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Heat transfer analysis 
in a non‑Newtonian hybrid 
nanofluid over an exponentially 
oscillating plate using fractional 
Caputo–Fabrizio derivative
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Abdullah Mohamed4

In this paper, we have been study a hybrid nanofluid over an exponentially oscillating vertical flat 
plate. Therefore the fractional derivatives definition of Caputo–Fabrizio approach is applied to 
transform the classical model for this hybrid nanofluid to fractional model. Together with an oscillating 
boundary motion, therefore the heat transfer is cause as a result of the buoyancy force produce 
due temperature differences between the plate and the fluid. The dimensionless classical model is 
generalized by transforming it to the time fractional model using Caputo–Fabrizio time fractional 
derivative. Exact analytical solutions are obtained by using Laplace transform method to the set 
of dimensionless fractional governing equations, containing the momentum and energy equations 
subjected to the boundary and initial conditions. Numerical computations and graphical illustrations 
are used to checked the results of the Caputo–Fabrizio time‑fractional parameter, the second‑grade 
parameter, the magnetic parameter and the Grashof numbers on the velocity field. An assessment for 
time spin‑off is shown graphically of integer order versus fractional‑order for these non‑Newtonian 
hybrid nanofluid through Mathcad software. The fluid velocity increases for increasing the value of the 
fractional parameter, second‑grade parameter and Grashof number. Also for increasing the values of 
the MHD parameter the fluid velocity decreases.
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[
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]

(Wm−2 K−1)  Thermic conductivity of fluid
µ—

[
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T
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]

(mkg−1 s−1)  Dynamic viscosity of fluid
ν—

[

L
2
T
−1

]

(m2 s−1)  Viscosity (kinematic) of the fluid
ρ—

[

ML
−3

]

(kgm−3)  Fluid density
βT—

[

θ−1
]

(K−1)  Thermal coefficient of volumetric expansion of fluid
Tw  Fluid temperature at the plat
T∞  Ambient fluid temperature
Gr  Grashof number
α2  Grade 2nd parameter
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α  Fractional parameter
Pr  

(

µCp

k

)

s  Parameter for laplace transform

The idea of fractional-order derivatives is extremely useful in everyday life. Non-integer-order derivatives have 
existed from the beginning of time, just like integer order derivatives. This topic was first bounded to the field 
of mathematics, so the idea of fractional order derivative was widely employed in other domains a few years 
later. Electrochemistry, neuron models in biology, fluid mechanics, applied mathematics, shear modulus and 
fluid dynamics are only a few of the disciplines where this subject has been developed  recently1,2. To examine 
visco-elasticity in polymers during the glassy state and in the glass transition, models were previously widely 
used with fractional-order  derivatives3. Fractional derivatives were originally thought to be an effective method 
for obtaining a useful generalization of physical concepts. The Caputo–Fabrizio and Riemann–Liouville non-
integer order derivatives are the most normally employed fractional-order derivatives. It is commonly recog-
nized that such approaches have some applicability limitations. In the non-existence of bodily guarantee of the 
Riemann–Liouville derivative, the Laplace transform has terms because a constant’s of the derivative is non-zero 
and has a singular kernel according to Riemann–Liouville formulation. The Caputo operator solves these prob-
lems; in this approach, a power-law kernel is applied; Caputo fractional derivatives, the kernel remains singular, 
however, the derivative of constant is  04–7.

A non-singular definition with an exponential kernel was recently proposed by Caputo–Fabrizio. To obtain 
an exact solution of the Caputo–Fabrizio fractional-order derivative, the Laplace transform approach can be 
used. Several fractional derivative models have been constructed as a result of the development of many real 
fluid models, which has piqued the importance of academics in the field of mathematics. The 2nd grade model 
of fractional fluid, Maxwell model of fractional flui, non-integer fluid model of Oldroyd, Burger fractional model 
of fluid and others are among the most well-known models. The heat transfer and mass transfer characteristic 
Jeffrey and Oldroyd-B of non-Newfluid over a stretching sheet study  by8. Therefore Maxwell, Oldroyd and Burger 
are fluid models from a stem of rate type fluids, while the differential type fluids model is grade 2nd fluid is a 
sub-model9,10. Tan and Mingyu investigate a non-integer model for generalized grade 2nd fluid flow among two 
plates  parallel11. The generalized 2nd grade fluid flow of natural convection is investigated using the definition 
of Caputo–Fabrizio  by12,13. The non-integer model fluid between two parallel plates Maxwell and Tan et al.14. A 
viscoelastic model of fluid with regular free convection was examined using a fractional Maxwell fluid  model15. 
Yin et al. investigated a viscoelastic fluid in a channel with oscillating flow using a fractional Maxwell  model16.

The base fluids such as water, ethylene glycol, engine oil, and ethylene/water mixtures are commonly used 
fluids for the preparation of hybrid nanofluids. The size of the hybrid nanoparticles is very important and it 
should be less than 100 nm for achieving the stable hybrid nanofluids. A suspended hybrid nanoparticless over 
melting surface and presence of magnetic effect were study  by17,18. Therefor the single phase of fluids such as 
base fluid, ethylene glycol (EG), propylene glycol (PG) and engine oil (EO) are primarily used in, among many 
other applications, in electronic cooling, engine cooling and vehicle thermal management, generator cooling, 
in machining coolant, welding, power systems, lubrication, thermal storage, solar heating, cooling and heating 
in buildings, biomedical, spacecraft devices and defense equipment. To achieve improved heat transfer rates 
with these single-phase fluids in heat exchange applications is practically impossible due to their relatively low 
thermal conductivities; moreover, their use with phase change is often precluded for technological or opera-
tional reasons. Therefore, one path to enhance their heat transfer performance is to disperse small quantities of 
nanometer-size  particles19–22.

Researchers have observed higher heat transfer rates by using a variety of nanoparticles in different base 
 fluids23. Many researchers show experimentally and computationally the heat transform properties of several 
hybrid nanofluids under various operation conditions. This section covers only a few of them. Hybridizing metal-
lic nanoparticles in tiny amounts is the best cost-effective switching option for high heat transfer rates. Suresh 
et al.24,25 investigate the heat transform characteristic, conduct experiments with a Al2O3− Cu/water hybrid 
nanofluid. The convective heat transfer coefficient increases with the Reynolds number according to their find-
ings. In comparison to pure water, the Nusselt number of hybrid nanofluid is increased by 13.56%.

Madhesh et al.26,27 investigated the heat transfer potential and rheological features of a CuTiO2/water hybrid 
nanofluid in a counter flow heat exchanger in an experimental investigation. As per their studies, the Nusselt 
number is the convective heat transfer coefficient, and the total heat transfer coefficient is all enhanced by 48.7%, 
51.9%, and 68.0% at 1.03 volume. They carried out a comparative study on hollow cylindrical heat exchangers 
that use the same hybrid nanofluid and found that the thermic efficiency increased by 48.4%.

Balla et al.28 explored the fluid flow and heat transfer properties of a Cu-CuO/water hybrid nanofluid. As per 
the findings, the nano-particle nature and amount have a significant impact on the heat transfer coefficient. By 
raising Cu nanoparticle volume concentration in a hybrid nanofluid at a given Reynolds number, therefore a 
Prandtl number rises. They followed by the Nusselt number and the related convective heat transfer coefficient. 
When compared to water, the Nusselt number of At 1 volume fraction, the rate of heat transfer of the Cu-CuO/
water hybrid nanofluid is raised by 35% and the convective heat transfer coefficient is enhanced by 40%.

The available literature is relatively scarce in what emphasises the formation of hybrid nanofluids and the 
finding of their thermal properties, heat transfer and friction factor. Suresh et al.25 prepared Al2O3-Cu hybrid 
nanofluids and obtained heat transfer enhancement of 13.56% for 0.1% vol at a Reynolds number of 1730, while 
Madhesh et al.27, with Cu-TiO2 hybrid nanofluids, obtained heat transfer enhancement of 52% for 2.0% vol 
Sundar et al.29 prepared nanodiamond-nickel (ND-Ni) nanocomposite (hybrid) nanofluids and determined 
practically the thermal conductance and viscosity. Sundar et al.29 also prepared MWCNT-Fe3O4 hybrid nano-
fluids and found heat transfer enhancement of 31.10% with a pumping penalty of 18% for 0.3% vol at a Reynolds 
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number of 22000. These studies clearly indicate that hybrid nanofluids yield higher heat transfer enhancement 
than single nanoparticles-based nanofluids. However, to fully understand the hybrid nanofluids mechanisms 
enhancing heat transfer, further experiments and analyses will be required.

In the above literature no one has considered hybrid nanofluid over exponentially oscillating using the CF 
time fractional derivative to find the closed form solutions. In this article, we considered the flow of hybrid nano-
fluid the flow is generated due to the motion along vertical plate. The purpose of current research is to investigate 
the heat transfer analysis of an exponentially oscillating plate of non-Newtonian hybrid nano-fluid flow over an 
infinite vertical flat plate using the Caputo–Fabrizio definition of fractional derivative. Magneto hydrodynamic 
flow is produced due to the heat transmission of the plate and the fluid. The momentum and energy equations 
of heat transfer have been solved using the Caputo–Fabrizio fractional derivative formulation. Therefore the 
Laplace transform approach was applied to solve the governing equations. Many physical parameters, such as 
the fractional parameter α , the Grashof number Gr, and the magnetic parameter M are graphically investigated.

Mathematical formulation
Consider a non-Newtonian hybrid nanofluid that is incompressible and lies over an firm flat plate of an infinite 
length of xy−plane is holding. Therefore on the y−axis the plate is aligned. At beginning the fluid and the plate 
are at rest, with a surrounding fluid temperature of T∞ . Therefore the plate start to oscillate after time t = 0+ in 
its own plane and with velocity fH(t)exp(ιωt) motion generates in the fluid , where f is the velocity with constant 
of dimension, the unit step function is H(t) and ω is the oscillation frequency. The temperature of the plate is also 
raised to Tw (wall temperature), which is then kept at a constant level. The function y and t are assumed to be 
only for velocity and temperature . Additionally, a magnetic field is applied normal to the sheet and the induced 
magnetic field is neglected, which is justified for MHD flow at small magnetic Reynolds number. By considering 
the hybrid nanofluid, it is assumed that the size of nanoparticles is uniform, and the effect of the agglomeration 
of nanoparticles on the thermal physical properties is neglected because the nanofluid is synthesized as a stable 
mixture of the base fluid and nanoparticles. The constraint of deformation is satisfied exactly the same way for 
such a flow. The following pair of partial differential equations governs the flow behavior using Boussinesq’s 
 approximation30,31.

Where the velocity of hybrid nano-fluid is u(y, t), the temperature of hybrid nanofluid is T(y, t), the kinematic 
viscosity of the hybrid nanofluid is νhnf  , the constant density of hybrid nanofluid is ρhnf  , α1 is the non-Newtonian 
grade-2 parameter of fluid, g is the gravitational acceleration of hybrid nanofluid, βT is the volumetric coefficient 
of thermal expansion of hybrid nanofluid, cp is the heat capacity of a hybrid nanofluid at constant pressure and 
κ is the hybrid nanofluid thermal conductivity. The suitable boundary and initial conditions as:

we introduce below the dimensionless variable as:

The following dimensionless variables in (6)insert into the governing Eqs. (1) and (2) along with the bound-
ary condition and initial conditions (3–5), we get the dimensionless problem by eliminating the star symbol.

The dimensionless boundary and initial condition are:

(1)ρhnf
∂u(y, t)

∂t
=

(

α1
∂

∂t
+ µhnf

)

∂2u(y, t)

∂y2
− σhnf β0u(y, t)+ g(νβT )hnf (T(y, t)− T∞); y, t > 0,

(2)
∂T(y, t)

∂t
=

κ

ρcp hnf

∂2T(y, t)

∂y2
; y, t > 0,

(3)u(y, 0) = 0, T(y, 0) = T∞; y > 0,

(4)u(0, t) = fH(t)exp(ιωt), T(0, t) = Tw; t > 0, f > 0,

(5)u(y, t) → 0, T(y, t) → T∞; y → ∞, t > 0.

(6)
t∗ =

f 2t

ν
, y∗ =

fy

ν
, u∗ =

u

f
, α2 =

α1f
2

µν
,

θ =
T − T∞

Tw − T∞
, Gr =

νgβT (Tw − T∞)

f 3
, Pr =

µCp

k
,

(7)
∂u(y, t)

∂t
= A1

∂2u(y, t)

∂y2
+ α2A2

∂3u(y, t)

∂t∂y2
+ A3Grθ(y, t)− A4Mu(y, t),

(8)
∂θ(y, t)

∂t
=

C∗

Pr

∂2θ(y, t)

∂y2
,

(9)u(y, 0) = 0, θ(y, 0) = 0, y ≥ 0,
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and

Here

M is magnetic parameter , α2 is the 2nd grade parameter, Gr is the Grashof number and Pr is the Prandtl number.
In ways to construct a model with a CF time fractional derivative define in (14). We use this Caputo–Fabrizio 

fractional derivative instead of time dependent derivative therefore replace ∂
∂t (.) by Dt

α in Eq. (7) and Eq. (8) 
we have

Therefore the definition of CF time fractional derivative and the literature as

Analytical solution by Laplace transform
Now applying the Laplace transform to the (initial-boundary) conditions from (9–11) equations (12–13). Because 
the velocity equation is based on the temperature equations, we will first discover solutions for the temperature 
equations, and then we will apply the Laplace transform method to find solutions for the equation of velocity .

Solution for temperature equation. Laplace transform applying the to Eq. (13) and also to the bound-
ary condition (10)2 and (11)2, we get

use the symbols γ = 1
1−α

 , we have

Solution of the transform Eqs. (15) and (16) is

Respectively, Hence we define the temperature field as follows:

Hence �(y, s;C∗Prγ ,αγ ) and ϕ(y, t;C∗Prγ ,αγ ) are define an the appendices.

(10)u(0, t) = H(t)eιωt , θ(0, t) = 1, t > 0,

(11)u(y, t) → 0, θ(y, t) → 0, y → ∞, t > 0.

α2 =
α1f

2

µν
, A1 =

µhnf ρ

µρhnf
, A2 =

ρ

ρhnf
,

A3 =
(βT )hnf

βT
, A4 =

σhnf ρ

σρhnf
, M =

σνβ0
2

ρf 2
,

C∗ =
khnf ρcp

k(ρcp)hnf
.

(12)Dt
αu(y, t) = A1

∂2u(y, t)

∂y2
+ α2A2D

α
t α2

∂2u(y, t)

∂y2
+ A3Grθ(y, t)− A4Mu(y, t),

(13)Dt
αθ(y, t) =

C∗

Pr

∂2θ(y, t)

∂y2
,

(14)
Dt

α f (t) =
1

1− α

∫ 1

0
f
′
(t).exp

(

−α(t − T)

1− α

)

dT , 0 < α < 1,

L
[

Dt
α f (t)

]

=
s

s(1− α)+ α
.

s

s(1− α)+ α
θ(y, s) =

1

C∗Pr

∂2θ(y, s)

∂y2

θ(0, s) =
1

s
, θ(y, s) → 0, as y → ∞

(15)
C∗Prγ s

s + αγ
θ̄(y, s) =

∂2θ̄ (y, s)

∂y2
,

(16)θ(0, s) =
1

s
, θ(y, s) → 0 as y → ∞,

(17)θ̄ (y.s) =
1

s
exp

(

−y

√

C∗Prγ s

s + αγ

)

= �(y, s;C∗Prγ ,αγ )

(18)θ(y, t) = ϕ(y, t;C∗Prγ ,αγ ), 0 < α < 1
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Solution for dimensional velocity equation. Now the Laplace Transform(LT) method applying to the 
dimensional Eq. (12), as well as the initial condition and also to the boundary conditions (9–11), we get

Equation (19) represented solution is the partial differential equation’s , and the boundary condition (20) does 
have the solution.

where

The inverse transform of the preceding velocity Eq. (21) now to find the close form solution shown below

here m = k5 + k6 + k7,ϕ(y, t; c∗Prγ ,αγ ) and ψ(y, t; c∗Prγ ,αγ ,−k3) are define by the (1)–(6).

Special cases. In the absence of nano-particle and because of the simplicity of the solution one can easily com-
pare from our solution the temperature profile is same is the Eq.  (18), where is the solution for momentum 
equation as concerned then in the absence of nano-particle c and magnetic field our solution is similar to the 
solution achieving by Shah and  Khan32.

Limiting cases.  In the absence of M = 0 , we recover the result of Shah and  Khan32.

Graphical results and discussions
Over an infinite flat plate, a non-Newtonian hybrid nanofluid with an exponentially oscillating plate has been 
investigated. The dimensionless momentum and energy equations are solved using the definition of CF non-inte-
ger order derivative, and the close form solution is achieved by applying the inverse Laplace transform technique. 
Under the assumptions for various physical parameters for example α , Pr, Gr, that for a physical description of 
the problem, the velocity and temperature curves are visibly displayed. Figure 1 Variations in temperature profiles 

(19)

(

γ s + A4M(s + αγ )

s + αγ

)

ū(y, s) =
(

A1(s + αγ )+ α2A2γ s

s + αγ

)

∂2ū(y, s)

∂y2

+ A3Gr
1

s
exp

(

−y

√

c∗Prγ s

s + αγ

)

(20)ū(y, s) =
1

s − ιω
, ū(y, s) → 0 as y → ∞.

(21)

ū(y, s) =
1

s − ιω
exp

(

−y

√

(γ + A4M)s + A4Mαγ

(A1 + α2A2γ )s + A1αγ

)

+ k5
1

s
exp

(

−y

√

(γ + A4M)s + A4Mαγ

(A1 + α2A2γ )s + A1αγ

)

+ k6
1

s + k3
exp

(

−y

√

(γ + A4M)s + A4Mαγ

(A1 + α2A2γ )s + A1αγ

)

+ k7
1

s + k4
exp

(

−y

√

(γ + A4M)s + A4Mαγ

(A1 + α2A2γ )s + A1αγ

)

− k5
1

s
exp

(

−y

√

C∗Prγ s

s + αγ

)

− k6
1

s + k3
exp

(

−y

√

C∗Prγ s

s + αγ

)

− k7
1

s + k4
exp

(

−y

√

C∗Prγ s

s + αγ

)

α2 =
α1f

2

µν
, A1 =

µhnf ρ

µρhnf
, A2 =

ρ

ρhnf
,A3 =

(βT )hnf

βT
,

A4 =
σhnf ρ

σρhnf
, M =

σνβ0
2

ρf 2
, C∗ =

khnf ρcp

k(ρcp)hnf
,

k3 =
1

2

(

k1 −
√

k21 − 4k2

)

, k4 =
1

2

(

k1 +
√

k21 − 4k2

)

k1 =
αγ 2(c∗A1Pr − 1)− 2A4Mαγ

c∗Prγ (A1 + A2αγ )− (γ + A4M)
, k2 =

−A4Mα2γ 2

c∗Prγ (A1 + A2αγ )− (γ + A4M)

k5 =
A3Grα

2γ 2

k3k4(c∗Prγ (A1 + A2αγ )− (γ − A4M))
,

k6 =
A3Gr(k

2
3 − 2αγ k3 + α2γ 2)

k3(k3 − k4)(c∗Prγ (A1 + A2αγ )− (γ − A4M))
,

k7 =
A3Gr(k

2
4 − 2αγ k4 + α2γ 2)

k4(k4 − k3)(c∗Prγ (A1 + A2αγ )− (γ − A4M))
.

u(y, t) =
∫ t

0
(exp(ιω(t − τ))+ k5 + k6e

−k3(t−τ) + k7e
−k4(t−τ))× h(τ )dτ

−mϕ(y, t; c∗Prγ ,αγ )− k6ψ(y, t; c∗Prγ ,αγ ,−k3)

− k7ψ(y, t; c∗Prγ ,αγ ,−k4)
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Figure 1.  Temperature profile.
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for several fractional parameter α and time t values are shown. Figure 1 shows that the temperature has been 
rising as the α has been increased. With t and α , the size of the thermal boundary layer grows.

Figures 2 and 3 depict the velocity profile caused by changes in the fractional parameter α . The plate oscilla-
tion in both cases sine and cosine oscillation was considered. Both cosine and sine oscillations were depicted in 
Figs. 2 and 3. Figure 2 shows that the movement of fluids raises for high-value fractional parameter α and time t 
and in both cases of cosine and sine oscillation. Figure 3 illustrates that when the value of time t and M increase, 
in both cases of cosine and sine oscillation the velocity fluid falls. Fluid motion rises with large values of Gr and 

Figure 2.  Velocity plot in the form of cosine and sine oscillation or various values of α of at t, when Pr = 7 , 
M = 15.
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Figure 3.  Velocity plot in the form of cosine and sine oscillation or various values of M of at t, when Pr = 7 , 
α = 0.5.

larger values of t related to the cosine oscillations case, as shown in Fig. 4. Figure 5 demonstrates that fluid velocity 
rises for large values of the second-grade parameter α2 and large as the value of t in the case of cosine oscillation.

Conclusions
This paper deal with hybrid nanofluid over an exponentially oscillating plate using Caputo–Fabrizio fractional 
derivative to transform the classical model to fractional dimensionless model. The Laplace transform approach 
was used to obtain a closed-form solution of the problem. The limiting solutions for ordinary hybrid nanofluids 
and non-Newtonian fluids were extracted. The findings were graphically assessed for time fractional α , second 
grade parameters α2 , magnetic parameter M, and Gr for different times. Therefore the graphical solution show 
that the value of the fractional parameter α enhance, the fluid temperature rises. Also the fluid motion raise for 
high values of α (fractional parameter) and the time t in both cases of a sine and cosine oscillation as well as 
the motion of fluid is accelerating for large value of Gr, while decelerating for large value of t in case of cosine 
oscillation.
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Figure 4.  Velocity plot in the form of cosine and sine oscillation or various values of Gr of at t, when Pr = 7 , 
α = 0.5 , M = 15 , α2 = 2.
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Figure 5.  Velocity plot in the form of cosine and sine oscillation or various values of α2 of at t, when Pr = 7 , 
α = 0.5 , M = 15 , Gr = 7.
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Data Availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
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