates without the need 
of rigorous covariate selection and the issue of multicol-
linearity,10 and potentially reduce the risk of missing im-
portant confounders and better recover the E– R ground 
truth. Further, the traditional LR and CoxPH models for 
E– R analysis assume linear or log- linear relationship be-
tween exposure, other baseline covariates and the efficacy 
end point. The tree- based ML models, such as eXtreme 
Gradient Boosting method (XGB),11 can potentially be 
flexible to model linear, log- linear, or other nonlinear 
covariate- target relationships, and the complex interac-
tions. It was reported that the explainable ML approaches, 
such as XGB in combination with Shapley Additive 
Explanation (SHAP) values outperformed the traditional 
CoxPH regression predictions and provided insights on 
survival data.12

The key objectives for this paper are to apply interpre-
table ML workflow for E– R analysis based on the efficacy 
end points in real oncology clinical trials for large mol-
ecule drugs, which includes the binary end point (e.g., 
BOR) and time- to- event end point (e.g., OS), derive the 
covariate- adjusted odds ratios (ORs) and hazard ratios 
(HRs) from ML models to evaluate the E– R relationship. 
We compared the results among both linear and tree- based 
ML methods with regularization, and with the traditional 
pharmacometric findings from historical analysis.

METHODS

Data sources

Data from four randomized, open- label, phase III oncol-
ogy trials in patients with HER2- positive cancer were 
included to evaluate E– R relationship for large mol-
ecules by our ML approaches in the analysis: EMILIA,13 
TH3RESA,14 and MARIANNE15 trials for ado- 
trastuzumab emtansine (T- DM1) in patients with lo-
cally advanced or metastatic breast cancer, HELOISE16 
trial for Herceptin in gastric cancer (Tables S1– S10). For 
EMILIA and TH3RESA trials, the favorable risk– benefit 

HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The interpretable ML workflow with regularization provides a robust approach 
adding to our traditional pharmacometrics toolbox for E– R analysis and can be 
applied to impact key dose decisions in drug development.
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profile of T- DM1 led to the FDA approval, and histori-
cal analysis showed positive E– R relationships.7,8 The 
disease status is relatively similar among EMILIA and 
TH3RESA studies, and all patients in the T- DM1 arms 
received single- agent treatment at 3.6  mg/kg every- 3- 
week (Q3W) regimen. Thus, we combined EMILIA and 
TH3RESA (referred to as EandT) studies for ML analy-
sis. MARIANNE is a trial designed to evaluate the safety 
and efficacy of T- DM1 single- agent and T- DM1 + pertu-
zumab for the treatment of patients with HER2- positive, 
progressive, or recurrent locally advanced or metastatic 
breast cancer who had not received prior chemotherapy 
for their metastatic disease. All patients in the T- DM1 
arms received 3.6 mg/kg Q3W regimen. In the HELOISE 
trial for patients with HER2 positive advanced gastric 
or gastro- esophageal junction cancer,16 participants 
started with 8 mg/kg loading dose of Herceptin at first 
cycle followed by standard- of- care (6 mg/kg) or higher- 
dose (10 mg/kg) Q3W regimens, and the results showed 
a lack of clinically meaningful E– R relationship, as the 
higher- dose regimen does not increase OS.

The ML prediction target is the binary end point of 
BOR for the EandT study and the MARIANNE study, and 
time- to- event end point of OS for the EandT study and the 
HELOISE study: two classifications and two regressions 
on censor data tasks (Tables S1– S10). All available covari-
ates from these four trials are applied in our ML based 
E– R analyses (Tables S2– S4).

Primary machine learning workflow for  
E– R analysis

We applied both linear and tree- based ML models: regu-
larized LR with elastic net (L1 and L2) regularization,17 
CoxPH model with elastic net penalty (COX- NET),18 XGB 
(Objective = binary:logistic) and XGB (Objective = survi
val:cox),11,19 to assess the E– R relationship between the 
trough concentration (Ctrough or Cmin) of the therapeutic 
agent and BOR or OS.

The analyses were performed in four steps (Figure 1a) 
with technical details in Figure 1b. All analyses were per-
formed in Python 3.7 and R 4.1.0. Bayesian- based method 
is used for hyperparameter tuning20 for each method, by 
repeated five- fold cross validation (CV) for 100 times. The 
median value of each hyperparameter is used for the final 
model. The model performance on the 20% test dataset 
generated by resampling without replacement was eval-
uated by the area under receiver operating characteristic 
curve (ROC- AUC) and concordance index (C- index) for 
classification and survival models. Details of step 1 data 
preprocessing and step 2 ML model building and hyperpa-
rameter tuning are provided in the Appendix S1.

In step 3, we interpret the ML model by covariate im-
portance assessment, including the exposure covariates 
(e.g., Ctrough). With the final optimized hyperparameters, 
we refitted the whole data on each model. To rank- order, 
each covariate's importance in predicting outcome, co-
variates coefficient, or the model- agnostic SHAP analysis 
were applied on explaining LR/COX- NET model or XGB 
model, respectively. For LR and COX- NET models, the ab-
solute value of coefficients for each covariate was ranked 
for their importance. For XGB models, SHAP values mea-
sure the impact of covariates taking into account the inter-
action with other covariates and calculates the covariate 
importance by comparing what XGB model predicts with 
and without this covariate,21 and the covariate importance 
was determined by averaging the absolute SHAP values 
across all patients for each covariate.

In step 4, we conducted model evaluation of E– R rela-
tionship by ORs and HRs related to Ctrough. For the LR and 
XGB models with the binary BOR end point, the follow-
ing values were derived: unadjusted OR between groups 
A and B based on unadjusted odds (formula 1a for LR and 
1b for XGB), which is based on the model prediction in the 
absence of conditioning on other covariates22 that some of 
them may be the confounders of an E– R relationship; and 
adjusted OR (formula 2a for LR and 2b for XGB), which is 
estimated as the ratio of the means of adjusted odds be-
tween group A and group B, holding the effect of all other 
covariates constant except the effect of Ctrough. Similarly, 
the unadjusted and adjusted HR can be computed by for-
mulas 3 and 4, respectively. It was found that among var-
ious methods to aggregate individual probabilities, both 
geometric mean and arithmetic mean can be used,23,24 
and here we consistently used geometric mean for the ag-
gregation of odds or hazard rate for each group (i.e., each 
exposure quantile), for computing ORs and HRs.

The primary analyses of this study built the ML models 
using all patients, including the control arm (if available) 
and all available covariates. For evaluating the E– R rela-
tionship of T- DM1 in the MARIANNE study, two T- DM1 
containing arms were pooled. When the control arm is 
included (EandT and MARIANNE), the patients in the  
T- DM1 treated arms were divided to four quantiles based 
on Ctrough values (Q1, Q2, Q3, and Q4) and the OR or HR of 
each quantile to the control group were derived. In these 
cases, group A in the formulas refers to Q1, Q2, Q3, or Q4 
and group B refers to the control group. When the control 
arm is not present (HELOISE study) or not used (sensitiv-
ity analysis, see section below), group A refers to Q2, Q3, 
or Q4 and group B refers to the Q1 group of patients with 
the lowest exposures.

We applied bootstrap for calculating confidence inter-
vals (CIs) for ORs and HRs. Specifically, in each iteration 
of resampling, we train our ML model by resampling the 
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whole original dataset with replacement and apply the 
ML model to the whole original dataset to evaluate the OR 
and HR, and this is repeated for 1000 times (Figure 1b). 
Based on the 95% CIs, we examine whether the intervals 
contain the value of one, to quantify whether there is a 
meaningful difference between group A and group B.

Formula 1a: Unadjusted log odds and OR for LR model

 

Here, pi is the model predicted probability for each 
patient.

Formula 1b: Unadjusted log odds of each patient ex-
plained by SHAP values from the XGB model21 and OR 
for XGB model.

where �⃗x i = < x1i, … , xji, … , xMi >

Here, �⃗x i: covariate vector with length M for patient 
i; f refers the XGB model function to link �⃗x i with log 
odds of patient i; Φj

(
f , �⃗x i

)
: SHAP value of explanatory 

variable j for patient i. Here, the SHAP values21,25 ex-
plain the contribution of each covariate to the model 
prediction in the log odds domain. The unadjusted 
log odds for each patient i predicted by function  
f (XGB model) based on individual covariate vectors is 
decomposed by formula 1b using SHAP analysis,21,25 

(Unadjusted log odd)i= logit
(
pi
)
= log

(
pi

1−pi

)

(1a)OR = exp
(
meani∈GroupA(logit(pi))−meani∈GroupB(logit(pi))

)

(Unadjusted log odd)i= f
(
�⃗x i
)
=Φ0(f )+

M∑

j=1

Φj

(
f , �⃗x i

)

=Φ0(f )+Φ1

(
f , �⃗x i

)
+ … +Φj

(
f , �⃗x i

)
+ … +ΦM

(
f , �⃗x i

)

(1b)
OR = exp

(
meani∈GroupA(unadjusted log odds)i−meani∈GroupB(unadjusted log odds)i

)

F I G U R E  1  (a) Scheme of ML workflow. The color arrows indicate operations within each step. (b) Detailed workflow for ML model 
building and evaluation of E– R relationship. AUC, area under the curve; C- index, concordance index; E– R, exposure– response; LR, logistic 
regression; ML, machine learning; ROC, receiver operating characteristic; SHAP, Shapley Additive Explanation; XGB, XGboost
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which is the sum of all covariate attributions plus the 
expected value (e.g., model prediction without any 
covariates).

Formula 2a: Adjusted ORs from LR model

Here, C: Ctrough; QA, QB: group A and group B based 
on patient Ctrough quantiles; PDF: probability density 
function of Ctrough in each group. The formula assumes 
all other covariates (Xj) are constant. It is written based 
on the g- formula principle from Robins et al.26,27 For 
an LR model, the adjusted OR is estimated by the ratio 
of the geometric means of adjusted odds of group A to 
group B22,23 (formula 2a), using the covariate coeffi-
cient related to Ctrough estimated from the model (βC). 
Here, the OR of group A to group B is adjusted (i.e., 
conditioned) on the effect of all other covariates except 
Ctrough.

Formula 2b: Adjusted OR of group A to group B based 
on Ctrough, using XGB model, conditioned on other model 
covariates

Here, �C
(
f , xi

)
 is the SHAP value of explanatory vari-

able Ctrough for patient i, which can be viewed as the 
adjusted log odds of Ctrough, conditioned on other covari-
ates. Thus, the adjusted ORs associated can be computed 
by the ratio of geometric mean of exp(�C

(
f , xi

)
) from  

group A and group B (formula 2b), applying a similar 
concept as deriving the adjusted ORs from LR models 
(formula 2a).

Formula 3: Unadjusted HR of group A to group B based 
on model prediction from all covariates for COX- NET or 
XGB model.

Formula 3a: Unadjusted HR for COX- NET

Formula 3b: Unadjusted HR for XGB

Here, the COX- NET model and XGB model with ob-
jective  =  “survival:cox” predict either the log of the HR 
of each patient to the baseline hazard in a proportional 
hazard function18 or the HR,20 respectively, both as pi in 
the formula.

Formula 4: Adjusted HR of group A to group B based 
on adjusted prediction from Ctrough, conditioned on other 
covariates

Formula 4a: Adjusted HR for COX- NET model

Here, C: Ctrough; QA, QB: group A and group B based on pa-
tient Ctrough quantiles; PDF: probability density function of 
Ctrough in each group. The formula assumes all other covari-
ates (Xj) are constant. It is similarly written based on the g- 
formula principle from Robins et al.26,27 The adjusted HR is 
derived using the ratio of geometric mean of adjusted haz-
ard rates for each group, based on the model estimated coef-
ficient of Ctrough (βC).

Formula 4b: Adjusted HR for XGB model

Here, �C
(
f , xi

)
 is the SHAP value of explanatory vari-

able Ctrough for patient i, which can be viewed as the ad-
justed log hazard rate of Ctrough, conditioned on other 
covariates. For the XGB model, the adjusted HR of Ctrough 
is derived based on the research work by Sundrani et al.,28 
except that geometric mean is used instead of arithme-
tic mean when computing the aggregated hazard rate of 
group A or group B, for a consistency with other formulas 
in this research.

Sensitivity analysis to assess impact of  
methodology variations on E– R 
relationship estimation

There are multiple nuances in the methodology details 
when implementing the ML workflow. To estimate the 
sensitivity of our ML approach on evaluating the E– R re-
lationship, we assessed the impacts of the following two 
methodology variations on evaluating the CIs of ORs and 
HRs for E– R relationship, using data from T- DM1 trials: 
(1) select only the clinically important covariates matched 
those used in historical analysis29 (covariates in bold font 
in Table S2) versus using all covariates (primary analysis); 
and (2) excluding the control arm versus including in the 

(2a)

ORLR
(
QA
QB

)

=exp∫
(
�0+Σ

(
� j∙Xj

)
+�C∙C

)
∙PDF(C|C∈QA)dC−∫

(
�0+Σ

(
�j∙Xj

)
+�C∙C

)
∙PDF(C|C∈QB)dC

=exp�C∙(mean(C|C∈QA)−mean(C|C∈QB))

(2b)
ORXGB = exp

(
meani∈GroupA(�C(f ,xi))−meani∈GroupB(�C(f ,xi))

)

(3a)HRCOX−NET=exp
(
meani∈GroupA(pi)−meani∈GroupB(pi)

)

(3b)HRXGB=exp
(
meani∈GroupA(log(pi))−meani∈GroupB(log(pi))

)

(4a)
HRCOX−NET

(
QA
QB

)
=exp∫

(
log(h0(t))+Σ

(
� j⋅Xj

)
+�C⋅C

)
⋅PDF(C|C∈QA)dC−∫

(
log(h0(t))+Σ

(
� j⋅Xj

)
+�C⋅C

)
⋅PDF(C|C∈QB)dC

=exp�C⋅(mean(C|C∈QA)−mean(C|C∈QB))

(4b)
HRXGB = exp

(
meani∈GroupA(�C(f ,xi))−meani∈GroupB(�C(f ,xi))

)
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model building. For a consistent comparison of the E– R re-
lationship in the presence and absence of the control arm 
in the sensitivity analysis, we derived ORs and HRs by com-
paring high exposure quantiles (Q2, Q3, and Q4) to the low-
est exposure quantile (Q1) as Q2/Q1, Q3/Q1, and Q4/Q1.

RESULTS

Final datasets for primary analysis and 
sensitivity analysis

For E– R analysis with BOR end point, there are 1286 pa-
tients from the EandT dataset, with 722 patients in the 
control arm and 564 patients in T- DM1 treatment arm, 
and 35 covariates (Table S2) are included in primary anal-
ysis; for the MARIANNE dataset, there are 610 patients 
with 46 covariates (Table S3). For the dataset with OS end 
points, in the EandT dataset, there are 1358 patients with 
35 covariates; for the HELOISE dataset, there are 224 pa-
tients and 17 covariates (Table  S4). The statistics of ML 
prediction target variables are summarized in Table 1.

Final ML models and performance

Table  2 listed the median values of each hyperparam-
eter from four ML models tuning with 100 times repeated 
five- fold CV for all analyses in this study. Within all of the 
hyperparameters, l1_ratio, alpha_min_ratio, reg_alpha, 
reg_lambda determine the L1 and L2 regularization pen-
alty terms.18,19 Figure 2 shows model performance on test 
datasets with mean and SD of ROC- AUC or C- index for 
both classification and regression models, from 1000 data-
sets with train- test split datasets. For all four datasets, the 
performance of LR/COX- NET and XGB are comparable as 

assessed by ROC- AUC or C- index. Values of mean ROC- 
AUC of 0.61 to 0.67 and mean C- index of 0.66 to 0.72 are ob-
tained (Table S5), suggesting moderate model performances.

Covariates importance assessment

Figure  3 shows the covariates' importance explained 
by LR and XGB models in predicting BOR and OS end 
points, with the most important covariate on the top. In 
the EandT trials, we found that the exposure covariate 
(T- DM1 concentration at the end of cycle 1 as predicted 
by the population PK model of T- DM1, Ctrough/PCMIN)30 
exhibited high impact in both the BOR end point (most 
important for both LR and XGB models) and the OS 
end point (second important in COX- NET and fourth 
important in XGB; Figure 3a,c). On the other hand, for 
the T- DM1 trial in the previous patients with untreated 
metastatic breast cancer (MARIANNE study), Ctrough did 
not appear in the top 10 important covariates for both LR 
and XGB methods (Figure 3b). For the HELOISE study, 
the clearance (CL) of large molecule drugs is generally 
considered to be highly correlated with the patient's 
health status4,31– 33 and ranked number one for both 
methods. Cmin,ss, which is the steady- state trastuzumab 
Cmin after receiving 10 or 6 mg/kg Q3W dose starting 
cycle 2 and thus accounted for the dose difference of the 
two arms, ranked number four in COX- NET and number 
three in XGB, suggesting a potential presence of weak 
E– R relationship which may not be clinically mean-
ingful as reflected by the dose response relationship.16  
The Herceptin trough concentrations at the end of cycle 
1 (Cmin) after giving the same cycle 1 loading dose of 
8 mg/kg for all patients is less important than Cmin,ss, 
which does not appear as the top 10 important covariates 
in COX- NET and ranks number four in XGB.

T A B L E  1  Statistics of the machine learning prediction target variables of final datasets

BOR end points

Control arm patient number Treatment arm patient number
Total 
numberResponder Nonresponder Responder Nonresponder

EandT 204 (28.25%) 518 (71.75%) 224 (39.72%) 340 (60.28%) 1286

MARIANNE 194 (67.83%) 92 (32.17%) 205 (63.27%) 119 (36.73%) 610

OS end points

Control arm patient number Treatment arm patient number

Censored With event Censored With event

EandT 375 (55.72%) 298 (44.28%) 393 (57.37%) 292 (42.63%) 1358

Arm A 6 mg/kg Arm B 10 mg/kg

Censored With event Censored With event

HELOISE 63 (55.26%) 51 (44.74%) 51 (46.36%) 59 (53.64%) 224

Abbreviations: BOR, best objective response; EandT, the EMILIA and TH3RESA studies; OS, overall survival.
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OR and HR for evaluating E– R relationship

Figure 4 presents the median value and 95% CIs of OR of 
EandT (Figure 4a) and MARIANNE (Figure 4b) with BOR 
end points and HR of EandT (Figure 4c) and HELOISE 
(Figure 4d) with OS end point with 1000 bootstrapping, 
with numerical values in Tables S6– S9.

For OR and HR in EandT trials (Figure 4a,c), the ad-
justed OR and HR values across Q1, Q2, Q3, and Q4 com-
pared to the control group are overall shallower than the 
unadjusted values, suggesting that both linear and non-
linear ML methods offered correction of effects from 
confounding covariates. Further, based on the adjusted 
values, a positive E– R relationship is observed that higher 
drug exposures are associated with better efficacy in both 
BOR and OS. The patients in the lowest exposure quan-
tile (Q1 group) showed equivalent or better efficacy com-
pared to the control group as compared to the value of 
one, suggesting a non- detrimental effect for them. These 

key conclusions from ML models are overall consistent 
with the conclusion of statistically significant positive 
E– R relationship from the historical pharmacometrics 
analysis using corrected HRs for Cox model with selected 
covariates.7,8

Based on the OR for MARIANNE trial (Figure 4b), the 
unadjusted ORs from both LR and XGB for Q1 versus con-
trol group is around 0.4– 0.5 in median values, suggesting a 
trend of E– R, which is likely false positive due to the con-
founding effects from other covariates. The adjusted OR 
from both LR and XGB suggested a flat E– R relationship 
across exposure quantiles with the 95% CIs of OR includ-
ing the value of one.

The HELOISE study is the trial in which two doses 
were tested and there are no clinical meaningful OS dif-
ferences from the high- dose group compared to the low- 
dose group.16 We evaluated unadjusted and adjusted HRs 
of Cmin, Cmin,ss, and CL for the HELOISE trial. For the 
COX- NET and XGB models (Figure 4d), the median value 

T A B L E  2  Median hyperparameters 
from model tuning with 100 times of 
repeated train- test split for each of the 
eight models

BOR end points

Logistic regression 
classifier 
(loss = ROC- AUC)

XGB classifier 
(loss = ROC- AUC, 
eval_metric = “auc”)

EandT with BOR end 
points

“l1_ratio”: 0.507,
“max_iter”: 164.64,
“penalty”: “elasticnet,”
“solver”: “saga”

“eta”: 0.004,
“max_depth”: 3,
“min_child_weight”: 0.083,
“reg_alpha”: 0.608,
“reg_lambda”: 0.178,
“subsample”: 0.857,

MARIANNE with BOR 
endpoints

“l1_ratio”: 0.44,
“max_iter”: 186.223,
“penalty”: “elasticnet,”
“solver”: “saga”

“eta”: 0.008,
“max_depth”: 6,
“min_child_weight”: 0.059,
“reg_alpha”: 0.46,
“reg_lambda”: 0.24,
“subsample”: 0.883

OS Endpoints
COX- NET regression 
model (loss = C- index)

XGB regression model 
(loss = C- index, eval_
metric = “root mean 
square error”)

EandT with OS 
endpoints

“alpha_min_ratio”: 0.021,
“l1_ratio”: 0.74,
“alphas”: 0.001

“eta”: 0.004,
“max_depth”: 4,
“min_child_weight”: 0.307,
“reg_alpha”: 0.728,
“reg_lambda”: 0.623,
“subsample”: 0.839,
“objective”: “survival:cox”

HELOISE with OS 
endpoints

“alpha_min_ratio”: 0.035,
“l1_ratio”: 0.727,
“alphas”: 0.004

“eta”: 0.015,
“max_depth”: 4,
“min_child_weight”: 0.314,
“reg_alpha”: 0.045,
“reg_lambda”: 0.084,
“subsample”: 0.841,
“objective”: “survival:cox”

Abbreviations: AUC, area under the curve; BOR, best objective response; EandT, the EMILIA and 
TH3RESA studies; ROC, receiver operating characteristic; XGB, XG boost.
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and CIs of unadjusted HRs for Q2/Q1, Q3/Q1, and Q4/Q1 
are all below one, most likely due to the effects from the 
confounded covariates. The adjusted HRs for cycle 1 Cmin 
showed no impact on OS. The median values of adjusted 
HRs for Cmin,ss are less than one with 95% CIs containing 
one, suggesting a nonclinical meaningful E– R relation-
ship. Patients with higher CL (Q1) showed higher HR, 
suggesting a higher risk for sicker patients.

In summary, the OR and HR results are consistent 
with the insights from the covariate importance assess-
ment results. Across these analyses, the adjusted ORs or 
HRs showed a shallower E– R relationship compared with 
the unadjusted ones, suggesting that the ML methods can 
adjust for the confounding effects from other impacting 
covariates. The overall conclusions of either positive or 
flat E– R relationships are consistent between the linear 

and tree- based ML models, and consistent with historical 
analysis (when available).

Sensitivity analysis to assess impact of 
methodology variations on E– R relationship 
estimation using T- DM1 trials

First, in the sensitivity analysis when only a subset of 
important covariates based on disease knowledge and 
historical analysis are included for EandT trial data, the 
conclusions of positive E– R relationship based on val-
ues of ORs (Figure 5a) and HRs (Figure 5c) is consistent 
with the primary analysis with all covariates included, 
for both linear and nonlinear models. Similarly, for the 
MARIANNE study (Figure 5b), a flat E– R relationship is 
identified for both LR and XGB models given all of the 
95% CI contains one, with consistent conclusions as the 
primary analysis. These results suggested that the regular-
ized ML approaches in the primary analysis with all avail-
able covariates included has the advantage of skipping the 
step of covariate selection in the traditional analysis with-
out a large impact on the conclusions of E– R relationship.

Second, we tested the impact on evaluating the E– R 
relationship with or without the control arm included. 
In the primary analysis, when the data contain a control 
arm, it is included in the model development. Here, the 
model was built with only the T- DM1 treatment arm of 
EandT or the MARIANNE study. We found that the key 
conclusions of E– R relationship based on ORs and HRs 
are largely consistent as the primary analysis, whereas the 
CIs appear larger in most cases based on the models built 
without the control arm (Figure 5). This indicates that by 
including the control group in the model building, there 
are more patients to inform the relationship of baseline 
covariates with the prediction target, which resulted in 
improved robustness of the ML model.

In summary, the results of the sensitivity analysis sug-
gest that including the control arm when available is pre-
ferred, allowing more data to inform the ML models. In 
addition, the ML model evaluations of E– R conclusions 
do not strongly rely on a strict covariate selection process, 
which would be a benefit from the regularization that is 
not present in conventional LR/CoxPH methods. Overall, 
our primary ML approaches leveraging all available co-
variates and control arm data are robust approaches.

DISCUSSION

In this research work, we explored ML methods for 
E– R analysis and compared the ML results with his-
torical E– R analysis results. In historical analysis by 

F I G U R E  2  ROC- AUC and C- index (mean and SD) of test 
datasets from 1000 random train- test split for both classification 
and regression models. AUC, area under the curve; C- index, 
concordance index; EandT, the EMILIA and TH3RESA studies; LR, 
logistic regression; ROC, receiver operating characteristic; XGB, 
XGboost
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case- matching approach, which is one of the causal in-
ference methods used in historical E– R analysis, to ad-
just for the potential confounding from other baseline 
covariates,7,8 the Q1/control HR in the EMILIA study 
is 0.71 (95% CI: 0.44– 1.14),7 and is 0.96 (95% CI: 0.63– 
1.47) in the TH3RESA study,8 for OS end point, suggest-
ing that the Q1 group is trending beneficial and is not 
worse than control given 95% CI of HR containing one. 

In the current analysis, the EandT study were pooled 
and the HR of Q1/control is 1.01 (95% CI: 0.955– 1.078) 
and 0.852 (95% CI: 0.771– 0.942) by COX- NET and XGB, 
respectively (Table S8), consistently suggesting that the 
Q1 group is not worse than the control group. It ap-
pears the 95% CI from ML models are smaller than the 
case- matching methods,7,8 and more future analysis in 
other clinical trials may demonstrate whether this trend 

F I G U R E  3  Top 10 important covariates for each analysis (see Tables S1– S3 for covariate descriptions). X- axes for LR or COX- NET: 
absolute value of coefficients for each covariate. X- axes for XGB: the average of absolute SHAP values across all patients for each covariate. 
ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; BWT, body weight; CL, clearance; CRCL, 
creatinine clearance; ECOG, Eastern Cooperative Oncology Group; RBC, red blood cells; SHAP, Shapley Additive Explanation; WBC, white 
blood cells; XGB, XGboost
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is consistent. Overall, the E– R relationship evaluated 
by ML methods are largely consistent with historical 
findings for the EMILIA7 and TH3RESA studies.8 For 
the MARIANNE study, historical analysis by LR sug-
gested a statistically significant coefficient of log Ctrough 
on BOR (Genentech data in file). The ML analysis here 
suggested a flat E– R relationship for BOR. Separately, 
it was reported that the progression free survival HR 
for Q1/control is trending higher than the other higher 
exposure quantiles with overlapping CIs, by Cox ad-
justed, case matching, or double adjusted methods.34 
We believe in real- world applications there will be cases 

where the E– R conclusions from pharmacometrics and 
ML approaches are consistent, or cases that are incon-
sistent from statistical significance point- of- view (i.e., 
one is significant but not another), and broader appli-
cation of the ML methods to additional large- molecule 
oncology drug clinical trials will gain more experiences 
in the clinical relevance of these analyses.

Similar to the traditional pharmacometric approaches 
for E– R analysis, static drug exposure parameters (e.g., 
PCmin) rather than the longitudinal PK data were used in 
the current ML analysis, and the E– R relationship iden-
tified may represent association/correlation or causation. 

F I G U R E  4  ORs of EandT and Marianne and HRs of EandT (a– c), Q1/Ctrl, Q2/Ctrl, Q3/Ctrl, and Q4/Ctrl represent the ratio of 
different quantiles versus the control group. HRs of HELOISE from XGB model (d), among the small three images, the first two images are 
HRs of Cmin and Cmin,ss, Q2/Q1, Q3/Q1, and Q4/Q1 represent the ratio of higher quantiles Q2, Q3, and Q4 versus the lowest quantile Q1, 
respectively. The last image shows the HRs for CL, Q2/Q1, Q3/Q1, and Q4/Q1 represent the ratio of lower quantiles Q2, Q3, and Q4 versus 
the highest quantile Q1. (a) EandT BOR end point; (b) MARIANNE BOR end point; (c) EandT OS end point; (d) HELOISE OS end point. 
BOR, best objective response; CL, clearance; Cmin, minimum concentration; Cmin,ss, minimum clearance at stead- state; EandT, the EMILIA 
and TH3RESA studies; HR, hazard ratio; LR, logistic regression; OR, odds ratio; XGB, XGboost
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The ML analysis conducted here is based on the causal 
assumptions of E– R relationship, as illustrated by the con-
ceptual causal diagram for the confounded E– R relation-
ship shown in the literature for large- molecule oncology 
drugs.35 Under this causal assumption, and the key as-
sumption that all the baseline confounders affecting both 
PK and efficacy are included in the ML model, the effect 
of drug exposure (PCmin) on efficacy identified by the ML 
model and SHAP analysis can be causal instead of merely 
association/correlation. However, it is often unknown 
whether all confounders are available in the dataset to be 
included and fully adjusted by the ML model, and missing 
key confounders may bias the E– R relationship estimation 
as shown in our recent simulation study.35 A future area of 
study is to utilize longitudinal PK data in ML models for 

E– R analysis, or apply other causal- inference ML models, 
to further assess the causal conclusions.

Linear or log- linear models with rigorous covariate 
selection but without regularization are typically applied 
in the traditional E– R analysis with assumption of lin-
ear/log- linear relationship between covariates (includ-
ing baseline and exposure covariates) and response (the 
efficacy end points). However, the ground truth of the 
E– R relationship could be nonlinear or linear, depending 
on the range of exposures studied. The basic pharmaco-
logical principle is that a Hill model is commonly used 
to describe the saturation of pharmacological effects at 
high exposures. Tree- based models, such as XGB, would 
offer the flexibility of modeling linear and nonlinear re-
lationships. This motivated us to evaluate both linear and 

F I G U R E  5  Median and 95% CI 
for ORs and HRs for Q2, Q3, Q4 to 
Q1 from 1000 bootstrap analyses. For 
x- axes, LR_all and XGB_all: primary 
analysis approach; LR_impCol and 
XGB_impCol: analysis with important 
covariates; LR_noControl and XGB_
noControl: analysis without control arm. 
(a) Sensitivity analysis of EandT dataset 
with BOR end points; (b) sensitivity 
analysis of MARIANNE dataset with 
BOR end points; (c) sensitivity analysis of 
EandT dataset with OS end points. BOR, 
best objective response; CI, confidence 
interval; EandT, the EMILIA and 
TH3RESA studies; HR, hazard ratio;  
LR, logistic regression; OR, odds ratio;  
OS, overall survival; XGB, XGboost
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nonlinear (tree- based) ML models in each analysis. The 
ROC- AUC and C- index values are largely consistent, sug-
gesting a similar model predictive performance for linear 
and nonlinear models across analyses here. It was previ-
ously reported that tree- based ML models outperform the 
linear Cox models as assessed by C- index in high dimen-
sional data, and datasets with complex nonlinear relation-
ship.5 We foresee that non- linear tree- based methods and 
neural networks would outperform linear ML models and 
pharmacometrics models when analyzing datasets with 
high dimensional input covariates, such as multi- layer 
“omics” data (i.e., gene expression, proteomics, metabolo-
mics, and imaging data), to more accurately evaluate E– R 
relationship. However, in this report, the datasets used are 
considered with relatively low dimension for the input co-
variates, and the performance differences between linear 
and tree- based methods are not large. Whether there is a 
low limit of sample size to generate a robust E– R relation-
ship evaluation needs further assessment. The HELOISE 
study has the lowest number of patients (224 patients) 
among three analyses and XGB methods appear to have 
smaller differences than COX- NET between the unad-
justed and adjusted HRs.

In the ML field, it is important to ensure the model 
performs similarly well on both training and validation/
test data, known as good generalization or overfitting re-
duction. In this study, we aim to infer the E– R relation-
ship from the entire dataset (instead of test data only) and 
also applied various techniques to ensure generalization 
for the models built from our ML workflow: CV for hy-
perparameter optimization36,37 and regularization.38 First, 
we selected the fine- tuned hyperparameters by using the 
median value from 100 times of repeated five- fold CV for 
the entire original dataset. This technique makes sure 
our selected hyperparameter performs stably in differ-
ent bootstrap re- sampled datasets for model training and 
inferring the CI of ORs and HRs. CV is a common tech-
nique for overfitting reduction. Considering the relatively 
small data size and sometimes the imbalanced target in 
most E– R datasets from clinical trials, we chose to apply 
CV on the entire dataset. The methods of nested CV or 
train/test dataset split may be better in preventing data 
leaking, but can cause a small sample size and/or the mi-
nority label becoming even smaller after the inner and 
outer split of nested CV or the train/test split, for many 
clinical trial datasets. Second, regularization techniques 
are also used to increase generalization. Compared with 
the traditional E– R analysis method with no regulariza-
tion and hence requiring forward addition and backward 
elimination to select the key covariates, we used both 
L1 and L2 regularization in all ML models to reduce the 
model overfitting and removed the need of the covariate 
selection process. It is well known that L1 regularization 

can lead to zero coefficient and thus can perform feature 
selection implicitly, whereas L2 regularization does not 
perform feature selection as coefficients are only reduced 
to values near zero instead of zero.38 We chose elastic net 
regularization (both L1 and L2 regularization) instead of 
L1 or L2 regularization alone for the following reason. 
Elastic net uses a weighted linear combination of the L1 
and L2 penalties in the loss function. As reported, it often 
outperforms the L1 method, while enjoying a similar spar-
sity of representation.39 In addition, if the data contains 
a group of covariates that are highly correlated, instead 
of picking one covariate from a pair of correlated covari-
ates randomly in ML models with L1 regularization only, 
elastic net inherently encourages a grouping effect, where 
strongly correlated predictors tend to be in or out of the 
model together.39 We consider that the elastic net provides 
a robust regularization approach for the E– R analysis of 
clinical trial data which often has limited sample size, 
so that the model can include the effect of as many co-
variates as possible. This could hypothetically reduce the 
risk of inferring a false positive E– R relationship due to 
missing important confounders. We acknowledge that in 
the real- world analysis, there are nuances in ML methods 
and some other ML workflow might be more rigorous in 
the aspect of preventing data leaking during hyperparam-
eter tuning, including nested CV and train/test split with 
hyperparameters tuned by CV in the training data. The 
impact of these variations on the quantitative evaluation 
of E– R relationships and subsequent decision making in 
drug development remains to be studied.

This analysis suggested that both linear methods and 
tree- based nonlinear approaches combining with SHAP 
can be good approaches for E– R analysis. One question 
to discuss is what are the pros and cons for ML methods, 
and in which scenarios ML methods would be advanta-
geous. One major advantage of linear ML methods, such 
as LR and COX- NET, is the ease of covariate importance 
interpretation based on the absolute values of coefficients. 
These methods with regularization can also avoid the 
issue of multicollinearity. However, when the decision 
boundary is nonlinear, or there are complex interactions 
among covariates, tree- based approaches such as XGB can 
offer advantages. Furthermore, the SHAP approach works 
efficiently with the XGB model and allows assessment of 
covariate importance, making the XGB model no longer a 
black box but explainable in generating evaluations. The 
ORs and HRs, which are essential for quantifying E– R re-
lationships, can be derived from SHAP values. In addition, 
unlike linear models, the XGB model is able to handle un-
normalized and missing values internally in the algorithm 
thus not requiring the modeler to normalize and impute 
the input covariates, and include certain covariates with a 
relatively high percentage of missing data. Regarding the 
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results of covariate importance, we observed discrepancy 
in the exact rank- order across different ML models. This 
may be due to the inductive bias from various models. 
There are different sets of explicit or implicit assumptions 
made by each learning algorithm (linear or tree- based) in 
order to perform induction, that is, to generalize a finite 
set of observation (training data) into a general model of 
the domain. Without this bias, induction would not be 
possible, because the observations can normally be gen-
eralized in many ways.40 Thus, it is not surprising that the 
rank- order of covariate importance is different. However, 
the key findings related to the relative importance of 
PCMIN are largely similar across linear and tree- based 
ML methods (Figure 3), and covariate- adjusted ORs and 
HRs related to PCmin lead to the largely consistent E– R 
conclusions (Figure 4).

In summary, our ML methodology provides an alter-
native toolbox for the traditional pharmacometrics ap-
proaches to assess E– R relationships for large molecule 
oncology drugs. The combination of predictive ML mod-
els like XGB with interpretable tools such as SHAP is pow-
erful to identify the most informative covariates impacting 
the prediction outcome. Compared with the traditional 
pharmacometrics approaches, our ML approaches showed 
the robust ability to include a large and comprehensive 
list of covariates and their complex interactions without 
rigorous step- by- step covariates selection, which may 
potentially reduce the risk of obtaining a false- positive 
E– R relationship due to missing confounders in analysis. 
The XGB models can handle missing covariates without 
manual data imputation, and can build the model with-
out assuming a certain explicit functional form between 
a covariate and the prediction target and accounting for 
the complex interactions among covariates, thus being 
more flexible compared to the linear models. We consider 
that the workflow proposed here can be broadly applied to 
middle to large size data, to address the key E– R questions 
in various stages of drug development. In the real- world 
application, the best model(s) to use is determined by how 
the dataset properties (e.g., the underlying relationship 
between covariates and the prediction target) are aligned 
with the underlying assumptions of the linear or nonlin-
ear models, and should be evaluated case- by- case.
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