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Abstract

Intraprotein side chain contacts can couple the evolutionary process of amino acid substitution at one position to that at
another. This coupling, known as residue coevolution, may vary in strength. Conserved contacts thus not only define 3-
dimensional protein structure, but also indicate which residue-residue interactions are crucial to a protein’s function.
Therefore, prediction of strongly coevolving residue-pairs helps clarify molecular mechanisms underlying function.
Previously, various coevolution detectors have been employed separately to predict these pairs purely from multiple
sequence alignments, while disregarding available structural information. This study introduces an integrative framework
that improves the accuracy of such predictions, relative to previous approaches, by combining multiple coevolution
detectors and incorporating structural contact information. This framework is applied to the ABC-B and ABC-C transporter
families, which include the drug exporter P-glycoprotein involved in multidrug resistance of cancer cells, as well as the CFTR
chloride channel linked to cystic fibrosis disease. The predicted coevolving pairs are further analyzed based on
conformational changes inferred from outward- and inward-facing transporter structures. The analysis suggests that some
pairs coevolved to directly regulate conformational changes of the alternating-access transport mechanism, while others to
stabilize rigid-body-like components of the protein structure. Moreover, some identified pairs correspond to residues
previously implicated in cystic fibrosis.
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Introduction

The increasing number of solved protein structures raises the

question how structural data can help clarify the biochemical

mechanisms underlying protein function. Although extremely

informative, even the complete map of residue contacts is in

general insufficient to reveal biochemical mechanisms. Experi-

ments mutating specific amino acid positions are essential

complements to structure but the typically low throughput of

these experiments calls for highly specific, rational design.

Sometimes structural models themselves highlight experimental

candidate positions but more often additional information is

needed. This is especially so when specific functional interactions,

represented by pairs of positions, are to be tested [1,2] since the

number of candidate pairs scales, in principle, as the square of the

number of candidate positions.

The superfamily of ATP-binding cassette (ABC) transporters is

an epitome of proteins with recently determined structures but

poorly understood biochemical mechanisms [3,4]. Their members

actively transport substrate molecules across membranes with the

exception of the (passive) ion channel CFTR (a member of the

ABC-C family), whose defect causes cystic fibrosis disease. Typical

members of the ABC-B and ABC-C families are active exporters,

like the MDR and MRP proteins (notably Pgp/MDR1), which

recognize anticancer drugs as their natural substrates and thereby

confer multidrug resistance on tumor cells.

All ABC-B and ABC-C transporters are built of two

transmembrane domains (TMDs), which interact directly with

the translocating substrate, and two nucleotide binding domains

(NBDs), which convert chemical to mechanical energy by binding

and hydrolyzing ATP (Figure 1A). The popular alternating-access

transport model asserts that this mechanical energy drives a

conformational cycle coupled to unidirectional transport, and

during each cycle the TMDs alternate between inward and

outward-facing conformation [5]. This model, although supported

by relatively high-resolution structures [3,4], describes transport

mechanism at a resolution that is too low for the clarification of

many crucial details related to multidrug resistance or cystic

fibrosis. For a refined model, mechanistically crucial residue-

residue interactions need to be somehow predicted and experi-

mentally tested: particularly between the transmembrane helices

(TM1,TM12), which are relatively understudied, and whose

extensions form intracellular loops (ICL1,ICL4), which couple

the TMDs to the NBDs (Figure 1A).

The abundance of sequenced ABC-B and ABC-C proteins

makes these families ideal for comparative sequence analysis. Such

analysis can infer those structural and functional constraints on

sequence evolution that are not necessarily evident from sole

structural analysis. For example, side chain contacts can couple the

process of amino acid substitution at one position to that at the

contacting position and thereby induce residue coevolution, but

the strength of coupling and its persistence in time may vary [6,7].
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Therefore, statistical techniques predicting coevolving pairs,

henceforth referred to as coevolution detectors, have been utilized

for different purposes. When the representative structure of some

protein family is unknown, then coevolution detectors can be used

to predict contacts and thereby aid structure determination [8–

16]. But when such structure is known, detectors are still useful for

the prediction of the subset of contact pairs that exhibit strong and

permanent coevolution [11,17–25]. The latter set of pairs can be

interpreted as a representation of conserved and general mech-

anisms that characterize the whole protein family. Therefore, these

pairs are highly relevant for the elucidation of these mechanisms as

either self-standing results or pointers for the rational design of

‘‘double mutants’’ [1,2,26–28] for functional experiments.

All coevolution detectors predict coevolving pairs from multiple

sequence alignments but they differ from each other in crucial

assumptions on the substitution process, which can profoundly

affect prediction accuracy. Yet the relative performance of

individual detectors in accuracy tests remains unclear even after

side by side comparison [29,30], suggesting that accuracy strongly

depends on the specific protein family and certain properties of the

corresponding alignment. Therefore, a key question is: given a

collection of detectors and a protein family with representative

sequences and structure(s), how can coevolving pairs be detected

the most accurately?

The present study addresses that question with a new,

integrative framework (Figure 2), which improves accuracy by

directly incorporating structural information and by combining

multiple detectors. Moreover, it features procedures that deal with

the well-known vulnerability of detectors to the statistical non-

independence of homologous sequences [31–33] and to the

heterogeneity of positions with respect to substitution rate

[34,35]. This framework is employed to ABC-B and ABC-C

transporters to predict those contact pairs that represent evolu-

tionarily conserved interactions (i.e. coevolving pairs). The

predicted pairs are presented with a particular attention to the

possible mechanistic coupling between TM helices in both the

inward and outward conformation of the TMDs.

Methods

Central Assumptions of the New Framework
Considering pairs of amino acid positions in a protein family,

assume that, for each pair, the two positions either strongly and

permanently coevolve with each other or evolve completely

independently. Let E denote the set of coevolving pairs. Let S
represent the set of (structural) contact pairs, specifically side chains

contacts. Following pioneering studies [13,14,16] an intimate

relationship has been conjectured between coevolution and side

chain contact. The relationship can be stated in terms of the

probabilities Pr (E) and Pr (EDS) that, for some protein family, a

random draw from all pairs or from contact pairs, respectively,

gives a coevolving pair:

Pr (E)v Pr (EDS): ð1Þ

This says that the contact pairs tend to be the coevolving pairs. Let

P be the set of coevolving pairs predicted by some coevolution

detector from sequence data D. If the detector is useful then

conditioning on P has similar effect to conditioning on S:

Pr (E)v Pr (EDP): ð2Þ

Supporting the preceding two assertions it has been shown

repeatedly [11–14,16,20,22,23,29–32,35–42] that most detectors

Figure 1. Structure of ABC-C proteins and the rate of amino acid substitution. (A-C) Homology model of the ABC-C protein CFTR [45]. (A)
Main structural components. NBD: nucleotide binding domain; TMD: transmembrane domain; TM: transmembrane helix; ICL: intracellular loop. ATP-
molecule atoms are shown as spheres. (B) Each amino acid position i is marked by a small sphere at the Ca atom and is colored according to ri , the
estimated discretized substitution rate (eq. 21). ri~1 (blue) indicates that i is conserved. (C) The large spheres represent the set of positions predicted
in this study to coevolve with some other position(s) in the same set. Structural figures were made using UCSF Chimera [70].
doi:10.1371/journal.pone.0036546.g001
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can predict contact pairs better than random choice, and so

Pr (S)v Pr (SDP): ð3Þ

Instead of predicting contact pairs to aid de novo prediction of

structure, several studies [11,18–25] aimed to detect coevolving

pairs given the set of contact pairs assuming that

Pr (EDS)v Pr (EDS\P): ð4Þ

The new framework was designed towards that aim and takes all

above assumptions and findings as a starting point. As Figure 2

shows, P depends on a set of parameters h, which specifies the

identity of the detector (when a single detector is used) or the

relative weights of detectors (when multiple detectors are

combined). h also determines how data are analyzed by a given

(set of) detector(s): how classes of pairs are weighted and how the

input alignment is filtered (Figure 2A). Therefore, if the protein

structure is known, then h can be adjusted for optimal prediction

of contact pairs. The individual parameters and the optimization

problem will be precisely stated later; at this point another possible

formulation is given to be consistent with eq. 3:

h�~ arg max
h

Pr (SDP(h)): ð5Þ

A crucial assumption of this study is that the optimization in eq. 5

improves the detection of coevolving pairs within the set of contact

pairs:

Pr (EDS\P(h))ƒ Pr (EDS\P(h�)): ð6Þ

Thus the central goal of this work is to find h�, which uniquely

determines P(h�) (Figure 2B) and ultimately S\P(h�). A key

feature of the new framework is that the known structure plays a

dual role in the current analysis. First, the structure is required for

the optimization of the parameters (Eq. 5, Figure 2B bottom).

Second, the structure (or some alternative conformation of that

structure) is used to restrict the predicted pairs to the set of contact

pairs by taking the intersection S\P (Eq. 6).

Parameters and Procedures of the New Framework
As mentioned above, P is a function of the parameter set h.

Now the question is: exactly what is h, and how does it determine

P together with the data?

In general, a coevolution detector X acts as a binary classifier

that divides the set V of all pairs into P and the complementary set

of pairs (the ‘‘negatives’’). Given the input alignment data D, the

condition for classification of each pair p into P is that the test

statistic TX of the detector evaluated at p exceeds an adjustable

threshold t:

P(t,D)~fp[VDTX (p,D)§tg: ð7Þ

It is practical to constrain the number of predicted pairs DPD at

some chosen fraction c of all pairs by treating t as a monotonically

increasing function of c. Then, for a given X and D,

P(c)~fp[VDT(p)§t(c)g, DPD~cDVD: ð8Þ

Consequently, c controls the true and false positive rate of the

detector, which are defined subsequently in eq. 16–17.

The procedure of filtering of an alignment of homologous

sequences, in particular phylogenetic type of filtering, aims to remove

redundancies that emerge from the statistical non-independence

within any collection of homologous sequences. These redundan-

cies pose challenges to all coevolution detectors, especially to those

assuming that homologous sequences are statistically independent

from each other.

Figure 2. Integrative framework for the prediction of coevolving position pairs. (A) Parameters of the framework, and weighting and
filtering procedures controlling them. Partitioning the set of all position pairs into substitution rate classes Ck (eq. 10, 20–22), and weighting each class
(eq. 11–13), addresses the sensitivity of coevolution detectors to substitution rate. Detector weighting: previous studies employed coevolution
detectors Xn either separately or in a combination X1 ^ . . . ^ XN in which all Xn were equally weighted. However, equal weighting of X1 ^ . . . ^ XN

is not generally the optimal combination as demonstrated below in Figure 3B. The new framework allows unequal weighting of detectors (eq. 15).
Alignment filtering (eq. 9, 14) removes redundant sequences from the input data (the sequence alignment) to minimize the adverse influence of
phylogenetic redundancies on detectors. (B) Previous studies predicted coevolving position pairs in a protein family from only the corresponding
sequence alignment, while ignoring useful information in solved structures. The current work makes use of structural information to adjust the
parameters of detector weighting, class weighting and alignment filtering (parameter set h) for optimal performance, as gauged by prediction of
known structural contacts (eq. 5, 19).
doi:10.1371/journal.pone.0036546.g002
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Any type of filter, applied to alignment D, permutes sequences

in a given order that depends on the filter type F . Then the filter

removes a certain number of sequences in that order. Therefore,

the filtered D is determined both by F and by the number s of

sequences that remain in the alignment. It follows that, for a given

X ,

P(t,D,F ,s)~fp[VDT(p,D(F ,s))§tg: ð9Þ

Filtering will be discussed in more detail in Methods: Alignment

Filtering.

For all detectors, T(p) is known [34,35,38] to depend to some

degree not only on the coevolution of position i and j (where

p~(i,j)) but also on the overall rate of amino acid substitution at i

and at j. The dependence on substitution rate deteriorates the

performance of the detector but can, in theory, be addressed by

conditioning t on the rates of the pair. Therefore, the new

framework incorporates a novel strategy based on the procedure of

partitioning V into K (substitution) rate classes Ck (Figure 2A):

V~
[K
k~1

Ck: ð10Þ

The precise definition of fCkg will be given later (eq. 20–22), but it

may be worth emphasizing at this point that the members of each

Ck are position pairs and not single positions. Now a key feature of

the new framework is that tk can be adjusted separately for each

Ck and that P is defined as the union of the resulting Pks:

Pk(tk)~fp[Ck DT(p)§tkg ð11Þ

P~
[K
k~1

Pk: ð12Þ

The vector t~(t1, . . . ,tK ) thus determines every Pk and

therefore every DPkD. Like its scalar analog t, t is also a function

of c, which imposes the constraint

XK

k~1

DPk(tk)D~cDVD: ð13Þ

(This is the same as the constraint expressed by the second equality

in eq. 8, since Pks are disjoint sets and thus DPD~
P

k DPk D.) The

constraint in eq. 13 still allows individual tks to vary, which

changes the relative size (the weights) of Pks. In this work the

procedure of changing t, while requiring eq. 13 to hold, is referred

to as class weighting procedure.

Partitioning V also allows the filtering of D separately for each

rate class so that there is a separate parameter sk for each Ck,

Pk(tk,sk)~fp[Ck DT(p,D(sk))§tkg, ð14Þ

and thus P:
S

k Pk also depends on the vector s~(s1, . . . ,sk). Eq.

14 corresponds to the combination of partitioning + class weighting +
filtering in case of a general t satisfying eq. 8, or to the combination

of partitioning + filtering when all tks are set to the same value. Note

that in this case ‘‘combination’’ refers to procedures and not detectors.

Up to this point a single detector X was assumed. Now let fXng
be a collection of N detectors, and let X1 ^ . . . ^ XN denote their

logical AND combination [43] and t~(tX1 , . . . ,tXN ) the corre-

sponding thresholds (Figure 3A). Then the set of pairs predicted by

the combined detector X1 ^ . . . ^ XN is defined as

P(t)~fp[VDTX1 (p)§tX1 , . . . ,TXN (p)§tXN g: ð15Þ

It is clear that t uniquely determines DPD and that, for a given c, the

constraint DPD~cDVD allows individual tXn s to vary. For some

1ƒmƒN , the impact of Xm on P, relative to that of any other

detector Xn (n=m), increases with tXm . In other words, the weight

of Xm increases in X1 ^ . . . ^ XN . Therefore, adjusting tXn s

relative to each other is referred to as the procedure of detector

weighting and is illustrated by Figure 3A.

Given a specific detector Xm, if tXn?{? for all other detectors

Xn (n=m), then the weight of these detectors vanish. This special

case is equivalent to using detector Xm alone and not in

combination with other Xns. Furthermore, in the general case it

is straight-forward to combine detector weighting with partitioning +
class weighting (Figure 2A). Then each scalar tXn is replaced by a

vector tXn:(tXn

1 , . . . ,tXn

K ) so that t~(tX1 , . . . ,tXN ). This can be

further extended with filtering.

In summary, given the parameter c, data D, a filter type F ,

substitution rate classes fCkg and a set fXng of detectors, the

collection of parameters h~(t,s) uniquely determines the set of

predicted pairs P(c,h) in the new framework. Next, it will be

discussed how the optimal h� is actually found, and eq. 5 will be

replaced by a closely related formula. This will be followed by

detailed information on D,F ,fCkg and fXng.

Optimization Using Structural Information
Let D,F ,fCkg,fXng and P(c,h) have the same meaning as

before. Let S denote the set of contact pairs and B the set of pairs

p~(i,j) for which i and j are separated by some substantial

distance in 3D space, so that i and j are unlikely to directly interact

with each other in any native conformation of the protein. S and B

will be defined in the next subsection; for now assume that these

sets are known. The true positive rate rTP (sensitivity) and false

positive rate rFP (reverse specificity) are defined, respectively, as

rTP(c,h)~
DP(c,h)\SD

DSD
, ð16Þ

rFP(c,h)~
DP(c,h)\BD

DBD
: ð17Þ

As noted after eq. 8, rTP and rFP are functions of c, and therefore

eq. 16–17, together with eq. 8, shows that c?0 makes both rTP

and rFP?0. Likewise, c?1 drives both rTP and rFP?1. In

general, rTP
=rFP for a given detector and h. When rTP

wrFP,

the detector is informative with respect to random selection. In

contrast, for a theoretical random detector rTP~rFP (Figure 3B-C,

dashed line).

The receiver operator characteristic curve of a detector is a

mapping that associates each c with (rFP(c),rTP(c)) at a fixed h
(Figure 3B-C). The partial area A(a,h) under the ROC curve is the

Riemann-Stieltjes integral of rTP with respect to rFP over the

interval ½0,a�,(0ƒaƒ1):

ABC Transporters: Coevolution and Structure

PLoS ONE | www.plosone.org 4 May 2012 | Volume 7 | Issue 5 | e36546



A(a,h)~

ða

0

rTP(c,h)drFP(c,h), ð18Þ

Thus A(a,h) provides a scalar measure of performance at fixed h

and a. The interval ½0,a� restricts rFP below a chosen aƒ1. Small

a is desired when high specificity (obtaining low rFP) is more

important than high sensitivity (achieving high rTP), as in the case

of this study. Note that A(a)~a2=2 for a random detector.

Let w be a relation transforming c to a such that a~w(c). In the

new framework, the optimal parameter set h� is defined as

h�~ arg max
h

A(w(c),h), ð19Þ

replacing the initial formulation of the optimization problem (eq.

5). Thus, for each c[½0,1�, a unique h� is obtained, which is

precisely the central goal of this work (eq. 6).

In the present analysis of ABC transporters N~11 detectors

Xn,(n~1, . . . ,N) were employed, and K~10 substitution rate

Figure 3. Weighted combination of coevolution detector X1 and X2. (A) Green and orange dots represent a set E of pairs (i,j) of amino acid
positions in a protein family. E~S|B, where S is the set of structural contact pairs (orange) and B is the set of structurally distant pairs (green). X1

and X2 are coevolution detectors with statistics TX1 and TX2 , respectively, which are evaluated separately for each pair. A combined detector
X1 ^ X2 uses a pair of thresholds t:(tX1 ,tX2 ) to define the set of predicted pairs P (eq. 15). The set of true positives is defined as P\S; the true
positive rate rTP is linearly related to the number of true positives. False positives and the false positive rate rFP are defined analogously but with B
instead of S (eq. 16–17). Even if rFP is fixed, t (and thus P) can still vary if tX1 and tX2 change in the opposite direction. Changing t at fixed rFP is
called detector weighting. For example, rFP~0:01 for all 6 thresholds t marked by the arrowheads. For the threshold labeled as ‘‘equal X1 ^ X2 ’’ the
two detectors are combined in equal weights. ‘‘10| more X1 ’’ refers to the weight of X1 relative to X2 . ‘‘Only X1 ’’ means that X2 has zero weight and
therefore X1 ^ X2 is the same as using X1 only. ‘‘10| more X2’’ and ‘‘only X2 ’’ have analogous meanings. Finally, the threshold denoted as t0

characterizes the optimally weighted X1 ^ X2 , which by definition has the highest rTP for each rFP. Black circles in (B) indicate rTP for all 6
thresholds, at rFP~0:01, and thus report on the corresponding performance. The optimal X1 ^ X2 clearly outperforms the equally weighted one,
which in this case happens to perform precisely as well as ‘‘only X1 (their circles overlap). (B-C) Obtaining rTP for all rFP[½0,1� results in receiver
operating characteristic curves, which describe the performance of coevolution detectors with respect to theoretical random, and perfect, detectors.
Each curve is determined by the parameter set h, which includes t and therefore the weights on combined detectors. Integrating a curve on ½0,a�
yields the area A(a,h), which is used as a scalar measure of performance (eq. 18, Figure 4, 5). Conditions: E~C½3,3�; X1~MIp; X2~CoMap; protein
family = ABC-C; optimal phylogenetic filtering.
doi:10.1371/journal.pone.0036546.g003
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classes Ck,(k~1, . . . ,K) were used. This gave NK{1~109
adjustable parameters tXn

k under the constraint expressed by eq.

13. In addition to this, filtering at separate sXn

k for each Ck and Xn

provided NK~110 parameters and so the parameter space H had

a dimension of dimH~219. (Note that in Figure 2A the same sk is

used for all Xn.) To reduce dimH, the present work employed a

heuristic optimization strategy for eq. 19, whose details are

described in Text S1 (see also Figure 3, S1 and S8).

Structural Models and Contact Pairs
The set S of contact pairs was defined as those pairs p~(i,j) for

which the distance d(i,j) separating the Cb atom of position i from

that of j is less than 8Å in a structure representing the whole

protein family. The set B of distant pairs was defined by

requiring d(i,j)w30Å. The remaining ‘‘intermediate’’ pairs

(8Aƒd(i,j)ƒ30Å) were excluded from D as in ref. [37] because

a large fraction of them may be connected by chains of coevolving

contact pairs [40,42]. Thus h� was obtained using only S and D.

These sets were derived separately from Sav1866 (PDB: 2HYD)

[44] and CFTR (homology model [45]) representing the ABC-B

and the ABC-C family, respectively.

h� includes the collection t� of optimized thresholds, which

determines the set Pm of predicted pairs (eq. 15). Next, a collection

fP\Sng of sets of predicted contact pairs was obtained by using

fSng, which was derived from a set of structures that correspond

to distinct conformations of the same protein. For the ABC-B

family, this set contained Pgp in the inward (3G5U [46]) and

outward-facing [47] conformation, and for the ABC-C family,

Figure 4. Influence of alignment filtering. (A) Random filtering and phylogenetic filtering both remove sequences from the unfiltered
alignment, which is represented by the large tree a, but result in trees (b and c) that differ in the length of terminal branches (red). Tree b (random
filter) is similar to a in containing many extremely short terminal branches that are known to challenge coevolution detectors. In contrast, tree c
(phylogenetic filter) lacks short terminal branches. (B) Opposing effects of progressively increasing strength of filtering, which leaves gradually fewer
sequences in the alignment. The top graph shows, for the phylogenetic filter, the minimal sequence-sequence distance d(xp,xq) among all sequence
pairs in the filtered alignment. The two lower graphs show performance, measured by A(a,h), of a coevolution detector for both the phylogenetic
and random filter. The first effect, specific to the phylogenetic filter, is a rise of d(xp,xq) with increasing strength of filtering (decreasing number
remaining sequences). This reflects the disappearance of short terminal branches, which in turn improves performance, until a maximum is reached
around 250 sequences remaining. The second effect is the deterioration of performance with increasing strength of filtering, since fewer sequences
provide less information for the coevolution detector. This effect is clearly seen for the random filter regardless of the number of remaining
sequences but it becomes apparent for the phylogenetic filter only with strong filtering. Conditions: detector = MIp; protein family = ABC-C. Trees
were plotted using FigTree v1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/).
doi:10.1371/journal.pone.0036546.g004
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CFTR in the inward [48] and outward-facing [45] conformation.

Consequently, a small fraction of predicted pairs were contact

pairs selectively in some but not other conformations: for these

pairs (i,j)=[P\Sn but (i,j)[P\Sm (n=m).

Amino Acid Substitution Model and Rate Classes
The definition of rate classes Ck requires some discussion on the

amino acid substitution model used in this study. The same model

also played a role in the estimation of sequence-sequence distances

(which were used for alignment filtering, as explained in the next

subsection), in the inference of phylogenetic trees and in the

evaluation of the coevolution statistic of certain detectors.

Sequence-sequence distances and trees were both estimated by

maximum likelihood using RAxML v7.0.4 [49].

The substitution of amino acid residues at each position was

modeled as a continuous-time Markov process with a distinct

transition rate between each pair of amino acids. The transition

rates used in this study were those described by the WAG-F-C
model [50]. In this model, the transition rates are scaled by a

specific factor at each position i; the scaling factor is known as the

(overall) substitution rate Vi. In other words, the substitution rate

is allowed to vary among positions (p.110 of ref. [51]). Note that

substitution rate is inversely related to ‘‘residue conservation’’.

Considering all positions, the collection fVig of rates is a set of

independent, identically distributed random variables. The distri-

bution is C-type with cumulative density function FC. Given the

number M of rate classes of single positions a new random

variable, the discretized substitution rate Ri, is defined as

Ri~1z FC (Vi)M , ð20Þ

where : denotes the floor function. It follows directly from

definition eq. 20 that Ri takes values on f1, . . . ,Mg and has

discrete uniform distribution with probability mass function fpkg
such that pk~1=M (k~1, . . . ,M ).

This uniform ‘‘prior’’ probability mass function fpkg can be

updated, for each position i, to the ‘‘posterior’’ the maximum

likelihood estimate fp�kg
i
when an alignment and a tree is given. In

this study this was done with CoMAP v1.3.0 [19] using the tree

inferred from the alignment (which corresponds to an empirical

Bayes approach; see p. 114 of ref. [51]). The estimated discretized

substitution rate ri of position i is defined as the mode of the

posterior distribution fp�kg
i
:

ri~lup�kƒp�l ,Vk[f1, . . . ,Mg: ð21Þ

Given ri and rj for each position pair (i,j)[V, the class C½m,n� of

pairs is defined as

Figure 5. Optimizing the prediction of coevolving position pairs. Performance of several coevolution detectors (identified by color keys)
characterized by (A) receiver operating characteristic curves and (B) partial area A under these curves. Top graph in (B): low specificity (a~0:1);
bottom graph: high specificity (a~0:001). h� (above magenta bars) indicates the optimally weighted detector combination CoMap^MIp after
partitioning, optimal filtering and optimal class weighting (Figure 2). These optimal conditions yield the parameter set h� (eq. 19), which determines
the set P(h�) of predicted coevolving pairs, presented in Figure 6 and Table 2, 3. These results were obtained from the ABC-C dataset.
doi:10.1371/journal.pone.0036546.g005
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C½m,n�~f(i,j)Dri~mandrj~ng|f(i,j)Drj~mandri~ng, ð22Þ

where m,n[f1, . . . ,Mg. By the symmetry of the right side of eq.

22, C½m,n�~C½n,m� so it can be required that mƒn. Then the

number K of classes of pairs is derived from M according to

K~(Mz1)M=2. In this work M~4 and so K~10 (Figure S2).

The notation C½m,n� can be replaced by Ck using any function

that maps each ½m,n� to a unique k. The present work uses the

simpler Ck notation to refer to a rate class in general (as in eq. 10),

and the C½m,n� form to denote a specific class (e.g. C½2,4�). Similarly,

the symbols P½m,n�, t½m,n� and s½m,n� have the same meaning as Pk, tk

(eq. 11–12) and sk (eq. 14), respectively.

Multiple Sequence Alignments
A set of ABC-B and a set of ABC-C protein sequences were

collected from UniProt release 15.8 using HMMER3 [52]. In both

the ABC-B and ABC-C family the ‘‘full transporter’’ is composed

of two homologous ‘‘half transporters’’, each of which contains a

TMD and an NBD arranged as TMD-NBD (the ‘‘-’’ means that

the domains are on the same subunit). But there are important

differences between the two families. In in most ABC-B proteins

the two halves constitute separate subunits (domain arrangement:

TMD1-NBD1 TMD2-NBD2) while in all ABC-C proteins the

halves are covalently linked (TMD1-NBD1-TMD2-NBD2).

Moreover, in ABC-B proteins the two halves TMDn-NBDn
(n~1,2) are in general identical or very similar to each other but in

ABC-C proteins the halves have extremely diverged from each

other. For these reasons, the ABC-B sequence set contained half

transporters but the ABC-C set contained full transporters.

A separate multiple alignment (Dataset S1 and S2) was made

from each set using MAFFT v6.717b [53] from which all gap-

containing positions were removed while keeping the remaining

positions aligned. The resulting ABC-B alignment contained 1585

sequences, the ABC-C alignment 553 sequences.

Alignment Filtering
For each unfiltered alignment D and filter type F , a sequence

fD(F ,s)g,s~2, . . . ,n, of filtered alignments was generated by

removing n{s sequences, where n is the number of sequences in

D. As mentioned above eq. 9, the type specifies the order of

removal. The two types used in this work are called phylogenetic filter

and random filter (Figure 4). As discussed before, the role of the

phylogenetic filter employed in this work is to remove ‘‘sequence

redundancies’’ from the alignment. In contrast, the random filter

will be used to study how the performance of coevolution detectors

depend on the number of aligned sequences.

In case of the random filter, the order of removal is given by a

random permutation of sequences. The phylogenetic filter applies

a deterministic permutation rule to the alignment D(Fphylo,s)
before the next sequence is removed and D(Fphylo,s{1) is

generated. The rule is to consider the pair-wise evolutionary

distance of all sequence pairs (xm,xn), where xm[
D(Fphylo,s),xn[D(Fphylo,s) and 1ƒm,nƒs,m=n. Next, the pair

(xp,xq) that has the shortest distance is found. Note that this is the

most redundant pair according to the distance measure. Next,

either xp or xq is swapped with x1 producing the new permutation.

Removing the first sequence of the new permutation creates

D(Fphylo,s{1) and completes the cycle. Thus s is decremented by

one in each iteration of the cycle.

In terms of a phylogenetic tree, a single cycle is equivalent to

finding the pair of tips connected by the shortest distance and

stripping away one of these tips (with its terminal branch). As this

cycle is repeated, filtering becomes ‘‘stronger’’, the number of

sequences decreases, and the minimal sequence-sequence distance

d(xp,xq) increases in the alignment (Figure 4B top graph).

To save computational time, only a subsequence of alignments

D(F ,sk),k~1, . . . ,10 were analyzed with coevolution detectors.

For k~1, . . . ,9, fskg was chosen to be uniformly spaced (within

rounding error) between 1 and n, whereas s10 was set to n
corresponding to the unfiltered alignment.

Selected Coevolution Detectors
Three families of coevolution detectors were used in this study:

CoMap [19,38], mutual information (MI) [54] and CAPS [55].

The CoMap family is conceptually related to detectors in ref.

[11,14,37]. This family contains detectors of the form CoMap-Y -

Z, where Y is either correlation or compensation; and Z is either simple,

Grantham, polarity, volume or charge [19]. Unlike other Zs, simple can

be combined only with correlation but not with compensation. In this

work CoMap-correlation-simple is referred to as CoMap. The

mutual information family contains MI [54] and MIp [31]. The

CAPS family, closely related to McBASC and other detectors

[13,16], consists of CAPS and CAPS-t, where ‘‘t’’ denotes time

correction [55].

The selected detectors strikingly differ in whether, and how,

they account for the non-independence of phylogenetically related

sequences. CoMap accounts for this non-independence from ‘‘first

principles’’. This detector considers the set of branches fBng of a

phylogenetic tree as a sample space on which, for each position i, a

random variable Xi : fBng?Rz is defined, whose value is the

expected number of substitutions that occurred along a given

branch Bn. For each pair (i,j) the statistic of CoMap is the

correlation coefficient between Xi and Xj . In contrast, MIp and

CAPS-t uses empirical correction formulas, whereas MI and

CAPS assumes statistical independence of sequences.

Another difference among detectors is related to the transition

rates of the substitution process, which is intimately related to the

physico-chemical similarities between amino acids. CoMap and

CAPS allows realistic, heterogeneous rates by utilizing the

empirical rate matrix of the WAG-F-C model. MI and MIp,

however, assume the same rate for all types of transition.

Unfortunately not all detectors could be applied to all

alignments. The time complexity of CAPS is O(s2), where s is

the number of sequences in the alignment. This made alignments

with sw400 intractable for CAPS in the authors’ implementation

[55]. Due to a segmentation fault, CoMap v1.3.0 [19] failed to run

on alignments with roughly sw500 and with many variable

positions. For these reasons only MI and MIp were applied to the

large (sw1500) alignments of ABC-B sequences and a few variable

positions, whose discretized substitution rate was typically r~4,

needed to be removed from the weakly filtered ABC-C alignments

(s&500). Consequently the size of certain rate classes, especially

that of C½4,4�, was smaller than others.

Results

The procedures of the framework described above were carried

out separately for the ABC-B and ABC-C protein family. The

central goal of these procedures is the optimal detection of

coevolving pairs of positions, given the sequence alignment data

and the structural models representing each family, as well as the

selected coevolution detectors. More specifically, the procedures

search for the optimal parameter set h� (eq. 5, 19), given a

structural model and the set of contact pairs. As Figure 2A

illustrates, h in general incorporates the parameters fskg, which

determine the strength of phylogenetic alignment filtering (eq. 9),
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and the parameters ftXn

k g, which control both the weights on

substitution rate classes (eq. 11–13) and the weighted combination

of detectors (eq. 15). Moreover, h� determines the set P(h�) of

optimally predicted coevolving pairs (Figure 2B) and thus set

P(h�)\S of pairs, which represents the coevolving subset of the

known side chain contacts.

In what follows, the following questions are studied: To what

extent do individual procedures improve the performance of

coevolution detectors in the prediction of known contacts? What

are the sources of improvement? Then, the pairs in P(h�)\S are

further analyzed and presented in light of conformational changes.

Extent and Sources of Improvement by Optimization
Procedures

Figure 5 summarizes, for the ABC-C data set, contact

prediction performance under h� (magenta, optimal Co-

Map^MIp) or under conditions lacking some or all of the

optimization procedures. The receiver operating characteristic

curves (Figure 5A) demonstrate that the relative performance

under various conditions depends on the false positive rate rFP, or

reverse specificity. Consequently, the partial area A(a,h) under

these curves reports on the relative performance in a way that

depends on the upper limit a of integral of rTP with respect to rFP

(eq. 18, Figure 5B). For most optimization procedures the relative

improvement in performance was greater at high specificity

(a~0:001, bottom bar graph) than at low specificity (a~0:1, top

bar graph). Importantly, a~0:001 is more relevant to the

predicted coevolving pairs (next section) because those represent

the fraction c~0:001 of all pairs (eq. 8), whose vast majority is not

in contact (the structural model contained 63| more distant pairs

than contact pairs).

Figure 5 also demonstrates that all optimization procedures

contributed to the improved performance under h�. At a~0:001,

the greatest improvement was effected by the optimally weighted

combination of CoMap and MIp, relative to using either of the

two detectors alone. For computational efficiency (Text S1) the

remaining 9 detectors were omitted from the weighted combina-

tion. Discarding these detectors may be justified by the result that

they were clearly inferior to CoMap and MIp in performance

(Figure 5 and Figure S5 and S6). At low rFP (Figure 5A) and at

a~0:001 (Figure 5B) CoMap greatly outperformed even MIp.

Despite this, the optimally weighted CoMap^MIp performed

markedly better than CoMap alone, which demonstrates the utility

of weighted combination of detectors.

Figure 3 illustrates the principle of weighted combination of

coevolution detector X1 and X2, and presents performance for

different relative weights. The figure takes as an example X1~
MIp and X2~ CoMap applied to substitution rate class C½3,3� for

the ABC-C family and demonstrates that equal weighting is not in

general optimal. In this case, the equally weighted X1 ^ X2 failed

to induce any improvement in performance (circles in Figure 3B)

in comparison with using X1 only. This result highlights the

significance of (possibly unequal) detector weighting. As mentioned

before, these effect were greater at low rFP (compare Figure 3B to

C).

To understand why phylogenetic filtering improved perfor-

mance (Figure 5), it is useful to recall that this filter type was

designed to remove the redundancies induced by closely related

sequences, since these redundancies compromise the performance

of all coevolution detectors. Figure 4 exemplifies the effects of

alignment filtering for MIp; similar results were found for all other

detectors (Figure S7 and S8). Comparing tree c to a in Figure 4A

shows that strong phylogenetic filtering had a dual effect on the

tree representing the alignment: (i) very short terminal branches

(which indicate redundancies) disappeared but (ii) relatively few

sequences remained in the alignment. The inverse relationship

between effect (i) and (ii) was further established by applying the

phylogenetic filter at gradually increasing strength (Figure 4B top).

Phylogenetic filtering had a dual effect also on performance

(Figure 4B). Weak filtering (when the number remaining sequences

s was between ca. 300 and 550) improved, whereas strong filtering

(sv200) deteriorated performance. Both effects were more

pronounced at a~0:001 (bottom graph) than at a~0:1 (middle

graph).

The dual effect of the phylogenetic filter on both tree and

performance suggested that the increase in performance was

related to effect (i) on the tree, whereas the decrease in

performance to effect (ii). This hypothesis was tested by applying

the random filter, which was designed to dissect effect (ii) from (i).

In line with this design, strong random filtering did not affect the

distribution of the length of terminal branches (tree b, Figure 4A).

Performance (dashed lines in Figure 4B), however, deteriorated at

increasing rate with respect to the strength of random filtering.

This result, in agreement with the above hypothesis, suggests that

the rate of performance deterioration by effect (ii) exceeds the rate

of performance improvement by effect (i) at strong filtering.

Therefore, optimizing phylogenetic filtering (by finding the

maximum location s�) is equivalent to balancing these two rates

(Figure 4B, bottom).

Partitioning position pairs (explained by Figure S2) into 10

substitution rate classes Ck amplified the filtering-induced

improvement in performance particularly in the case of CoMap

(Figure 5). Consistently, s� depended on Ck for all detectors,

especially for CoMap (see empty circles marking s� in Figure S8).

This dependence is addressed by the combination of filtering and

partitioning, which allows the conditioning of s on Ck (eq. 14).

Another benefit of partitioning was related to the possibility of

weighting classes. Optimal class weighting substantially improved

the performance of CoMap, MIp and MI at a~0:001 (Figure 5).

The sources of this improvement were clarified by two further

results. First, the distribution of the statistic of each detector clearly

depended on Ck (Figure S3 and S4). Second, the conditional

version of the performance measure A was calculated given each

Ck (Figure S7, S8 and in particular Figure S9). This uncovered the

dependence of performance on substitution rate; the dependence

was especially strong for CoMap. In light of these results, the

advantage of class weighting is that it removes both types of

dependence by conditioning threshold t on Ck (eq. 14).

Predicted Coevolving Pairs
When the fraction c (eq. 8) of predicted position pairs was set to

0.001, 95 and 344 coevolving pairs were predicted for the ABC-B

and ABC-C family, respectively. The roughly 4-fold difference

between these numbers was due to neglecting the relatively small

asymmetry between the two homologous halves of ABC-B proteins

by creating an alignment from half ABC-B transporter sequences

(Methods). Thus, for all pairs (i,j), both position i and j was

restricted to the same half ABC-B transporter (this restriction was

not used for ABC-C transporters, whose halves are greatly

asymmetric).

The main focus of this study is not the entire set P:P(h�) of

predicted pairs but the subset S\P, where S is the set of contact

pairs observed in a representative structure. For the optimization

procedures, S was calculated from the outward-facing Pgp and

CFTR structures for the ABC-B and ABC-C family, respectively.

S\P contained 41 pairs for the ABC-B and 95 pairs for the ABC-

C family. For both families the positive predictive value DP\SD=DPD
was an order of magnitude higher than the fraction DSD=DVD of
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contact pairs in the set V of all pairs. For example, for the ABC-C

family DP\SD=DPD~0:25 whereas DSD=DVD~0:011. Consequently,

the separation j{i between predicted pairs (i,j) in a-helices was

distributed in a way that reflected a-helical periodicity (Figure S10,

Movie S1) [29,36].

As a corollary of the unequal size of the 10 substitution rate

classes fC½m,n�g,(1ƒmƒnƒ4) together with the weighting of

these classes, the size of sets P½m,n�:P\C½m,n� was also non-

uniform. Most predicted pairs (i,j) fell into class C½3,4� (Figure S1),

whose definition (eq. 22) asserts either that the discretized

substitution rate ri at position i equals 3 and rj~4 or that ri~4
and rj~3. As expected, relatively variable positions (exhibiting

r~3 or r~4) clustered mainly in the 12 transmembrane helices

(TM1-TM12), whereas relatively conserved positions (r~1 or

r~2) were typically located in the 4 intracellular loops (ICL1-

ICL4) and the two NBDs, particularly at the central dimer

interface (Figure 1B). The positions from which predicted pairs

were composed tended to cluster also within the TM helices

(Figure 1C). The latter finding, however, does not necessarily

imply a natural tendency of coevolving pairs to reside in the TM

helices. Rather, it can be seen as a consequence of the previous

two results that link, via substitution rate, prediction sensitivity to

structural localization.

For detailed exploration of the predicted coevolving pairs

(Table 1, 2, 3, Dataset S5, S6), the set P\(Sout|Sin) was

considered, where Sout and Sin is the set of contact pairs in the

outward and inward-facing conformation, respectively, of Pgp or

CFTR. Thus all predicted pairs were included that were in contact

in at least one of these two conformations. At the same time, dout,

din and

Dd~dout{din ð23Þ

were noted, where dout(i,j) and din(i,j) is the 3D distance

separating pair (i,j) in the outward and inward-facing conforma-

tion, respectively. Therefore, Dd is the change of distance induced

by the complete transition from the outward to the inward-facing

conformation.

For the pairs of the ABC-B family (Table 1) and for those in the

NBDs of the ABC-C family (Table 2 and Figure 6A) the set of

interest was further narrowed to

H1~P\(Sout|Sin)\G1, ð24Þ

where G1~f(i,j)Dj{iw4g, i.e the set of pairs fulfilling the

condition that i and j are separated by more than 4 positions in

the sequence. This constraint removed ‘‘obvious’’ contact pairs,

whose distance is constrained by primary rather than secondary to

quaternary structure.

For the pairs of the TMDs of ABC-C proteins (Table 3,

Figure 6B and Movie S2), a more restrictive condition was used to

define the set G2~f(i,j)Di[TMm,j[TMn,m=ng. This means that

the set

H2~P\(Sout|Sin)\G2 ð25Þ

contains those pairs (i,j) that were predicted to coevolve, for which

i was observed to contact j in at least one conformation, and for

which i and j localized to distinct TM helices. In this case, the

notion of a ‘‘TM helix’’ included the helices of the ICLs since

those are contiguous extensions of the sensu stricto TM helices.

Figure 1A and 6 show that each of the 4 ICLs contains two helical

extensions and a single ‘‘coupling helix’’ [44], and that pairs of

ICLs form compact structural units that predominantly interact

with a single NBD: (ICL1,ICL4) with NBD1 (Figure 6A) and

(ICL2,ICL3) with NBD2. These units of 4 parallel helices are

hereby termed intracellular bundle 1 and 2 consistently with the

interacting NBD.

Figure 6. Coevolving position pairs in ABC-C proteins. (A) Labeled residue side chains connected by lines form subset H1 of predicted
coevolving position pairs (eq. 24, Table 2) in NBD1, including (E474, R1066) that connects NBD1 to ICL4. Large colored numbers identify helices of the
TMDs. Helix H1 of NBD1 is also labeled as in Figure 7. (B) The subset H2 of predicted pairs (eq. 25, Table 3) are indicated in a topological map of the
TMD dimer, in which 12 TM helices (large colored numbers), 2 wings and 4 intracellular loops (ICLs) are labeled. The map was obtained by cylindrical
projection of the two polypeptide chains of the TMD dimer. Note that TM1-TM3 are shown twice. In both A and B the color of the lines connecting
predicted pairs reports on the extent of distance change DDd D induced by the modeled outward ? inward conformational transition (eq. 23). Black:
DDd Dv3; purple: 3ƒDDd Dv6; red: 6ƒDDd D.
doi:10.1371/journal.pone.0036546.g006
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Pairs Involved in Conformational Changes
Comparison of the CFTR structural models in the outward and

inward-facing conformation (Movie S2) revealed possible confor-

mational transitions [48,56]. The most striking change during the

inferred outward ? inward transition was the dissociation of the

tight dimer of NBDs, the closure of the outward-facing cleft

delineated by the wings (Figure 7A) and the opening of the inward-

facing cleft between the intracellular bundles (Figure 7B). While

the NBDs and the lower (i.e. proximal to the NBDs) parts of the IC

bundles moved as essentially rigid bodies, the upper parts of IC

bundles and especially the wings appeared flexible. A prominent

component of that flexibility was the translation of some TM

helices along their axes relative to other helices.

These inferred movements during the outward ? inward

transition were quantified by the distance change Dd (eq. 23),

whose extent DDd D is indicated by the color of the line connecting

each pair in Figure 6, 7 and Movie S1, S2, S3. In Table 2, 3,

Figure 6, 7 and in the main text below residues and positions are

given for human CFTR (UniProt ID: CFTR_HUMAN), whereas

homologous positions for 599 other ABC-C proteins can be

obtained from Dataset S4. (E873, G1003) and (Q179, V260) stood

out among the pairs in H2 (and in fact also in H1), for which DDd D
was relatively large (§6Å, red lines). The uniqueness of these two

pairs was established by the fact that they contributed to the

structural contacts between the closed wings and IC bundles,

respectively, but were separated by the cleft between the wings/

bundles in the opposite conformation (Figure 7A-B, Movie S3).

For the rest of the red pairs (i,j) in H1, position i resided in the

same IC bundle or wing as j (Figure 6B). These included (L293,

I942) in IC bundle 2, as well as (C225, P324) and (F311, A876) in

wing 1. As Figure 7B and Movie 24 illustrate, the separation of

these conformation-specific contact pairs was due to the inferred

bending and translation of TM helix 5 with respect to TM7 and

TM8. TM4 and TM5 was unusual in that they exhibited marked

translation relative to each other at their extracellular ends,

containing (C225, P324), whereas the same helix pair appeared

relatively rigid in ICL2 (see the 4 unlabeled black and purple pairs

in Figure 7B). In this regard, ICL4, formed by TM10, TM11 and

a coupling helix directly interacting with NBD1, was similar to

ICL2 (Figure 6B). Notably, the coupling helix of ICL4 contains

Table 1. Coevolving Position Pairs in ABC-B transporters.

position i position j 3D distance (Å)

Pgp-N Pgp-C region ri Pgp-N Pgp-C region rj dout din Dd

TMDs

A58 A718 TM1 2 Q195 Q838 TM3 2 5.2 11.7 –6.4

I59 I719 TM1 3 G124 I765 TM2 3 15.5 5.4 10.1

F151 V792 ICL1 2 I369 I1012 TM6 ext. 1 7.1 11.1 –3.9

Q158 Q799 ICL1 0 N371 K1014 TMD1-NBD1 2 6.3 13.8 –7.5

S228 A871 TM4 2 A301 F944 TM5 3 5.5 9.3 –3.8

L236 L879 TM4 2 T294 I937 TM5 3 5.7 9.6 –3.9

T240 A883 ICL2 2 A361 S1004 TM6 ext. 1 7.2 27.1 –19.8

D241 L884 ICL2 3 Y363 A1006 TM6 ext. 3 6.0 30.2 –24.1

NBDs

E393 T1036 S1 3 K416 E1059 S2 3 5.4 22.2 –16.8

R395 G1038 S1 3 M450 K1093 S4 3 5.1 21.3 –16.1

N396 E1039 S1 2 G412 G1055 S2 2 5.8 22.5 –16.7

H398 V1041 S1 3 G412 G1055 S2 2 5.3 26.0 –20.6

H398 V1041 S1 3 E448 A1091 S4 3 3.6 22.6 –19.0

S400 N1043 S1–S2 loop 3 T447 L1090 H1–S4 loop 3 4.7 21.5 –16.8

K411 Q1054 S2 3 V605 R1250 S10 3 5.5 7.5 –1.9

L415 L1058 S2 2 A599 V1244 S9 2 6.6 27.8 –21.1

Q421 Q1064 S2–S3 loop 2 V597 L1242 S9 3 6.7 5.6 1.0

V423 L1066 S3 1 V597 L1242 S9 3 5.1 3.8 1.3

V437 V1080 H1 2 L553 L1198 S7 1 5.3 15.0 –9.6

M450 K1093 S4 3 D457 E1100 S5 2 5.4 8.7 –3.2

A485 A1128 H3 3 D521 S1166 X-loop 2 6.3 17.3 –11.0

N508 N1153 H4–H4b loop 1 V568 V1213 H6 3 4.3 12.1 –7.7

V597 L1242 S9 3 K609 H1254 S10 2 6.4 19.2 –12.8

These position pairs (i,j) form subset H1 of the predicted coevolving pairs in the ABC-B family. By definition (eq. 24), (i,j)[H1 means that i and j are in contact in either
the outward or inward-facing conformation and are separated by more than four positions in the sequence. Because the ABC-B alignment contained only half
transporter sequences, no pairs were predicted between the N and the C terminal halves. Pgp-N and Pgp-C: residues and positions are given for both the N and the C
terminal half of human Pgp (UniProt ID: MDR1_HUMAN), respectively. The Pgp-N or Pgp-C position numbers can readily be converted to position numbers of other
ABC-B half transporters using the mappings given by Dataset S3. ri and rj : discretized substitution rate (eq. 20) at position i and j, respectively; 3D distance: between
position i and j; dout and din : distance obtained from structures representing the outward [47] and inward-facing [46] conformation, respectively; Dd:dout{din (eq. 23).
A more extensive presentation of predicted pairs is available in Dataset S5.
doi:10.1371/journal.pone.0036546.t001
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R1066, which together with E474 formed the only pair in H1 that

links an NBD to any other domain; DDd D was relatively small for

this pair too.

Discussion

The new framework employed in this study is integrative in at

least two ways. In one sense, it allows joint analysis of sequence

and structural data for some protein family. In another sense, the

framework integrates over several detectors by combining them in

a weighted manner. In both senses, the present work surpasses

previous studies, which analyzed sequence and structural data

separately and used either a single detector [11,18–25] or a

combined detector with equal weights [30].

How does joint analysis of sequence and structure aid the

prediction of coevolving position pairs? A long-standing challenge

to accurate prediction of coevolving positions has been the lack of

trusted datasets on coevolution, which could help optimize the

sequence-based coevolution detectors. The new framework

attempts to overcome this obstacle by making use of a solved

structure and defining the objective function of the optimization in

terms of the prediction of known contact pairs (eq. 5, 19). The

justification of this approach certainly requires some assumptions

as already discussed (eq. 1–6), but these assumptions are rather

weak. In particular, it is not assumed that the set of side chain

contacts contain pairs that are equally tightly coupled in terms of

coevolution. On the contrary: the ultimate goal of the present

approach is to distinguish contact pairs that coevolve tightly from

contact pairs that evolve quasi-independently. Note, however, that

the new framework is inapplicable to de novo structure prediction

problems as it relies on an existing contact map.

In its present form, the new framework takes a single input

structure, representing only one conformation and only one

member of the analyzed protein family. How would an alternative

input structure (from the same family) influence the predictions?

Although the present work does not address this question in depth,

preliminary analysis indicates that switching to a different input

structure affects roughly 10 to 35% of the predicted pairs

depending on how different the alternative structure is relative

to the original one (Figure S11). This raises the question: when

multiple structures or structural models are available within a

protein family, which one should be selected as structural input?

Intuitively, high resolution X-ray structures are expected to be

more useful inputs than lower resolution X-ray structures or

homology models, and this difference might be manifested in the

performance of contact prediction. Comparing a few X-ray

structures and homology models in the ABC-B (Figure S12) and

ABC-C (Figure S13) family indicates some differences in

performance. Remarkably, performance with the 3.8 Å Pgp X-

ray structure (3G5U) [46]) was lower than that with the 3.0 Å

Sav1866 X-ray structure (2HYD) [44] or with the Pgp homology

models [47], whose TMDs were based on the same Sav1866

structure. It remains to be determined how structural heteroge-

neity of homologs, as well as conformational heterogeneity within

each homolog, can be accounted for to improve the prediction of

coevolving residues.

Recent studies [8,9,19–21,40,42,57] presented sophisticated

approaches for the prediction of higher order coevolving networks

instead of merely coevolving pairs. Some of these reports

[8,9,40,42] demonstrated that accounting for higher order

interactions vastly improved contact prediction performance.

Although the present framework ignores higher order networks,

this may not undermine its power substantially because it uses

contact prediction only to optimize the parameters that control

coevolution detectors. It remains an open question to what extent

these parameters are influenced by ignoring networks. Without

doubt, the ability to infer whole networks of coevolving positions

would be beneficial for the clarification of biophysical mechanisms

and even for rational design of mutants, although experimental

testing of ternary or higher order interactions is usually impractical

(but see ref. [1]).

The new framework is quite general as it can in principle

incorporate optimization procedures in addition to the three

procedures used in this study: alignment filtering, class weighting

and detector weighting (Figure 2A). While class and detector

weighting are novel procedures, phylogenetic filtering has already

Table 2. Coevolving Position Pairs in the NBDs of ABC-C transporters.

position i position j 3D distance (Å)

CFTR region ri ref. CFTR region rj ref. dout din Dd

I448 S2 3 L454 S3 3 5.1 5.1 0.0

S466 H1 1 L475 H1–S4 loop 2 7.8 7.8 0.0

V510 H3 3 [67,69] R516 H4 3 7.3 7.2 0.1

C524 H4 2 [66] L558 H5 1 4.8 4.9 20.1

L541 X-loop 1 T547 C-loop 2 5.9 5.9 0.0

K615 H7–S9 loop 4 Y627 S10 3 6.8 6.8 20.1

L1242 S3 2 I1398 S8 2 6.1 6.0 0.0

E1321 H4 3 A1391 H6 3 7.7 8.0 20.2

K1389 H6 2 E1409 H7 2 6.4 6.2 0.1

L1399 S8 1 C1410 H7–S9 loop 2 5.8 5.7 0.1

E474 H1–S4 loop 2 R1066 coupl. H (ICL4) 1 [71–73] 7.5 9.3 21.8

The table list those pairs (i,j) of the set H1 (eq. 24), for which either i, j or both are located in an NBD of ABC-C proteins. For all of these pairs, except for (E474, R1066),
both i and j was found in the same NBD. a-helices (H) and b-strands (S) are numbered according to ref. [74]. CFTR: residues and positions are given for human CFTR
(UniProt ID: CFTR_HUMAN). These position numbers can readily be converted to position numbers of other ABC-C transporters using the mappings given by Dataset S4.
Other columns have analogous meaning to those in Table 1 with the distinction that for this family the outward and inward-facing conformation correspond to the
models described by ref. [45] and [48], respectively. A more extensive presentation of predicted pairs is available in Dataset S6.
doi:10.1371/journal.pone.0036546.t002
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been employed by the majority of published analyses of residue

coevolution but with crucial differences to the current work. In all

previous analyses, except ref. [22], the strength of filtering was

determined by ‘‘rules of thumb’’, which may have lead to under or

overfiltering and thus to a decline in performance, relative to even

the unfiltered alignment. Moreover, it was previously ignored that

the optimal filtering strength may depend on substitution rate and

the selected coevolution detector, as demonstrated here (Figure

S8).

Random filtering in the present work (Figure 4 and S8) revealed

how performance scales with the number of sequences in the

alignment [22]. The scaling itself depended both on substitution

rate and the selected coevolution detector. CoMap showed the

highest rate of improvement with increasing number of sequences,

at least at those rates that were associated with the highest

performance (Figure S8). This result suggests that CoMap can

make use of the growth of sequence databases more efficiently

than the other selected detectors. The same result also indicates

that relatively parameter-rich, ‘‘tree-aware’’ detectors (like CoMap

[19,38] and those in ref. [11,20,36,37]) depend more strongly on

data quantity, and therefore their advantage over ‘‘tree-ignorant’’

detectors might have been overlooked previously [29].

Even though patterns of protein evolution may change over

time, modeling time-variable patterns at the sequence level is

already challenging when it is assumed that positions do not

coevolve (see ref. [58] for insights). Therefore, until now, all

coevolution detectors, including those in the present work, have

been designed with the assumption that (co)evolutionary patterns

are constant over time (i.e. persistent).

The assumption of time-invariance hinders the physico-chem-

ical interpretation of certain pairs predicted to coevolve, while

allowing time-variable patterns provides an explanation for these

pairs, namely that they became coevolving from independent (or

vice versa) in some lineages over time. A prime example is the pair

in ABC-C proteins that corresponds to (E873, G1003) in human

CFTR (Table 3 and Figure 7A), which may have become

independent from coevolving as CFTR diverged away from other

ABC-C proteins. Conversely, (R352, D993) was experimentally

shown [59] to form a functionally important salt bridge in CFTR

and yet the present analysis predicted D993 to coevolve with

W1145 and A1146 rather than R352 (Table 2). But this

contradiction is solved by the prediction [59] that D993 is

involved in the functional divergence of CFTRs from other ABC-

C proteins. For some predicted pairs, however, physico-chemical

interpretation is straight-forward; e.g. (E474, R1066) in human

CFTR may form a high-energy salt bridge in the solvent-

inaccessible, hydrophobic interface between NBD1 and the

coupling helices of two intracellular loops (Figure 6A).

Although coevolution detectors assume time-invariance, the

present work did account for those changes in evolutionary

patterns that occurred during long divergence processes following

ancient gene duplications. As standard phylogenetic analysis

suggests (Figure S14), one such duplication is the divergence of

the ABC-B and ABC-C families from each other, which was

followed by the divergence of the N and C terminal half

transporters within the ABC-C family. These early events were

taken here into account by creating separate alignment for (i.)

ABC-B half transporters and (ii.) the N as well as (iii.) the C

terminal ABC-C half transporters. (Note that the sequences in (ii.)

and (iii.) are not separate in the sense that they form a single,

‘‘concatenated’’ alignment of full transporters). This approach is

equivalent to ignoring the distant homology among the three

clades of half transporters and has the disadvantage that those

pairs cannot be identified that have persistently coevolved

throughout the entire shared history of the ABC-B and ABC-C

family. A related drawback is that it cannot be determined

whether a predicted pair in one group of half transporters

corresponds to some pair in another group, and so it cannot be

studied how residue coevolution relates to the functional

asymmetry between ABC-C half transporters.

All coevolution detectors use certain assumptions on the relative

rates of substitution between different amino acids. The present

work used CoMap with the WAG matrix [50], which derives

substitution rates empirically from a large and diverse set of

globular protein families. It remains to be determined to what

extent this affects predictions of coevolving positions in the

transmembrane domains of ABC transporters and other mem-

brane proteins, and how the predictions would be improved by

using empirical transmembrane-specific substitution matrices. The

effect might be small if one considers that empirical matrices are

much more similar to each other than to a ‘‘flat’’ matrix

corresponding to unrealistic, uniform substitution rates, which is

assumed by some detectors like MI.

Structural dynamics received little attention in previous

coevolution analyses [8,23,37,60]. Together with a recent study

[61], this report presents one of the first quantitative and

systematic treatment of this question. Two classes of coevolving

pairs were predicted that are distinguished by the extent DDd D of

the 3D distance change induced by the transition between

opposite-facing conformations of ABC transporters. A simple

functional interpretation is that the pairs with small DDd D are

evolutionarily conserved interactions that stabilize relatively rigid

structural elements, in particular the NBDs and the intracellular

bundles. In contrast, the positions of pairs with large DDd D appear

to have coevolved with each other to stabilize selectively one (set

of) conformation(s) and thus directly regulate the structural

dynamics of substrate transport.

The prevalent mechanistic model of ABC transporters [3–5]

emphasizes a rigid-body movement of the TMDs, which is

characterized by the alternate opening and closing of the cleft

between the two wings and that between the two intracellular

bundles, respectively. However, only two of the predicted pairs

appear to regulate the opening and closing of these clefts directly

(Figure 7A). The rest of pairs with large DDd D (Figure 7B) were

inferred to regulate relative movements of helices within the same

wing or intracellular bundle. This result points toward a more

refined view of conformational changes, in which TM helices bend

and translate along their axes, especially in the wings, which

appear to be relatively flexible.

The predicted coevolving positions in the ABC-C protein family

are given here (Table 2 and 3) in terms of the sequence of human

CFTR, which functions as an ion channel as opposed to all non-

CFTR ABC-C proteins, which are active transporters. While this

does not affect the set of predicted pairs (which can be expressed in

terms of any ABC-C protein sequence using the mappings given

by Dataset S4), the functional difference must be borne in mind at

the mechanistic interpretation of the predictions. Since CFTR

diverged away from the canonical transporter function of the

family [59], it is reasonable to speculate that some fraction of

coevolving pairs became uncoupled in the CFTR lineage during

the divergence. Exactly what fraction of coevolving pairs has been

affected depends on the extent of structural changes that conferred

CFTR with its novel function, which awaits to be clarified by

future structural work on CFTR. Supported by the strict coupling

between ATP hydrolysis and channel gating [62], it has been

hypothesized that the gating of CFTR is essentially the same as the

alternating-access mechanism of an ABC-C transporter, whose

internal gate has been broken by evolution [59,63]. Note that the
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gating mechanism itself is unaffected by the regulatory (R) domain

[64], another unique feature of CFTR in the ABC-C family. If the

‘‘broken gate hypothesis’’ holds, the extent of the function-

changing structural alterations may be quite subtle, as found in the

CLC channel/transporter family [65].

Recent work [26–28] showed that the combination of coevo-

lution analysis with double mutant experiments can be a powerful

tool to clarify mechanistic details of ABC proteins, although these

studies focused only on a few predicted pairs in the NBDs, and in

one case [26] the predicted coevolutionary coupling was not

strongly supported by experimentally measured biophysical

coupling. The current work offers a more complete and systematic

coevolution analysis on ABC proteins. Several pairs presented here

are formed by positions, at least one which was previously reported

to be important for normal structure and function (see references

in Table 2, 3), which hints at the practical value of the predictions.

Moreover, these positions were implicated in cystic fibrosis-related

folding defects of NBD1 [66], in the correction of these defects

[67–69] and, as mentioned above, in CFTR channel gating [59].

This work introduces a new, integrative framework for accurate

prediction of coevolving position pairs, and applies it to the ABC-B

and ABC-C protein families. Each predicted pair can be

interpreted as a side chain interaction that regulates some static

or dynamic property of protein structure. Future experiments

using site-directed mutations at these position pairs may illuminate

mechanistic details that are conserved and salient features of these

protein families.

Table 3. Coevolving Position Pairs in the TMDs of ABC-C transporters.

(TMm,TMn) position i position j 3D distance (Å)

(m,n) or (m’,n’) CFTR ICLp ri ref. CFTR ICLq rj ref. dout din Dd

(1,3) or (7,9) E873 3 G1003 4 14.8 5.8 9.0

(1,11) or (7,5) A872 3 F311 3 9.5 4.8 4.7

A876 4 F311 3 12.7 5.4 7.3

(2,3) or (7,9) G149 1 3 [68] D192 3 5.3 6.4 21.1

M150 1 3 E193 4 13.3 6.0 7.3

(2,11) or (8,5) M150 1 3 L1093 4 7.4 12.7 25.4

I154 1 3 L1082 4 3 5.7 3.7 2.0

K162 1 3 E1075 4 4 5.7 6.7 21.0

G934 3 Y304 3 7.3 9.5 22.3

I942 3 L293 2 3 12.4 6.4 6.0

(3,4) or (9,10) Q179 1 3 V260 2 3 5.7 16.1 210.4

(3,6) or (9,12) V208 3 M348 4 7.6 7.4 0.2

T990 4 S1149 3 7.0 6.8 0.2

D993 4 [59] W1145 3 8.1 5.0 3.1

D993 4 [59] A1146 3 10.6 6.2 4.4

F994 3 S1149 3 5.1 8.3 23.2

L997 4 A1146 3 5.7 7.7 22.0

I1000 4 N1138 3 5.6 5.4 0.2

(3,11) or (9,5) A196 4 W1089 4 4 13.5 7.0 6.5

A196 4 L1093 4 11.4 7.7 3.8

(4,5) or (10,11) C225 3 P324 3 4.9 12.7 27.7

M244 3 R303 3 6.9 8.0 21.2

Y247 4 L295 2 4 7.1 7.0 0.1

K254 2 4 L295 2 4 5.7 7.5 21.9

I261 2 3 M284 2 3 6.9 9.7 22.8

I261 2 3 L288 2 3 5.3 8.4 23.1

E1044 4 2 W1089 4 4 5.5 5.9 20.3

G1047 4 3 H1085 4 2 4.7 3.7 1.0

H1054 4 2 L1077 4 3 7.2 8.6 21.3

(5,6) or (11,12) Q1100 3 N1148 2 [68] 7.9 16.1 28.2

These position pairs (i,j) form subset H2 of the predicted coevolving pairs in the TMDs of the ABC-C family. By definition (eq. 25), (i,j)[H2 implies that i and j are in
contact in either the outward or inward-facing conformation and are located in separate TM helices. Here the notion of a ‘‘TM helix’’ includes the helices of the ICLs. The
left column contains the indices (m,n) of each TM helix pair (TMm,TMn) together with the indices (m’,n’) of the homologous helix pair. ICLp: this column contains the
index p whenever position i falls into ICLp; ICLq has analogous meaning for position j. For the description of all other columns see Table 1 and 2. A more extensive
presentation of predicted pairs is available in Dataset S6.
doi:10.1371/journal.pone.0036546.t003
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Supporting Information

Figure S1 Optimization with a differential evolution
algorithm. The figure shows independent runs, under various

conditions defined by the control parameters of the algorithm, of the

search algorithm for the optimal set t� of thresholds used by some

coevolution detector. t is defined as ft½m,n�g,(1ƒmƒnƒ4), where

each t½m,n� is the coevolution threshold (eq. 11) corresponding to

substitution rate class C½m,n� (eq. 22). Note that t5h and so t is a

subset of parameters for coevolution prediction and is therefore not to be

confused with the set of control parameters. The overall conclusion

from this figure is that the solution t� identified by this heuristic

algorithm is a good approximation of the global optimum. (A) The

algorithm was run independently 12| with the same control

parameters as those used for the predicted pairs presented in

Table 1, 2, 3. Each run was terminated at the 1000th generation (i.e.

iteration). Top graph: improvement of population fitness (defined in

Algorithm 1 of Text S1) in all 12 runs. The rate of improvement

declined after a few hundred generations suggesting that 1000

generations are sufficient. Bottom: the evolution of DP½m,n�(t)D is

shown for one of the 12 runs (identified by black color in top graph).

P½m,n�(t) is the set of predicted coevolving pairs in class C½m,n� and so

this graph further supports the previous conclusion from the top

graph. (B) The approximate t� appears to lie close to the true

optimum since fitness(t�)wfitness(tk), where ftkg is a random

sample of size 106. (C) 1st generation (left): each of the 12

independent run was initialized from a distinct, randomly chosen,

position of the parameter space. 1000th generation (right): all runs

converge to nearly the same t�, indicated by DP½m,n�(t)D. This

suggests that the solution is robust against the randomness inherent

to the initialization of the algorithm. (D) The solution appeared to

be robust against also the control parameters of the algorithm.

(TIF)

Figure S2 Partitioning the set of position pairs into
substitution rate classes. (A) Substitution rate at all 880 single

positions (gray horizontal symbols) present in the ABC-C protein

sequence alignment. The figure demonstrates that the substitution

rate Vi varies greatly with the position index i (here the expected

Vi is shown, which was obtained by the empirical Bayes approach

[51], and normalized to 1 over all i). As expected (eq. 20–21), the

estimated discretized substitution rate ri (eq. 21) correlates with Vi.

(B) Classes C½m,n� of pairs can be defined (eq. 22) using ri and rj for

each of the 386760 position pairs (i,j). Since 1ƒmƒnƒ4, there

are K~10 classes and therefore, using a scalar index k, the

partitioning results in the collection fCkg of classes (k~1, . . . ,K).

(EPS)

Figure S3 Dependence of coevolution statistics on
substitution rate. Distribution of the standardized statistic for

4 distinct coevolution detectors (CoMap, MI, MIp and CAPS).

Red line: distribution over all pairs of positions. Each blue line

corresponds to the distribution over a specific rate class

Ck,(k~1, . . . ,10).

(EPS)

Figure S4 Dependence of coevolution statistics on
substitution rate: tail of distribution. The graphs from

Figure S3 have been expanded to illustrate the effect of

substitution rate on statistical errors. Taking MIp as an example,

point a marks the upper 1st percentile of the red distribution,

calculated from all pairs. Setting the threshold t to the black

vertical line for all pairs is equivalent to expecting the false positive

rate r at 0.01. But since the distribution of the coevolution statistic

varies substantially with substitution rate (see the dispersion of blue

lines here and in Figure S3), r also varies at a fixed threshold. At

the vertical black line, for example, r ranges between point c and

b. Therefore the prediction is biased toward certain rate classes,

such as the one identified by point b. This bias is addressed by

setting a distinct threshold tk for each class Ck (eq. 11).

(EPS)

Figure S5 Performance of variants of CoMap. The figure

demonstrates that CoMap (a shorthand for CoMap-correlation-

simple) outperformed other CoMap variants. These variants differ

from each other in the type of coevolution statistic (correlation or

compensation) and the physical quantity of the amino acid side

chain that is used for the weighting of substitution vectors during

the evaluation of the statistic [19]. This particular set of results

corresponds to rate class C½3,3� but similar findings were obtained

for all other classes.

(EPS)

Figure S6 Performance of variants of CAPS. The graph

presents findings from a previous alignment of ABC-C protein

sequences, to which a phylogenetic filter was applied. This

phylogenetic filter is essentially the same as the one described in

the main text and illustrated by Figure 4 except that in this case

the sequence-sequence distance was expressed as (reverse) percent

identity instead of the maximum likelihood estimate of the number

of substitutions per position (Figure 4B top graph). In the filtered

alignment the closest sequence pair had 70% identity and the time

correction had essentially no effect on performance. Then a single

sequence (which was previously removed by the filter) was

reintroduced to the alignment. This sequence was 98% identical

to some other sequence in the alignment. The bottom bar shows

that time correction worsened performance to the level of a

random detector. In summary, this figure demonstrates that the

time correction of CAPS had either no advantage or it had an

adverse effect on performance.

(EPS)

Figure S7 Random filter: performance as a function of
several variables. This and the next figure explores the

dependence of A on three ‘‘independent variables’’: the number

of remaining sequences (x axes), the substitution rate (individual

graphs labeled with a particular rate class C½m,n�) and the choice of

coevolution detector (color of lines). Each solid line shows how

performance scales with the number of sequences in the alignment

when the distribution of sequence-sequence distance is independent

from this number. These results correspond to the ABC-C family.

(EPS)

Figure 7. Position pairs evolved to regulate conformational transitions. (A-B) The entire TMD dimer is shown in surface representation, and
selected TM helices (identified by colored numbers) are displayed as ribbons. For each NBD, only helix H1 (cf. Figure 6A) is shown, as well as the
bound ATP, if present. The outward-facing model conformation is characterized by a cleft between wing 1 and 2 (A, left) while the inward-facing
model conformation reveals a cleft between intracellular bundle 1 and 2 (B, right). All labeled position pairs (connected by red lines and represented
as spheres) were predicted as coevolving, and represent structural contact in only one of the two conformations, suggesting that these pairs evolved
to regulate conformational transitions. Unlabeled pairs (black connecting lines, stick representation) are expected to remain in contact in both
principal conformations, implying that they evolved to enhance structural rigidity. (A) (E873, G1003) and (Q179, V260) appear to regulate the opening
and closing of the cleft between the wings and that between the IC bundles, respectively, during the conformational change. (B) (C225, P324), (F311,
A876) and (L293, I942) might regulate the relative translation of TM4, TM5, TM7 and TM8 along the helical axes.
doi:10.1371/journal.pone.0036546.g007

ABC Transporters: Coevolution and Structure

PLoS ONE | www.plosone.org 16 May 2012 | Volume 7 | Issue 5 | e36546



Figure S8 Phylogenetic filter: performance as a function
of several variables. This figure is analogous to Figure S7.

Each solid line shows how performance scales with the number of

sequences in the alignment when the distribution of sequence-

sequence distance also depends on this number (cf. top graph in

Figure 4B). The circles indicate the optimal number s� of

remaining sequences (cf. bottom graph in Figure 4B).

(EPS)

Figure S9 Dependence of performance on substitution
rate. This bubble plot shows performance, gaged by A, as the

area of the circles. Performance was conditioned not only on the

choice of coevolution detector (individual graphs) but also on

substitution rate class (position of the circles within each graph). In

principle, conditioning on rate class removes the dependence of

the statistic on substitution rate (Figure S3, S4) and so dissects out

the dependence of performance. Note that relative performance is

displayed and that the scale at the right bottom corner depicts the

area of circles that is equivalent to 1|,2| and 4| better

performance than that of a random detector. The black (empty)

circles represent performance at optimal phylogenetic filtering.

Inside these circles gray (filled) disks represent performance

without any filtering. These results correspond to the ABC-C

family and should be compared to Figure S8.

(EPS)

Figure S10 Periodicity of a-helices. The histograms show

the distribution of the separation j{i in sequence for pairs (i,j) in

the set P of predicted coevolving pairs (A and C) or in the set S of

contact pairs (B and D). On the left the subset H\P (A) and

H\S (B) is shown where H is the set of pairs (i,j) for which both i

and j are located in the same helix. On the right C and D shows

analogous subsets for loops instead of helices. Comparing the

shapes of distributions it is clear that A is similar to B, and C to D;

the resemblance is due to the high fraction of contact pairs in P.

Comparing A to C, and B to D reveals a peak at j{i~3 or

j{i~4 and a valley at j{i~2 in A and B but not in C and D.

The peak corresponds to one helical turn, whereas the valley half a

turn.

(EPS)

Figure S11 Effect of the input structure on the set of
predicted pairs. The figure shows how the set of predicted

coevolving pairs depends on the input structure. Consistency of an

input structure S with the reference structure R is defined as

DPS\PRD=DPRD, where PS and PR is the set of predicted pairs using

S or R as structural input, respectively. When the input and

reference structure is the same (S~R), consistency is 1 (points at

the upper left corner). But when the input and reference structures

differ from each other, consistency decreases to a value that

depends on the RMSD difference between the structures. Even in

the ‘‘worst case’’ (Pgp: 3F5U) consistency is about 2=3, meaning

that on average two out of three pairs predicted with the reference

structure are also predicted with the alternative input structure.

(EPS)

Figure S12 Effect of the input structure on performance
in the ABC-B family. This figure compares different input

structures with the same detector (MIp) as opposed to Figure S8,

which compares different detectors with the same input structure.

Sav1866: 2HYD [44] and Pgp: closed [47] represent the outward

facing conformation while Pgp: semiopen [47], Pgp: open [47] and

Pgp: 3G5U [46] correspond to various inward facing conforma-

tions.

(EPS)

Figure S13 Effect of the input structure on performance
in the ABC-C family. This figure is analogous to Figure S12

with ABC-C instead of ABC-B family. The input structural models

were taken from ref. [45] and [48].

(EPS)

Figure S14 Divergence of half transporters during the
shared history of the ABC-B and ABC-C family. This

phylogenetic tree, created by the neighbor joining algorithm,

shows the evolution of ABC-B and ABC-C half transporters.

Although the tree is unrooted, a plausible scenario is that the

common ancestor of the ABC-B and ABC-C half transporter

family resides on the red branch. Following an ancient gene

duplication, the two families started to diverge from each other. A

subsequent duplication and gene fusion, where the red branch

meets the blue branches, lead to the divergence of N and C

terminal half transporters within the ABC-C family. These events

created three distantly related clades of half transporters (grey

shade). To avoid complications arising from functional divergence,

residue coevolution was analyzed separately for each clade in the

present work.

(EPS)

Text S1 Heuristic search strategy for the optimal
parameter set h�. The text describes a stepwise strategy for

obtaining an approximate h�. The differential evolution search

algorithm of the last step is presented as pseudocode.

(PDF)

Movie S1 Predicted pairs (i,j) with separation j{iƒ4 in
sequence. The ribbon represents the polypeptide chain of CFTR

in outward-facing conformation, and its colors match with those in

Figure 6, 7 and Movie S2, S3. Residues in stick representation,

connected by straight black lines, are position pairs predicted to

coevolve in the ABC-C family and separated by 4 or fewer

positions in sequence. For many pairs the separation occurs at one

turn in an a-helix (Figure S10A). ATP molecules are shown in

sphere representation.

(MOV)

Movie S2 Predicted pairs (i,j) with separation j{iw4 in
sequence. The straight lines connect pairs contained in subset

H2 (eq. 25). As in Figure 6, black, purple and red connecting lines

indicate the extent DDd D to which the 3D distance between i and j
changes during conformational transition. The transition is

modeled here by linear interpolation (morph) between the inward

and outward-facing conformations.

(MOV)

Movie S3 Opening and closing of the wings and
intracellular bundles of the TMDs. As Movie S2, but

showing only the same two pairs (sphere representation) as

Figure 7A. Note that the cleft between the wings opens as that

between the intracellular bundles closes and vice versa.

(MOV)

Dataset S1 The ABC-B alignment. Note that all gap-

containing columns have been removed.

(FA)

Dataset S2 The ABC-C alignment. Note that this alignment

contains full transporters.

(FA)

Dataset S3 Positions of the ABC-B alignment. This text

file is a modified version of the unfiltered alignment (Dataset S1)

of ABC-C protein sequences. The modification was to

substitute, for each position and sequence, the one-letter amino
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acid code with the position number (position numbers are

separated by commas). Therefore, this modification allows one

to ‘‘translate’’ pairs of coevolving residue numbers in terms of

Pgp (Table 1) to that in terms of any other ABC-B protein that is

represented in this dataset. This is done simply by mapping

residue numbers of Pgp-N (i.e. MDR1_HUMAN_N) to

alignment column numbers and then column numbers to

residue numbers of any protein P of interest; symbolically:

position(MDR1_HUMAN_N) ? column ?position(P). Se-

quence names are given as UniProt IDs, such as MDR1_HU-

MAN (Pgp). ‘‘Full transporters’’ are represented by both of their

halves: the N and the C terminal one. To distinguish between

these two, the ID of the N terminal half was extended with an

‘‘_N’’ appendix, like MDR1_HUMAN_N. Gaps had been

previously removed from this alignment, which rendered several

sequences to be identical to each other, even though the

corresponding full sequences were not identical. Each set of

‘‘quasi-identical’’ sequences gave rise to an equivalence class. In

the present text file, all sequences are listed within each

equivalence class. For the analysis, however, only one sequence

was considered in each class while the rest was removed.

(TXT)

Dataset S4 Positions of the ABC-C alignment. This is a

modified version of the ABC-C alignment (Dataset S2). See

Dataset 28 for further explanation.

(TXT)

Dataset S5 List of all predicted coevolving pairs in the
ABC-B family. Each Excel sheet lists the predicted coevolving

pairs (including those not in structural contact) for a given fraction

c of all pairs, which determines the specificity of the prediction.

Compare with Table 1.

(XLS)

Dataset S6 List of all predicted coevolving pairs in the
ABC-C family. Each Excel sheet lists the predicted coevolving

pairs (including those not in structural contact) for a given fraction

c of all pairs, which determines the specificity of the prediction.

Compare with Table 2 and 3.

(XLS)
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