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ABSTRACT

The CUG-BP and ETR-3 like factors (CELF) are
a family of six highly conserved RNA-binding
proteins that preferentially bind to UG-rich
sequences. One of the key functions of these
proteins is to mediate alternative splicing in a
number of tissues, including brain, heart and
muscle. To fully understand the function of CELF
proteins, it is important to identify downstream
targets of CELF proteins. In this communication,
we report that neurofibromatosis type | (NF1)
exon 23a is a novel target of CELF protein-
mediated splicing regulation in neuron-like cells.
NF1 regulates Ras signaling, and the isoform that
excludes exon 23a shows 10 times greater ability
to down-regulate Ras signaling than the isoform
that includes exon 23a. Five of the six CELF
proteins strongly suppress the inclusion of NF1
exon 23a. Over-expression or siRNA knockdown of
these proteins in cell transfection experiments
altered the levels of NF1 exon 23a inclusion.
In vitro binding and splicing analyses demonstrate
that CELF proteins block splicing through interfer-
ing with binding of U2AF®°. These studies, combined
with our previous investigations demonstrating a
role for Hu proteins and TIA-1/TIAR in controlling
NF1 exon 23a inclusion, highlight the complex
nature of regulation of this important alternative
splicing event.

INTRODUCTION

It is now well established that alternative splicing is an
important means of gene regulation. This process allows
a diverse host of mRINA messages to be generated from

a single gene, which is essential given that there are a
limited number of genes from which a myriad of function-
ally distinct protein products must be made. The most
recent estimates, which have been obtained using new
technologies such as deep sequencing, suggest that as
many as 94% of all human genes undergo alternative
splicing (1,2). Alternative splicing has been demonstrated
to be important in the establishment of tissue specificity as
well as in development. This phenomenon is especially
robust and diverse in the nervous system, where it is
responsible for the modulation of functions such as
axon guidance, membrane physiology and synapse forma-
tion (3-5).

Alternative splicing is regulated by both cis-acting
elements and trams-acting factors. cis-Acting eclements
are located within flanking introns or within alternative
exons themselves, and may act as enhancers or silencers
(6,7). Several trans-acting splicing regulators that direct
neuron-specific splicing have been identified, including
Nova-1/2, Hu proteins, ETR-3, nPTB and Fox-1/2
(8-16). There are a host of other splicing regulators that
include SR proteins, hnRNPs, PTB and TIA-1/TIAR
which regulate splicing in other tissues (17). With the
extensive nature of alternative splicing in the nervous
system, it is expected that many more regulatory
elements and proteins are involved. Recent studies have
shown that there are conserved sequences, which are
enriched in the intronic regions that surround alternatively
spliced exons (1,18). One of these studies looked at greater
than 24000 alternative splicing events in human tissues
and cell lines, and uncovered over 100 enriched 4-7
nucleotide sequences or “‘words,” many of which are
known as binding sites for key splicing regulators such
as the CUG-BP and ETR-3 like factors (CELF), Fox 1
and Fox 2, PTB, and muscleblind-like proteins (18).
Interestingly, this same study found a large number of
enriched sequences for which binding partners have not
been identified. Thus, it is clear that there is still a great
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deal to be learned about frams-acting factors that can
regulate alternative splicing.

The CUG-binding protein (CUG-BP) and embryonic
lethal abnormal vision type RNA-binding protein-3
(ETR-3) like factors (CELF) are a family of highly
conserved RNA-binding proteins which consist of six
members. CELF proteins are well-characterized regulators
of alternative splicing. In vitro and transfection studies
using mutated mini-gene reporters have demonstrated
that the CELF proteins bind to UG-rich sequences in
the introns flanking alternative exons of their target pre-
mRNAs (19-23). The structure of these proteins is
conserved with three RNA recognition domains, two of
which are separated by a divergent hinge domain. The
CELF protein family is subdivided, based on sequence
similarities, into two subfamilies. CUG-BP1 and ETR-3
make up one of the subfamilies, and the second subfamily
is comprised of CELF members 3-6. The founding
member of the CELF family, CUG-BP1, was originally
identified in a screen for proteins that could bind to a
CUGe-repeat probe in an in vitro gel shift assay (24,25).
The interest in proteins that could bind to this RNA motif
was born out of the knowledge that a CUG trinucleotide
expansion is present in the 3’ untranslated region of the
DMPK gene of myotonic dystrophy (DM) patients. The
second well-characterized CELF protein, ETR-3, was
found in a screen for apoptotic factors in the mouse
brain and in a screen for factors involved in the develop-
ment of the embryonic heart (26,27). The members of the
second subfamily of CELF proteins were identified based
on their sequence homology to CUG-BP1 and ETR-3.
CUG-BP1 and ETR-3 are the most comprehensively
studied CELF proteins and have widespread distribution
with enrichment in the brain, heart and muscle (28-30).
CELF3, CELF4 and CELFS5 are brain-specific proteins,
and CELF6 is enriched in the brain and testes (29,30).

CELF proteins have a myriad of functions in the cell,
the best-characterized of which are in the regulation of
the alternative splicing of a number of target genes,
including cardiac troponin T (cTNT) and the insulin
receptor (19,22,23,30-34). These proteins have been
demonstrated in both tissue-specific and developmental
stage-specific alternative splicing events. The CELF
proteins can act as either positive or negative regulators
of alternative splicing. For example, CUG-BP1 and
CELF6 promote skipping of exon 11 in the insulin
receptor pre-mRNA, while all six family members
promote inclusion of exon 5 of the cardiac troponin T
pre-mRNA (30). Importantly, ETR-3 plays a key role
in neuron-specific splicing control, where it acts as
either a positive or a negative regulator of two alternative
exons (14).

In DM, many CELF protein targets are aberrantly
spliced. DM is characterized as a disease of RNA
toxicity, in which a CUG trinucleotide expansion in the
3’ untranslated region of the myotonic dystrophy kinase
gene leads to an up-regulation of CUG-BPI and seques-
tering of another RNA-binding protein, muscleblind-like
1. Several animal models have been generated to abnor-
mally express CUG-BP1. These animals mimic the splicing
mis-regulation of CELF protein targets in DM (32,35).

Since the CELF proteins’ function as splicing regulators
is so important in human disease and development, it is
imperative to identify additional CELF protein-mediated
splicing targets. In recent years, much research effort has
been put towards reaching this end, however relatively few
new CELF targets have been identified.

Neurofibromatosis type I (NFI) is a common
autosomal dominant genetic disorder that affects 1 in
3500 individuals (36). The NF1 gene is highly conserved,
and it possesses at least three alternatively spliced exons:
9br, 23a and 48a. NF1 exon 23a is of particular interest,
because it lies within the only well-characterized domain
of the NF1 protein product, neurofibromin. This domain
is referred to as the GTPase activating protein-related
domain (GRD), because it shares sequence identity with
the mammalian GAP domain and it can complement yeast
Ira-1 and Ira-2 mutants (37,38). The NF1 GRD negatively
regulates the activities of the oncogene Ras and thus, NF1
is considered a tumor suppressor gene. Interestingly, the
inclusion NF1 exon 23a alters Ras-GAP activity. The
form of NF1 that does not include exon 23a shows 10-
times greater activity in down-regulation of Ras than the
form that includes this exon (39,40) The splicing pattern of
NF1 exon 23a is highly conserved, with the exon being
included in most tissues but skipped in neurons as
demonstrated in Figure 1 (40). Mouse models in which
NF1 exon 23a is ablated exhibit learning and memory
deficits (41). These findings suggest that it is important
to have a balance between the two NF1 mRNA species.

Recently, our laboratory established that the RNA-
binding proteins, TIA-1, TIAR and the Hu family play
important roles in the regulation of NFI exon 23a
inclusion (13). These proteins bind to AU-rich sequences
found in the introns flanking the alternative exon, with
TIA-1 and TIAR functioning as positive regulatory
elements, which promote exon 23a inclusion in non-
neuronal tissues. Conversely, Hu proteins bind to AU-
rich sequences flanking this exon to promote its skipping
in neuronal tissues. Consistent with the notion that regu-
lation of alternative splicing in mammals is complicated,
often involving multiple sequence elements and protein
factors, our sequence analysis suggests that additional reg-
ulatory mechanisms exist that control alternative inclusion
of NF1 exon 23a.

The intronic sequence located immediately upstream of
exon 23a is highly enriched in UG-rich elements, which
have been shown to be the binding sites of the CELF
family of RNA-binding proteins. In this report, we
present evidence to support that CELF proteins indeed
function as regulators for inclusion of NF1 exon 23a.
They promote skipping of this exon in neuron-like cells.
All of the CELF protein members, except CELF6 strongly
promote NF1 exon 23a skipping when individually over-
expressed in non-neuronal cells. Additional support for
the role of CELF proteins in the regulation of this alter-
native exon is provided by siRNA knockdown of ETR-3,
and the over-expression of a dominant negative CELF
protein in neuron-like cells. Furthermore, we show that
both endogenous and recombinant CELF proteins bind
strongléy to an NF1 RNA substrate and block binding of
U2AF®, an essential splicing factor that interacts with the



polypyrimidine-tract sequence at the 3’ splice site. Finally,
we demonstrate that recombinant CELF proteins block
NF1 splicing by in vitro splicing assays.

MATERIALS AND METHODS
Plasmids

The human NF1 reporter constructs used in transfection
experiments consist of NF1 exon 23a with part of the
flanking introns inserted into the first intron of the
human metallothionein (HMT) gene (13). The CELF
protein expression plasmids for CUG-BP1, ETR-3 and
CELF3-6 were gifts from Dr Tom Cooper, Baylor
College of Medicine. The plasmid used as template for
in vitro transcription of RNA probe 1 was generated by
PCR-mediated cloning, while the plasmid used as template
for in vitro transcription of RNA probe 2 was generated
by oligonucleotide-mediated cloning using oligonucleo-
tides NF1-977 and NFI1-978 (Table 1). The cloned
plasmids were confirmed by DNA sequencing. The rat
ETR-3 ¢cDNA was generated by RT-PCR amplification
using RNA isolated from CA77 cells and ETR-3 5 and
ETR-3 3’ oligonucleotides (Table 1). The resulting PCR
product was digested with BamHI and Xbal, and ligated
into the BamHI-Xbal-digested pcDNA3.1HisC vector
(Invitrogen). This clone was confirmed by sequencing.

Cell culture and cell transfection

HeLa cells were maintained according to instructions
from the American Type Culture Collection (Manassas,
VA). CA77 cells, a cell line derived from rat medullary
thyroid carcinoma (a gift from Drs. Alison Hall at Case
Western Reserve University, Cleveland, OH and Andrew
Russo, University of Iowa, Iowa City, IA), were cultured
in DMEM/F-12 (Invitrogen) supplemented with 10% fetal
bovine serum (Invitrogen) and 1% pen/strep (Invitrogen).
HeLa cells were transfected as described earlier (42).
Transfection of CA77 cells was carried out the same as
HeLa cells except that Lipofectamine 2000 (Invitrogen)
was used, and cells were grown for 72h instead of 48 h
after transfection. Co-transfections were carried out using
1 ng of the NF1 reporter plasmid and 0.5-1 pg of CELF
protein plasmid. Other CA77 transfections were carried
utilizing the Nucleofector Kit V with the Nucleofector 11
device (Lonza, formerly Amaxa). These transfections were
performed with the standard protocol recommended by
Lonza using 1 pg of the HMT-NF1 863/499 reporter and
4 g of either an empty vector or the CELF dominant
negative expression plasmid. Cells were grown for 72h
after the transfection before protein lysates were
harvested.

RNA and protein analysis

Procedures for total RNA and protein isolation and
RT-PCR analysis were described previously (42).
Oligonucleotide pairs DS8 and HMT3, and NF1 5 and
NF1 3’ were used to analyze the NF1 reporter RNA and
endogenous NF1 RNA, respectively (13). Low PCR cycle
numbers were used to analyze RNA isolated from HelLa
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Table 1. Oligonucleotides used in this study

Oligonucleotide ~ Sequence

DS8 TTGACCATTCACCACATTGGTGTGC

HMT3 ATCTGGGAGCGGGGCTGT

NF1 5 AAGTTCTTCCATGCCATCATCAG

NF1 3 ATTCTAGGTGGTGGCTTTTTATCTA

Beta Actin & TGGGCGACGAGGCCCAGAGCA

Beta Actin 3’ GTCAGGTCCCGGCCAGCCAGG

CELF3 5 GACCGGAAGCTCTTTGTGGGG

CELF3 3 AGGGTCCGGCTGCTGTGA

CELF4 5 TTCATTGGGCAGATCCCCCG

CELF4 3 CAGGCTTCACCTGGATCGGCC

CELF5 5 GACCGGAAGCTGTTCGTGGG

CELF5 3 TTGACCACCAGGCTGGAGGA

CELF6 5 TTCGTGGGGCAGATCCCGCGG

CELF6 3 GGCAGGGTCTTCTGCTCGTGC

NF1-977 AGCTT GGT GTA ATT TTA TGT ACA AGC
CAA CAT TGT TTT TGT TGC TGT ATG
TAG TCG GTG CTG TGA CTT GTT TGT
GCT CAT CTC TGT TCT GTA G

NF1-978 GATCC CTA CAG AAC AGA GAT GAG CAC AAA
CAA GTC ACA GCA CCG ACT ACA TAC AGC
AAC AAA AAC AAT GTT GGC TTG TAC ATA
AAA TTA CAC C

ETR-3 5 AAAGGATCCATGAACGGAGCTTTGGATCATTCCGAC

ETR-3 3’ AAATCTAGATCAGTAAGGTTTTGCTGTCGTTTTT

(16-20 cycles) or CA77 (19-22 cycles) cells. Endogenous
NF!1 RNA in all of the cell lines was analyzed using
between 22 and 26 PCR cycles. Quantification of exon
inclusion was determined by Phosphorlmager analysis
using a Typhoon Trio (GE Healthcare). The results
shown are representative of at least three independent
transfections for each experiment. The effect of CELF
proteins on RNA processing of the reporter pre-mRNA
was calculated as the percentage of NF1 exon 23a inclusion
[exon 23a inclusion/(exon 23a inclusion + exon 23a exclu-
sion)]. Western blot analysis from transfected cell lysates
was carried out with anti-Xpress antibody (Invitrogen).

siRNA-mediated knockdown of ETR-3

The rat ETR-3 siRNA duplex was synthesized by
Dharmacon, and its target sequence is UCGGCAUGAA
ACGCUUGAA. Co-transfections were performed in
CA77 cells using either 200 pmol of PTB siRNA as a
negative control, or 200 pmol of ETR-3 siRNA and 1 pg
of HMT-NF1 863/499 reporter. Transfections were
carried out using Lipofectamine 2000 (Invitrogen) using
a previously described protocol (13).

In vitro assays

Pre-mRNAs were transcribed in vitro from plasmid
templates using the MEGAscript SP6 kit from Ambion.
UV cross-linking reactions were carried out in a volume of
50 pul containing 44% (vol/vol) HeLa cell nuclear extract,
2mM ATP, 20mM creatine phosphate, 0.6 mM MgCl2,
1.5% 5poly&:thylene glycol, 0.15mM dithiothreitol, and
5% 10°c.p.m. of *’*P-labeled RNA. Reaction mixtures
were incubated at 30°C for 10min, and heparin was
added to a final concentration of 2 pug/ul, followed by
UV irradiation (254nm) at 4°C for 10min. Reaction
mixtures were subsequently treated with 30 ug of RNase
A at 37°C for 30min. Cross-linked polypeptides were
immunoprecipitated using monoclonal antibodies against
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CUG-BP1 (3Bl, Invitrogen), ETR-3 (1H2, Santa Cruz
Biotechnology, Inc), or U2AF® (Sigma). Immunopre-
cipitated proteins were separated on sodium dodecyl
sulfate-10% polyacrylamide electrophoresis gels. In vitro
splicing reactions were performed as described earlier (44).
Recombinant GST, GST-CUG-BP1 and GST-TIAR
proteins were prepared from bacteria, and either 0.75 or
1.5pg of these proteins were used in the assays.
Quantification of the percentage of efficiency of lariat for-
mation was obtained using a Phosphorlmager. The
number of uridine residues present in both the full
substrate and the exon 23a-containing lariat were deter-
mined from the sequence information. Then the exon 23a-
containing lariat data from the Phosphorlmager was
normalized to the data for the full substrate. After nor-
malization, the percentage of efficiency of lariat formation
was determined by the following calculation: [(exon
23a-containing lariat)/(exon 23a-containing lariat + full
substrate)].

Preparation of nuclear extracts from HeLa and CA77 cells

HeLa cell nuclear extracts were prepared using S3 sus-
pension culture and standard techniques (42). To make
nuclear extracts from CA77 cells, 100 100-mm dishes of
CA77 monolayer cells were collected and used according
to a standard procedure (42).

RESULTS

Endogenous NF1 pre-mRNA is differentially spliced in
two cell models

We utilize a cell-based system to study alternative splicing
of the NF1 pre-mRNA. NF1 exon 23a is predominantly
included in non-neuronal tissues, while it is mostly
skipped in neurons [Figure 1A and (44,45)]. In our
system, HeLa cells, which are derived from human
cervical cancer cells, are used to mimic the non-neuronal
splicing pattern while CA77 cells, which are derived from
rat medullary thyroid carcinomas and have a number of
neuronal features, are used to mimic the neuronal splicing
pattern (46). Semi-quantitative RT-PCR analysis, using
total RNA isolated from these two cell types and
oligonucleotides that anneal to sequences in exons 23
and 24 of NFI, demonstrates that exon 23a is
predominantly included in HeLa cells and predominantly
skipped in CA77 cells (Figure 1B). These findings validate
our choice to use these cell models to study tissue-specific
alternative splicing of NF1 exon 23a.

CELF proteins are differentially expressed in the
two cell models

We sought to understand how NF1 exon 23a inclusion is
regulated. The intronic sequence upstream of this alterna-
tive exon has a series of UG-rich elements (Figure 1A),
making it a potential target for regulation by the CELF
family of RNA-binding proteins. We hypothesized that
CELF proteins could act as negative regulators of NFI
exon 23a inclusion by binding to the UG-rich elements
and blocking assembly of splicecosomal components.

A Type II isoform

Non-neuronal

Type I isoform

Neuronal

acattttatggtgtaattttatgtacaagccaacattgtttttgtt
getgtatatgtagteggtgctgtgacttgtttgtgceteatetetgt
tetgtagGCAACTTGCCACTCCCTACTGAA
TAAAGCTACAGTAAAAGAAAAAAGGA
AAACAAAAAATCAgtaagtttgga

B HeLa CA77

i g < e

80% 10%

< Type II

% Exon 23a
Inclusion:

Figure 1. NF1 Exon 23a alternative inclusion patterns in cell lines.
(A) Schematic diagram showing the alternative splicing pattern of
NF1 exon 23a. The Type Il isoform includes exon 23a and is found
in most non-neuronal tissues. The Type I isoform skips exon 23a and
is found in neuronal tissues. The sequence of NFI exon 23a and a
portion of its surrounding introns are shown in uppercase and lower-
case letters, repectively. (B) Endogenous NF1 splicing patterns in cell
model systems. Total RNA was isolated from the CA77 and HeLa cell
lines, and endogenous NFI exon 23a inclusion was analyzed by RT-
PCR assay using oligonucleotides indicated by arrows in panel A. The
resulting PCR amplification products are either 267 nucleotides for
exon 23a inclusion or 204 nucleotides for exon 23a skipping.

In order to determine the CELF protein expression
profiles in CA77 and HeLa cells, we employed two
approaches. First, we carried out a western blot analysis
using total protein lysate isolated from the two cell lines
and commercially available antibodies against CUG-BP1
or ETR-3. As shown in Figure 2A, CUG-BPI is present at
essentially equivalent levels in the two cell lines. However,
ETR-3 is expressed in CA77 cells but undetectable in
HeLa cells (Figure 2A). Second, for CELF family
members 3-6, for which commercial antibodies are not
available, we carried out semi-quantitative RT-PCR
using oligonucleotides (Table 1) that were designed in
conserved regions between rat and human CELF
sequences, which are also unlikely to undergo alternative
splicing. We found that CELF3-6 mRNAs are present at
a much higher level in total RNA isolates from CA77 than
they are in RNAs derived from HeLa cells (Figure 2B). To
confirm that our RT-PCR primers worked with human
sequences, we performed the RT-PCR using a human
neuroblastoma cell line, SK-N—-SH, and in this cell line
we detected expression of all CELF family mRNAs
(Figure 2B, bottom panel). These results demonstrate a
correlation between exon 23a skipping and a high level
of CELF family member expression and therefore, are
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Figure 2. Expression profile of CELF proteins in the two cell models.
(A) Total protein was isolated from CA77 (labeled as C) and HeLa
(labeled as H) cells and western blot analysis was performed using
antibodies against CUG-BP1 or ETR-3 and Ul 70K as a loading
control. (B) Total RNA was isolated from CA77 and HeLa cells and
RT-PCR was performed using oligonucleotides designed to anneal to
CELF family members 3-6 in regions conserved between rat and
human. PCR amplification products are 201 nucleotides for CELF3,
240 nucleotides for CELF4, 241 nucleotides for CELF5, and 205
nucleotides for CELF6. B-actin was used as a control, and has a
PCR amplification product of 376 nucleotides. The human neuro-
blastoma cell line, SK-N-SH, was used as a control to verify that all
of the oligonucleotides worked in both human and rat cells.

consistent with the hypothesis that CELF proteins are
potential candidates as negative regulators of NF1 exon
23a inclusion.

Over-expression of CELF proteins in HeLa cells
promotes NF1 exon 23a skipping

To test the hypothesis that CELF proteins regulate NF1
exon 23a inclusion, we performed co-transfection
experiments in which individual human CELF proteins
were over-expressed along with an NFI minigene
reporter construct in HeLa cells, the low CELF protein
expressing cell line. The minigene reporter construct was
generated in previous studies in our laboratory by
inserting NF1 sequence containing exon 23a and
flanking intronic regions including the presumed CELF
regulatory elements into intron 1 of the human
metallothionine II gene (Figure 3A) (13). The splicing
pattern of NF1 exon 23a was examined by semi-
quantitative RT-PCR using oligonucleotides that anneal
to exons 1 and 3 of the human metallothionine II gene.
The splicing pattern of this reporter pre-mRNA mimics
that of the endogenously expressed NF1 pre-mRNA (13).
In all cases, except for CELF6, over-expression of CELF
proteins strongly promotes skipping of NF1 exon 23a
(Figure 3B). CUG-BP1 causes a switch from 85% NF1
exon 23a inclusion in the reporter to 25% inclusion.
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Likewise, CELF4 and CELF5 decrease inclusion to 24
and 28%, respectively (Figure 3B, lanes 1-3 and 6-7).
The most dramatic effects upon NF1 exon 23a inclusion
were seen with over-expression of ETR-3, which reduced
inclusion to 19% and with CELF3, which reduced the
inclusion to 11% (Figure 3B, lanes 1-2 and 4-5). Over-
expression of CELF6 with the NF1 reporter does not have
a strong effect on the splicing phenotype of exon 23a
(Figure 3B, lanes 1, 2 and 8). Western blot analysis per-
formed using protein lysates from transfected cells and an
anti-tag antibody (anti-Xpress) shows that CELF family
members were over-expressed in HeLa cells (Figure 3B).
To further validate our findings, we over-expressed the
CELF proteins along with a minigene for a well-studied
and verified target of CELF protein-mediated splicing,
cardiac troponin T (cTNT). Over-expression of the
CELF proteins promoted inclusion of cardiac troponin
T exon 5, as expected (data not shown) (29,30).

In order to confirm the effects of CELF proteins on
endogenous NFI1 exon 23a inclusion, we over-expressed
representatives of both of the CELF subfamilies and
assayed the splicing profile of the endogenously expressed
NF!1 pre-mRNA using semi-quantitative RT-PCR and
oligonucleotides that anneal to NF1 exons 23 and 24.
When over-expressed, ETR-3 and CELF3 strongly
promote NF1 exon 23a skipping, while over-expression
of CELF6 has a more modest effect on the skipping of
endogenous NF1 exon 23a (Figure 3C). Western blot
analysis, using an anti-tag antibody (anti-Xpress), shows
that these proteins were over-expressed at similar levels
(Figure 3C). These data indicate that increased levels of
CELF family members, with the exception of CELF®6,
strongly promote skipping of NF1 exon 23a.

Disruption of endogenous CELF proteins promotes
NF1 exon 23a inclusion

To establish the importance of endogenous CELF
proteins in the regulation of NF1 exon 23a inclusion, we
disrupted the function of the endogenous proteins in
CAT77 cells, the high CELF protein-expressing cell line,
using two methods. First, we performed a siRNA knock-
down experiment. We reduced ETR-3 level by siRNA
treatment and examined the effect on exon 23a inclusion
from the co-transfected NF1 reporter. Introduction of a
control siRNA did not affect the NF1 exon 23a splicing
profile, as shown in Figure 4A (top panel, lanes 1-2).
When an siRNA duplex targeting rat ETR-3 was
introduced in the co-transfection experiments, the exon
23a inclusion was increased from 33% in the wild-type
to 50% with 200 pmol ETR-3 siRNA (Figure 4A, top
panel, lanes 1 and 3). To confirm that the ETR-3
protein levels were reduced by the siRNA, we over-
expressed rat ETR-3 in HeLa cells and simultaneously
co-transfected the cells with siRNA targeting ETR-3 in
HeLa cells. We found that ETR-3 was knocked down
efficiently after being over-expressed in HeLa cells
(Figure 4A, bottom panel).

Second, we performed co-transfection experiments
using a truncated CELF4 protein, CELFA, which was
demonstrated to function as a dominant negative protein
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Figure 3. Over-expression of CELF proteins in HeLa cells promotes exon 23a skipping. (A) Schematic diagram of the HMT-NF1 863/499 reporter
construct. (B) Co-transfection of HeLa cells with the HMT-NF1 reporter (2 pg) and CELF protein expression plasmids (1 pg for CUG-BP, ETR-3,
CELF4 and CELF5 and 0.5 pg for CELF3 and CELF6). Total RNA was isolated from transfected cells and semi-quantitative RT-PCR was performed
using oligonucleotides indicated in panel A. The percentage of NFI exon 23a inclusion is displayed in the bar graphs. Error bars indicate standard
deviations and n = 3. Total protein was isolated from transfected cells and western blot analysis was carried out using Anti-Xpress antibody. Anti-Ul
70K antibody was used as a loading control. (C) Co-transfection of HeLa cells with LacZ (4 pg) and CELF protein expression plasmids (4 pg for
ETR-3, CELF3 and CELF6). Total RNA was isolated from transfected cells and semi-quantitative RT-PCR, using oligonucleotides that anneal to
NF1 exons 23 and 24, was performed to determine the endogenous NF1 exon 23a inclusion. The percentage of NF1 exon 23a inclusion is displayed in
the bar graph, with error bars indicating standard deviations. Total protein was isolated from the transfected cells and western blot analysis was
performed using Anti-Xpress antibody to detect either tagged CELF proteins or LacZ which was used as a loading control.

by interfering with the endogenous CELF proteins in
other systems (47). The CELFA protein contains the
first N-terminal RNA recognition motif (RRM) and a
portion of the second N-terminal RRM, a full hinge
domain, and a portion of the C-terminal RRM (47).
When the CELFA protein was over-expressed along
with the NF1 reporter in CA77, the high CELF-expressing
cell line, exon 23a inclusion was increased from 36 to 51%
(Figure 4B). A western blot analysis using protein lysate
isolated from transfected CA77 cells confirmed expression
of the truncated protein (Figure 4B). Taken together,
these results strongly suggest that CELF proteins are
negative regulators of NF1 exon 23a inclusion.

CELF proteins bind strongly to a NF1 RNA substrate
and block binding of U2AF %

Given that the intronic sequence upstream of NF1 exon
23a is UG-rich, as shown in Figure 1A, and that CELF
proteins function as negative regulators of exon 23a inclu-
sion when their levels are manipulated in cell culture, we
hypothesized that the CELF proteins bind strongly to the
NF1 pre-mRNA. In order to test whether CELF proteins
could bind to NF1 RNA, we utilized two substrates to
generate “P-UTP-labeled in vitro RNA transcripts. The
first one of these substrates, probe 1, includes 144 nt of
NF1 sequence upstream to exon 23a, exon 23a itself,
and 110nt of sequence downstream from the exon
(Figure 5A). The second substrate, probe 2, includes
only 87nt of NF1 sequence upstream to exon 23a

(Figure 5A). We performed UV crosslinking/immunopre-
cipitation (IP) assays to assess binding of CUG-BP1 and
ETR-3 to the NF1 RNA transcripts. We first performed
these assays using HeLa nuclear extract, which contains
only CUG-BPI1, to which we added recombinant GST-
CUG-BPI1 or GST-ETR-3. We used a calcitonin in vitro
transcribed RNA substrate as a negative control, because
this substrate lacks the UG-rich elements (15). We used
either anti-CUG-BP1 or anti-ETR-3 antibodies for the
immunoprecipitation, and we found that the recombinant
CELF proteins could bind strongly to both of the NFI
substrates (Figure 5B, lanes 5-6), but they were unable to
bind to the calcitonin RNA substrate (Figure 5B, lanes
2-3). We wanted to assess the ability of the endogenous
CELF proteins to bind to the NF1 RNA substrates, so we
used nuclear extract isolated from CA77 cells, which
contain all of the CELF family members, to perform addi-
tional UV crosslinking/IP assays. We used either anti-
CUG-BP1 or anti-ETR-3 antibodies to perform these
assays, and the calcitonin RNA substrate as a negative
control. We found that both endogenous CUG-BP1 and
ETR-3 could bind strongly to the NF1 RNA substrates
but not to the calcitonin RNA substrate (Figure 5C, lanes
2-3 and 5-6).

The UG-rich sequences are located immediately
upstream of the 3’ splice site of exon 23a. Therefore, we
predicted that the CELF proteins most likely interfere
with binding of critical splicesome components at or
around the 3’ splice site. To test this possibility, we
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examined binding of a splicing factor by UV crosslinking/
IP analysis using HeLa nuclear extract and exogenously
provided recombinant GST-CUG-BP1 or GST-ETR-3.
We used an antibody against U2AF®, an essential
splicing factor that binds to the polypyrimidine-tract of
the 3’ splice site, for the IP assays. We found that
1ncreasmg amounts of the recombinant CELF proteins
resulted in a decrease in the levels of U2AF® binding
(Figure 5D, compare lanes 2 and 7). These results allude
to the mechanism of CELF protein regulation of NFI
exon 23a, by showing that they can block binding of
U2AF® to the NF1 RNA substrate, and thus prevent
the exon from being included.

CELF proteins block splicing of NF1 exon 23a

To provide definitive evidence that CELF proteins block
splicing of NF1 exon 23a directly, we carried out an
in vitro splicing analysis using an RNA substrate shown
in Figure 6A. This substrate was generated from the
reporter used in earlier cell transfection experiments
(Figure 6B) and contains 144nt of NF1 sequence
upstream of exon 23a, exon 23a, and 83nt of NFI1
sequence downstream of NFI1 exon 23a. We then
analyzed splicing of this substrate in Hela nuclear
extract under standard splicing conditions. We also
utilized a strong, classical splicing substrate, Minx, as
shown in Figure 6A. Compared to the splicing of Minx
RNA, the splicing efficiency of the NF1 substrate is very
low (Figure 6B). Only the lariat intermediates can be
detected in a time-dependent manner, as shown in
Figure 6B. We decided to test the effect of CELF
proteins on splicing of the NF1 substrate by monitoring
the lariat production, as described in a previous study
(48). Addition of increasing amounts of GST-CELF
proteins resulted in a decrease in the percentage of
efficiency of lariat formation from about 38 to 23%,

indicative of blocked splicing (Figure 6B, lanes 3—6 and
7-8). Importantly, addition of GST-TIAR, a protein that
was previously identified as a positive regulator of NF1
exon 23a splicing, increased lariat formation, from 38 to
58-62%, consistent with the positive role played by TIA-
1/TIAR in splicing of NF1 exon 23a (Figure 6B, lanes 3—6
and 9-10). As expected, neither the recombinant CELF
proteins nor the recombinant TIAR protein affected
the splicing of the Minx control (Figure 6A). These
experiments demonstrate that CELF proteins block
splicing of the intron upstream of NF1 exon 23a.

DISCUSSION

NF1 is a novel target of CELF-mediated
splicing regulation

CELF proteins are important regulators of alternative
splicing (16). Several mouse models have been generated
that have abnormal expression of CUG-BP1 in the heart
(32,35). These animals were made to model the human
disease, DM, and they show significant heart defects and
interestingly, many of the defects can be attributed to
aberrant splicing of a number of well-characterized
CELF protein splicing targets (32,35). To fully understand
the function of CELF proteins and their roles in human
disease, it is important to identify all of the splicing targets
of these proteins. Recent work has identified at least 19
mRNA splicing targets that are sensitive to changes in
levels of CELF proteins during heart development (49).
Here, we report the identification of a novel target of
the CELF proteins, exon 23a of the NFI pre-mRNA.
We show that in cell transfection experiments, changes
of CELF protein level by either over-expression or
siRNA knockdown leads to a decrease or increase of
exon 23a inclusion, respectively. These results strongly
argue that CELF proteins promote skipping of this



exon. Importantly, NFI plays an important role in the
development of the heart, in addition to the nervous
system, since animal models in which NFI1 has been
deleted do not survive past mid-gestation (50,51) due to
heart development related abnormalities. Cardiac
dysfunction in mouse models in which CELF activity is
elevated or repressed have demonstrated the importance
of CELF-mediated alternative splicing in the heart. Also
of interest is the finding that there is a change in NF1 Type
I (exon 23a skipped) and NF1 Type II (exon 23a included)
isoform distribution in the heart during early embryonic
development in mice (44). The NF1 splicing changes occur
early in heart development between days 11 and 13 (44).
NF1 exon 23a was not identified in the aforementioned
splicing microarray study, and this is most likely because
the study examined splicing events that occurred from
embryonic day 14 to adulthood which is clearly after the
NF1 splicing patterns have changed (44,49).

These findings hint at the possibility of CELF protein
involvement in regulation of the NFI1 exon 23a, since
both CUG-BP1 and ETR-3 are robustly expressed
during early in the heart and then the levels of these
proteins decline (31).

NF1 exon 23a is under complex combinatorial control

Tissue-specific alternative splicing is complex and a
myriad of factors are often necessary to provide additional
layers of regulation for a particular splicing event. One
example of a splicing event which is regulated by several
different factors is the cell-type specific regulation of the
mutually exclusive exons IIIb and Illc of the Fibroblast
Growth Factor Receptor 2 (FGFR2) for which several
different auxiliary cis-acting elements and their binding
partners have been identified (52-55). Another interesting
example occurs in the immune system and involves the
regulation of exon 4 of the CD45 gene which can be
regulated by hnRNPL, PSF and other factors (56).

Like many other alternative exons, NFI exon 23a is
tightly regulated. The NF1 sequence is highly conserved
among mice, rats and humans, and the tissue-specific
splicing phenotype is conserved among these species as
well (13,57). These facts imply that this alternative
splicing event must be especially important. A few
previous studies have been carried out in attempts to
understand the importance of this regulated splicing
event. A mouse model in which NF1 exon 23a has been
deleted shows learning disabilities, which are also an
important phenotypic characteristic of some NF1 disease
patients (41).

Up until recently, it was not known how NF1 exon 23a
inclusion is regulated. Recent work in our laboratory has
demonstrated that NF1 exon 23a inclusion is also
repressed by the Hu family of RNA-binding proteins, of
which three of the four family members are neuron-
specific  (13,58). We previously demonstrated that
Hu proteins block the function of TIA-1/TIAR, most
likely through competitive binding, leading to decreased
binding of U1 and U6 snRNP interaction with the 5’ splice
site downstream of exon 23a (13). Hu proteins also
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decrease binding of U2AF to the 3’ splice site upstream
of exon 23a.

Given that this phenomenon is so complex, it is
probable that other positive and negative factors that
regulate NF1 exon 23a remain to be identified. An inter-
esting future direction is to determine whether the CELF
and Hu proteins function together or independently of one
another to achieve their functions as splicing regulators of
NF1 exon 23a. Both CUG-BP1 and ETR-3 are robustly
expressed during the early development of the embryonic
heart, and one Hu protein, HuR, is present. The relative
expression levels of HuR, throughout heart development,
are not known. It would be interesting to better under-
stand HuR expression in the heart, as this could give us
some hints into whether the CELF and Hu proteins can
regulated NF1 exon 23a independently.

Redundant and non-redundant functions of CELF proteins

Our results of over-expression studies in HeLa cells show
that the different CELF family members have different
capabilities in regulating NF1 exon 23a inclusion. Five
of the six members of this protein family exhibit strong
activity in repressing inclusion of NF1 exon 23a, while
CELF6 shows modest regulatory activity in both the
mini-gene reporter assays and in the assays in which the
endogenous NF1 was considered. This finding is very
interesting since the CELF family members are very
similar in sequence and CELF6 is about 40% identical
to CUG-BP1 and ETR-3 (16). A previous study suggested
a possibility that CELF6 binds to other sequence elements
in addition to CUG or UG-rich sequences (30). However,
the functional significance of this difference remains
unclear. It is possible that CELF6 requires a different
sequence to operate optimally, and thus it does not
function well in our system. In addition, the cellular local-
ization of CELF®6 is likely to play a significant role in its
ability to regulate splicing. Three of the six CELF
proteins, CUG-BP1, ETR-3 and CELF4, have been
shown to localize in both the nuclear and cytoplasmic
subcellular compartments, suggesting that they might
have shuttling activities (28,29,59,60), and it is likely that
CELF6 is similar. CELF6 has a nuclear localization
signal, but computational prediction methods suggest
that it might spend most of its time in the cytoplasm
and only shuttle to the nucleus in response to cellular
needs (30).

The redundant function of the five CELF members is
also illustrated by the siRNA knockdown experiment in
CAT77 cells. A fairly modest change was observed when
ETR-3 was knocked down in CA77 cells. The most plau-
sible explanation for this finding is that knocking down
one CELF member is not sufficient to significantly impact
the NF1 exon 23a inclusion, since all of the family
members are present in CA77 cells as shown in our expres-
sion data (Figure 2).

When a CELF dominant negative protein (CELFA), as
described by Charlet et al. (34), is co-transfected with the
NF1 minigene into CA77 cells, a fairly modest increase in
NF1 exon 23a inclusion is observed. Previous studies,
using both fibroblasts and primary cardiomyocyte



262 Nucleic Acids Research, 2010, Vol. 38, No. 1

cultures, have shown that the CELFA protein must be
present in excess to the endogenous CELF proteins in
order to have an effect on splicing of CELF protein
targets (34,61). It is therefore not surprising that we do
not see a more dramatic effect on NF1 exon 23a inclusion
since there are six different CELF proteins in the CA77
cells. Additionally, there are four Hu proteins present in
CA77, which are known negative regulators of this system
whose functions are not expected to be hindered by the
over-expression of the CELF dominant negative protein.

Mechanism of CELF protein-mediated splicing
regulation of NF1 exon 23a

It is clear, based on our in vitro experiments (Figures 5
and 6) that CELF proteins can block splicing of NF1 exon
23a. Specifically, U2AF® is blocked by the addition of
increasing amounts of either recombinant GST-CUG-
BPl or GST-ETR-3 as the U2AF® band decreases
significantly. The mechanism by which the CELF
proteins perform these functions is under investigation.
There are several potential ways in which the CELF
proteins could block U2AF® binding, and thus block
splicing. First of all, it is possible that CELF proteins
compete for binding of very specific sites on the pre-
mRNA, which prevent the binding of critical spliceosomal
machinery components. In the context of U2AF®’, this is
plausible since the polypyrimidine-tract sequence
upstream of the 3’ splice site of exon 23a is a very weak
binding site for U2AF®, and since the polypyrimidine-
tract is adjacent to and potentially part of several UG-
rich elements (Figure 1A). Indeed this mechanism is
used by polypyrimidine tract binding protein as
demonstrated by others (62,63). A second way in which
CELF proteins might work is by binding to other factors
in a complex, which can crowd the splicing machinery by
steric hindrance. A third way in which CELF proteins
could accomplish blocking splicing is by binding to
specific UG-rich sites and causing conformational
changes in the structure of the mRNA, which then
prevent the binding of other necessary splicing factors.
Although this mechanism has not been described for the
CELF proteins in other systems, thus far, it is a mecha-
nism that is used by other factors such as PTB. In
that case, PTB binds to sequences both upstream and
downstream of an exon to loop out the exon and
promote its skipping (64). Furthermore, recent work has
demonstrated the importance of RNA secondary structure
and splicing control by showing that the muscleblind-like
(MBNL) family of RNA-binding proteins and U2AF®
regulate the cardiac troponin T exon 5 system by
binding to different portions of a stem loop structure
that is formed encompassing the polypryimidine tract
and the MBNL binding sites (65).

In summary, the study reported here identifies NF1
exon 23a as a novel splicing target for the CELF family
of proteins and reveals an additional layer of regulation of
this alternative exon. These studies highlight the complex-
ity and versatility of tissue-specific alternative splicing
regulation.
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