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Summary

Background: Metabolomic analysis is commonly used to understand the biological

underpinning of diseases such as obesity. However, our knowledge of gut metabo-

lites related to weight outcomes in young children is currently limited.

Objectives: To (1) explore the relationships between metabolites and child weight

outcomes, (2) determine the potential effect of covariates (e.g., child's diet, maternal

health/habits during pregnancy, etc.) in the relationship between metabolites and

child weight outcomes, and (3) explore the relationship between selected gut metab-

olites and gut microbiota abundance.

Methods: Using 1H-NMR, we quantified 30 metabolites from stool samples of

170 two-year-old children. To identify metabolites and covariates associated with

children's weight outcomes (BMI [weight/height2], BMI z-score [BMI adjusted for age

and sex], and growth index [weight/height]), we analysed the 1H-NMR data, along

with 20 covariates recorded on children and mothers, using LASSO and best subset

selection regression techniques. Previously characterized microbiota community
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Settlement

information from the same stool samples was used to determine associations

between selected gut metabolites and gut microbiota.

Results: At age 2 years, stool butyrate concentration had a significant positive associa-

tion with child BMI (p-value = 3.58 � 10–4), BMI z-score (p-value = 3.47 � 10–4), and

growth index (p-value = 7.73 � 10–4). Covariates such as maternal smoking during

pregnancy are important to consider. Butyrate concentration was positively associated

with the abundance of the bacterial genus Faecalibacterium (p-value = 9.61� 10�3).

Conclusions: Stool butyrate concentration is positively associated with increased

child weight outcomes and should be investigated further as a factor affecting child-

hood obesity.
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1 | INTRODUCTION

The prevalence of childhood obesity in the United States has

increased in the past several decades.1,2 Based on reports from the

Center for Disease Control and Prevention,3 13.9% of preschool-aged

children (age 2–5 years) were classified as having obesity in 2015–

2016. Importantly, childhood obesity is associated with increased risk

of adult obesity and its comorbidities.4 Therefore, identifying early life

risk factors, such as variation in microbial communities or their meta-

bolic outputs, to characterize children most at risk of developing obe-

sity is critical.

The gut microbiota has been shown to be an important component

of obesity aetiology. It has been over a decade since Turnbaugh's seminal

work showing that microbiota from obese mice can stimulate the devel-

opment of obesity in gnotobiotic mice.5 In humans, numerous studies

have shown that the gut microbiota of adults and children with obesity

significantly differ from those without obesity.6–10 Although there has

not been a consensus on what the composition of an “obese microbiota”
community looks like, most scientists agree that the microbiota commu-

nities of healthy and diseased individuals do differ.

While the role of the gut microbiota in obesity has been broadly

investigated, the microorganisms present in the gut explain only part

of the picture. The metabolic capacity and outputs of this microbial

community, which cannot be characterized through sequence based

approaches, is the link between the microbiota and the human host.

Metabolomics data generated by proton Nuclear Magnetic Reso-

nance (1H-NMR) spectroscopy have popularly been used to study

these small molecules to detect important biomarkers for many dis-

eases.11,12 Faecal metabolome analysis in adults has shown that indi-

viduals with obesity have higher levels of short chain fatty acids

(SCFAs, e.g., acetate, propionate, and butyrate), branched chain

amino acids (e.g., leucine, isoleucine, and valine), and aromatic amino

acids (phenylalanine, tryptophan, and tyrosine).13,14 Higher levels of

faecal SCFAs in individuals with obesity, in addition to differences in

the gut microbial communities, have also been related to measure-

ments of cardiometabolic disorders (e.g., inflammation, glycemia, and

dyslipidemia) and gut permeability (LPS binding protein).15 These

findings suggest that characterizing the metabolites in the gut is an

important step for understanding their roles in the human physiology

and risk of diseases.

The characterization of both microbiota and metabolomic envi-

ronments has mainly been conducted in adults and older children;

although a few small studies have been conducted in younger chil-

dren. Interestingly, the patterns seen in young children do not always

match those seen in older children and adults.16 Furthermore, our

knowledge of obesity-related gut metabolites in young children is lim-

ited because the majority of studies in children focus on plasma

metabolites.17,18 Our study, which focuses on the gut metabolome of

young children and its potential role in their weight outcomes, fills an

important gap.

The Intervention Nurses Start Infants Growing on Healthy Trajec-

tories (INSIGHT) study19 is a clinical trial, in which first-born children

were randomized to a responsive parenting behavioural intervention

or to a home safety control shortly after birth, and were followed lon-

gitudinally. This clinical trial collected data on growth (e.g., weight and

height), behaviour (e.g., sleep, activity and temperament), home envi-

ronment, diet, and medical history. Recently, Craig and colleagues20

examined the oral and gut microbiota of children from the INSIGHT

study at age 2 years, and related these microbial communities to the

children's growth trajectories (from birth through age 2). That study,

surprisingly, found overall weak links between the gut microbiota and

children's growth patterns. Here, we hypothesize that differences in

the metabolic output of the gut microbiota community might show

stronger associations with children's weight outcomes than the micro-

biota community itself—specifically, that children with higher weight

outcomes at age 2 years will have metabolomic profiles that differ sig-

nificantly from those of children with lower weight outcomes.

In this article, we report metabolite concentrations from targeted
1H-NMR21,22 profiling of stool sampled from 170 children in the

INSIGHT cohort at the age of approximately 2 years. Based upon the

data from related prior studies,23,24 we specifically targeted 30 major

metabolites commonly found in human stool samples. Our first
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objective was to investigate the association of these metabolites with

children's BMI (weight/height2), BMI z-score (BMI adjusted for age

and sex), and growth index (weight/height). Our second objective was

to assess the potential effects of 20 other covariates collected from

INSIGHT, including children's dietary intake and maternal health and

habits during pregnancy, on the relationship between identified

metabolites and children's weight outcomes. Our third objective was

to investigate whether metabolites significantly associated with

weight outcomes have any relationship to the microbial communities

we have previously characterized.20 See Figure 1 for a diagrammatic

representation of these objectives.

2 | METHODS

2.1 | Study population characterization and sample
collection

Our sample included 170 of the 279 children enrolled in the

INSIGHT19 study. These children are full-term singletons born to pri-

miparous mothers in Central Pennsylvania and are largely of European

descent (Table S1).25 Stool samples were collected during a study visit

occurring around the second birthday of each child. Specifically, the

samples were collected by mothers from their child's diaper into ster-

ile containers, placed into the home freezer and transported to the

visit (on ice, wrapped in ice packs, in thermo-envelopes). These sam-

ples were then stored at –80�C in the laboratory. During the same

visit, weight and standing height of each child were measured by

trained research nurses using an electronic scale (Seca 354) and a por-

table stadiometer (Shorr Productions, Olney, MD), respectively. For

each child, we calculated BMI (weight in kilograms divided by squared

height in meters), BMI z-score (BMI adjusted for age and sex), and

growth index (weight in kilograms divided by height in meters).

Guided by previous literature, we considered a pool of covariates

concerning children and mothers that could potentially contribute to

children's weight outcomes. These included the child's sex (female/

male; recorded from medial records)1; the child's exact age (in months)

at the two-year study visit (calculated from date of birth from the

medical record and date of visit); the INSIGHT intervention study

group (control/responsive parenting)25; the child's exposure to antibi-

otics between birth and 2 years (no/yes, determined from parental sur-

vey)26; maternal gestational weight gain status (below or at guidelines/

exceeded guidelines, determined from medical records)27; delivery

mode (vaginal/caesarean section; recorded from medical records)28;

maternal gestational diabetes status (none/controlled with diet and

exercise, determined from maternal survey)29; maternal smoking status

during pregnancy (no/yes, determined from maternal survey)30; and

the frequencies of 12 food group variables reflecting the qualitative

pattern of the child's diet (determined by Infant Food Frequency Ques-

tionnaires completed by the parents).31 More details on these food

group variables are provided in Table 1 and Table S2 and in

Preprocessing of the Covariates section below.

2.2 | Metabolomic profiling

We performed 1H-NMR profiling following the steps described by Tian

and colleagues23; the raw 1H-NMR spectra were generated in two

batches. We used the Chenomx NMR Suite of tools (Alberta, Canada)

to process the raw spectra (calibrating internal standard, correcting

phase and baseline) and fit metabolite profiles following the steps

described in Nichols and colleagues.32 Initially we targeted 35 metabo-

lites, namely: 4-pyridoxate, acetate, alanine, aspartate, butanone, buty-

rate, creatine, formate, fumarate, galactose, glucose, glutamate,

glycine, histamine, histidine, hypoxanthine, isocitrate, isoleucine, lac-

tate, leucine, methionine, niacinamide, O-phosphocholine, phenylala-

nine, proline, propionate, pyruvate, succinate, trimethylamine N-oxide,

tryptophan, tyrosine, uracil, valine, xanthine, and xylose. Because the

metabolite assignments of butanone, histamine, isocitrate, niacinamide,

and trimethylamine could not be verified with 2D-NMR spectra,23 we

F IGURE 1 Schematic of objectives of the current study. The bold solid arrow represents our main objective: to investigate the relationship
between gut metabolites and child weight outcomes (1). Lighter arrows represent related objectives: to investigate effects of covariates recorded
on children and mothers as direct effects (solid) and through interactions with butyrate (dashed) on child weight outcomes (2). We also
investigate the relationship between the gut microbiota and the gut metabolites (3)
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removed these five metabolites from further analyses. The 30 verified

metabolites were profiled using the “batch fit” tool in Chenomx and

then manually calibrated and quantitated for each sample. The profiling

procedure described above introduced two sources of variation that

we adjusted for in our analyses (see below): (i) batch effect (raw
1H-NMR spectra were generated in two batches) and (ii) processor

effect (metabolites were calibrated and quantitated using Chenomx

software by D.N. and S.J.C.C.).

2.3 | Statistical analyses

We performed the statistical analyses in two phases: Phase 1 included

preprocessing, transforming, cleaning the data and then using the

cleaned data to detect statistically significant metabolites associated,

separately, with children's BMI, BMI z-score, and growth index

(covariates were not considered in this phase). To validate metabolites'

roles after adjusting for the covariates and to investigate the effects of

the latter, Phase 2 included analyses of the metabolites selected in Phase

1 along with the covariates and the metabolite-covariate interactions.

See Figure S1 for a visual representation of this workflow.

2.4 | Data preprocessing

2.4.1 | Preprocessing of the metabolite
concentrations

First, we normalized the metabolite concentrations in each sample

with respect to the total concentration of all the 30 metabolites,33–35

creating relative concentration, thus accounting also for the dry

weight of the samples. We also mitigated the high skewness of the

relative concentration values (Figure S2) using a logarithmic transfor-

mation. The histograms in Figure S3 indicate that the log-transformed

relative concentrations of the metabolites are fairly regularly distrib-

uted (they do not deviate strongly from the Gaussian distribution).

Outliers were omitted from this analysis (Figure S4).

We then adjusted the log-transformed relative concentrations of

the metabolites for potential effects of batch and data processor. For

each metabolite, we fitted a two-way ANOVA36 for log-transformed rel-

ative concentrations on “batch” and “processor” (Table S3). The residuals

from these ANOVA fits were used as “adjusted metabolite concentra-

tions” in subsequent analyses. We centred and scaled each of these

30 adjusted metabolite concentrations separately to have zero mean and

unit variance33–35; almost all of the transformed adjusted metabolite con-

centrations fairly resemble the Gaussian distribution (Figure S5).

2.4.2 | Preprocessing of the covariates

The food group variables included as covariates in our Phase 2 ana-

lyses (Table 1) are derived from a modified food frequency question-

naire.37 The raw data from the questionnaire are the same as the data

in our previous study20; however, we modified the grouping of the

food items and created a new food group variable (“Mixed foods”) to
more accurately represent the diet. We started with a total of

121 food items divided into 16 food groups (Table S2): beans (4 items),

dairy (8 items), fat/oils (4 items), fried foods (3 items), fruit juice

(1 item), fruits (18 items), grains (11 items), meats (11 items), mixed

foods (10 items), non-meat proteins (3 items), non-sugar sweetened

beverages (4 items), snacks (5 items), sugar-sweetened beverages

(7 items), sweets (12 items), vegetables (19 items), and water (1 item).

For each food item, mothers reported how often their child had con-

sumed it in the past week using response options of 0, 1, 2–3, 4–6

times per week, 1, 2, 3, 4–5 or 6 or more times per day. We converted

all records to times per day, using the medians for options that

spanned a range of values (see Figure S6). We then omitted four food

groups (beans, fats/oils, non-sugar sweetened beverages and sugar-

sweetened beverages) for which all items had zero median daily

TABLE 1 Summary of the maternal and child-related covariates
collected on the 170 INSIGHT children included within this study

Covariates n = 170

Child's sex (n = female) 84 (49%)

Intervention group (n = intervention) 88 (52%)

Antibiotic usage from birth through age

2 years (n = yes)

110 (65%)

Maternal gestational weight gain status

(n = exceeded guidelines)

91 (54%)

Maternal smoking status during

pregnancy (n = yes)

13 (8%)

Mode of delivery (n = caesarean section) 46 (27%)

Maternal gestational diabetes

(n = controlled with diet and exercise)

9 (5%)

Child's exact age at two-year study visit

(months) median (median absolute

deviation)/range

24.23 (0.27)/24.01-25.49

Food groupsa (per day consumption

frequency) median (median absolute

deviation)/range

Dairy [8] 3.82 (1.7)/0.50-12.42

Fried foods [3] 0.32 (0.27)/0-2.07

Fruit juice [1] 0.36 (0.53)/0-6

Fruits [18] 2.99 (1.43)/0-18.64

Grains [11] 1.94 (0.74)/0-6.86

Meats [11] 1 (0.56)/0-3.50

Mixed foods [10] 0.85 (0.53)/0-4.36

Non-meat proteins [3] 0.64 (0.42)/0-3

Snacks [5] 1 (0.53)/0-5.07

Sweets [12] 0.60 (0.59)/0-3.29

Vegetables [19] 2.14 (1.19)/0.28-10.83

Water [1] 3 (2.22)/0-6

aSee Table S1 for the food items considered within each food group.

Value in square brackets indicates the number of food items considered

within that food group.
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consumption frequencies. Thus, we had a total of 12 food groups

included in the Phase 2 analyses (Table 1). Next, for each of the

12 retained food groups, we calculated the sum total of daily intake

frequencies38 (summing over items within the groups; we replaced

missing values with zeros). Finally, after adding 1 to the resulting fre-

quencies, we log-transformed them to mitigate right skewness

(Figures S7 and S8), centred to zero mean and scaled to unit variance.

We also log-transformed the child's exact age in months at the

time of the two-year visit, centred to zero mean and scaled to unit

variance. Seven categorical covariates were dummy-coded as “0/1”:
intervention group (safety-control/parenting-intervention), child's sex

(female/male), child's antibiotic exposure between birth and 2 years

(never/yes), maternal gestational weight gain status (below or at

guidelines/exceeded guidelines), mode of delivery (caesarean section/

vaginal), maternal diabetes mellitus status (none/controlled with diet

and exercise), and maternal smoking status during pregnancy (no/yes).

For the LASSO regression analysis in Phase 2, we centred and scaled

each of the covariates separately, including the dummy-coded ones,

to zero mean and unit variance.

2.5 | Regression analyses

In Phase 1, our regressions comprised 30 predictor variables

(i.e., explanatory variables used in the linear regression models);

namely, the 30 adjusted metabolite concentrations. We ran two alter-

native procedures: (a) LASSO39 (an L1-penalized linear regression

method which performs predictor selection) followed by a

post-selection least squares fit; and (b) Bayesian information criterion

(BIC40,41) best subset selection42 (an exhaustive search over all possi-

ble model sizes for linear regression which selects the “best” model as

per the BIC criterion), also followed by a post-selection least squares

fit. For LASSO, the penalization parameter was tuned with 10-fold

cross-validation repeated 100 times on 100 random fold partitions of

the data. The selected tuning parameter value, which determines the

number of predictors retained by the LASSO, corresponds to the

minimum average (over the 100 repetitions) cross-validation mean-

squared error. For the BIC best subset selection procedure, we exam-

ined all possible models with sizes ranging from 1 up to 30 predictors

and selected the model with the minimum BIC. These analyses were

completed separately treating each of three weight outcomes (BMI,

BMI z-score, and growth index) as the response variable.

In Phase 2, our regressions comprised 41 predictor variables;

namely, the butyrate adjusted metabolite concentration (selected in

Phase 1; see below), 20 covariates, and the two-way interactions of

the butyrate adjusted metabolite concentration with each of the

20 covariates (a total of 20 interaction terms). Just as in Phase 1, we

implemented (a) LASSO and (b) BIC best subset selection regression

procedures, each followed by a post-selection least squares fit. For

LASSO, we tuned the penalization parameter using the same strategy

as in Phase 1. For the BIC best subset selection, we again examined

all possible models, with sizes ranging from 1 up to 41. Similar to

Phase 1, these analyses were completed separately treating each of

the three weight outcomes (BMI, BMI z-score, and growth index) as

the response variable.

We performed these statistical analyses using the R software43

(version 4.0.2). The LASSO procedure with repeated 10-fold cross-

validation tuning was implemented using the ipflasso CRAN package44

and the BIC best subset selection procedure was implemented using

the leaps CRAN package.45 All codes are publicly available on GitHub:

https://github.com/makovalab-psu/ChildhoodObesity_1HNMR-

Metabolomics.

2.6 | Microbiota association

The gut microbiota of the INSIGHT children (from the same stool sam-

ples used in this study) were characterized by our group in a previous

study.20 The raw data are available on dbGaP (accession number

phs001498.v1.p1). From these data, we selected all bacteria identified

as a member of the Firmicutes phylum. Next, using information from

Vital et al.,46 we aggregated the abundances of bacteria identified as

known or candidate butyrate producers; first as all butyrate producing

bacteria, then as butyrate producing Firmicutes, and finally as individ-

ual genera within the butyrate producing Firmicutes. See Table S4 for

a list of the bacterial groups included in this analysis. We used the sta-

tistical software R (version 3.6.1); correlations were interrogated using

the rcorr() function within the Hmisc CRAN package47 and graphs

were generated using the ggplot2 CRAN package.48

3 | RESULTS

3.1 | Study population and children's weight gain
indicators

We considered 170 children enrolled in the INSIGHT19,25 study who

provided stool specimens at the 2-year study visit (see above). A variety

of clinical, anthropometric and dietary information was collected on the

children along with pregnancy health variables on their mothers

(Table 1). We considered the children's height and weight collected dur-

ing the same visit to compute our main weight indicator—BMI (ratio of

weight to squared height, measured in kg/m2). BMI ranged from 13.9

to 20.7, with a median of 16.5. Using CDC guidelines,49 we determined

that 4.84% of the children considered were underweight, 79.0% had

normal-weight, 11.8% were overweight and 4.30% had obesity

(Figure S9). As additional weight outcomes, we computed the BMI

z-score (BMI adjusted for age and sex) and the growth index (ratio of

weight to height, measured in kg/m). We used all these three outcomes

to investigate the relationships among children's weight, metabolites,

and other covariates. Figure S10 demonstrates the significant positive

correlations between the pairs from these three outcomes over the

range of values covered by our study (A) BMI versus GI: R2 = 0.856;

p-value <2.20 � 10�16; (B) BMI z-score versus GI: R2 = 0.822; p-value

<2.20 � 10�16; (C) BMI z-score versus BMI: R2 = 0.983; p-value

<2.20 � 10�16.
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3.2 | Analysing metabolites: Butyrate is positively
associated with child weight outcomes

The stool samples collected from 170 children were used to generate
1H-NMR spectra to determine the concentrations for 30 metabolites

(see Methods for details). To identify metabolites associated with weight

outcomes, we regressed each weight outcome (response) on 30 adjusted

metabolite concentrations (predictors; here defined to mean explanatory

variables used in the linear regression models). To conduct each of the

regression analyses, we used the LASSO procedure and, separately, the

BIC best subset selection procedure, each followed by a post-selection

least squares fit (Phase 1 in Figure S1). Considering BMI as the weight

outcome, LASSO retained only two metabolites: butyrate and glycine.

Of these, only butyrate was significant in the post-selection least

squares fit (butyrate: p-value = 0.0120, bβ =0.295; glycine: p-

value = 0.147, bβ = �0.169). Similarly, using the BIC best subset pro-

cedure, butyrate was the only metabolite selected (p-value = 3.58

�10�4; bβ =0.375; R2 = 0.0729, adjusted R2 = 0.0677). To assess the

out-of-sample predictive performance of butyrate for BMI, we consid-

ered 1000 independent 70%:30% random splits of our data into train-

ing and test sets (ntotal = 170, ntraining = 120, and ntest = 50); the

median R2 and the median root mean squared prediction error across

the 1000 test sets were 0.0699 and 1.35, respectively. Relatedly, BMI

has a significant positive correlation with butyrate adjusted metabolite

concentration (R2 = 0.0729, p-value = 3.58 �10�4, Pearson correla-

tion; Figure 2(A)). Moreover, we found (Figure 2(B)) a significantly

lower mean butyrate adjusted metabolite concentration in children

with normal weight (mean concentration = –0.0387) than in those

with overweight (mean concentration = 0.208, p-value = 0.0312;

one-sided, two-sample t-test) or obesity (mean concentration = 0.339,

p-value = 0.0176; one-sided, two-sample t-test).

Considering BMI z-score (BMI adjusted for age and sex) in place

of BMI as the weight outcome, LASSO selected butyrate, glycine, and

lactate adjusted metabolite concentrations, but only butyrate was

significant in the post-selection least squares fit (butyrate:

p-value = 0.0143, bβ =0.204; glycine: p-value = 0.532, bβ = –0.0579;

lactate: p-value = 0.333, bβ = –0.0853). Again, the BIC best subset

procedure selected only butyrate, which was significant in the post-

selection least squares fit (p-value = 3.47 �10�4, bβ =0.263,

R2 = 0.0736, adjusted R2 = 0.0680). The median out-of-sample R2

and the median root mean squared prediction error of butyrate for

BMI z-score were 0.0719 and 0.948, respectively.

As an additional verification of butyrate's association with child's

growth, we considered growth index as the third weight outcome

(response) and obtained reassuringly similar results compared to those

for BMI and BMI z-score. LASSO retained acetate and butyrate

adjusted metabolite concentrations, but only the latter was significant

in the post-selection least squares fit (butyrate: p-value = 0.0108, bβ

=0.284; acetate: p-value = 0.212, bβ =0.138). The BIC best subset

procedure selected again only butyrate, which was significant in the

post-selection least squares fit (p-value = 7.73 �10�4; bβ =0.342;

R2 = 0.0653, adjusted R2 = 0.0597). As with the other outcomes, the

median out-of-sample R2 and the median root mean squared

prediction error of butyrate for growth index were 0.0654 and 1.30,

respectively.

3.3 | Analysing metabolites and covariates

The relationship between metabolites in the stool and a child's growth

outcome may need to be considered in conjunction with some of the

covariates recorded on INSIGHT children and their mothers. To inves-

tigate this possibility, we considered 20 potentially relevant covariates

(Table 1, see Methods for details). To incorporate these covariates

into our analysis, we considered a regression with the child's growth

outcome as the response, and predictor terms, which included the

butyrate adjusted metabolite concentration (identified from the Phase

1 analysis), 20 covariates, and the interactions between butyrate

adjusted metabolite concentration and each covariate. Using a similar

regression approach as in Phase 1, we performed: (a) LASSO and

(b)

(a)

F IGURE 2 Relationship between butyrate adjusted metabolite
concentration and BMI of 170 INSIGHT children. (A) A scatterplot of
BMI against butyrate concentration with a simple regression trend line
(R2 = 0.0729, p-value = 3.58 � 10�4). The colours (horizontal bands)
correspond to approximate BMI class cut-offs (yellow = underweight,
blue = normal weight, green = overweight, purple = obese) and match
those in panel (B). (B) Boxplots of butyrate concentration by BMI class.
The width of the boxes are proportional to the number of individuals

within each class (underweight: 9, normal weight: 137, overweight: 16,
obese: 8). a = children with overweight have greater average butyrate
adjusted metabolite concentration than children with normal weight, p-
value = 0.0312 (one-sided t-test). b = children with obesity have greater
average adjusted metabolite concentration than children with normal
weight, p-value = 0.0176 (one-sided t test)
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(b) BIC best subset selection, each followed by a post-selection least

squares fit on the selected terms (see Phase 2 in Figure S1).

When BMI is used as the outcome, the LASSO procedure

retained two terms: butyrate adjusted metabolite concentration and

maternal smoking status during pregnancy. The post-selection least

squares fit on these two terms produced an R2 of 0.110, an adjusted

R2 of 0.0998, and a p-value of 5.71 � 10�5; both terms with signifi-

cant positive coefficient estimates (bβ =0.405 and 1.01, respectively)

(Table 2). The BIC best subset procedure selected a model with three

terms, all significant in the post-selection least squares fit (Table 2 and

Figure S11): butyrate adjusted metabolite concentration and maternal

smoking status during pregnancy—both with positive coefficient esti-

mates (bβ =0.406 and 1.04, respectively), and the interaction between

butyrate adjusted metabolite concentration and the child's exact

age—with a negative coefficient estimate (bβ = �0.245). The R2 and

the adjusted R2 for this linear model were, respectively, 0.137

and 0.122, and the p-value was 1.87 �10�5.

Next, we performed the selection procedure using BMI z-score as

the weight outcome. The LASSO retained only one term, butyrate

adjusted metabolic concentration, which remained significant in the

post-selection least squares fit (Table 2; bβ =0.263, R2 = 0.0736,

adjusted R2 = 0.0680, p-value = 3.47 �10�4). Using the BIC best

subset procedure, a model with four terms was selected (Figure S12).

These four terms remained significant in the post-selection least

squares fit (Table 2; R2 = 0.164, adjusted R2 = 0.144, p-value = 5.53

�10�6). Three terms (butyrate adjusted metabolite concentration, bβ

=0.298; maternal smoking status during pregnancy, bβ =0.745; and

child's per day grains consumption frequency, bβ =0.157) had positive

coefficient estimates, and one term (child's exact age at two-year visit

interacting with butyrate adjusted metabolite concentration, bβ = –

0.187) had a negative coefficient estimate.

Finally, we repeated the analysis using the same predictors, but

using the growth index as the response. The LASSO procedure

retained seven terms. The post-selection least squares fit on these

seven terms produced an R2 of 0.198, an adjusted R2 of 0.163, and a

p-value of 6.55 � 10�6. However, only one of the seven terms, buty-

rate adjusted metabolite concentration, was significant (p-value= 2.33

� 10–4; Table 2) with a positive coefficient estimate (bβ =0.361). The

BIC best subset procedure selected a model with three terms, all with

significant positive coefficient estimates in the post-selection least

squares fit—butyrate adjusted metabolite concentration (bβ =0.340),

child's daily meats consumption frequency (bβ=0.252), and maternal

gestational weight gain status (bβ =0.497) (Table 2 and Figure S13;

R2 = 0.134, adjusted R2 = 0.118, p-value = 2.58 �10�5).

3.4 | Butyrate concentration is associated with
the abundance of butyrate synthesizing Firmicutes

Butyrate is a metabolic product of the microbiota.46 To connect our

results to prior analyses of the gut microbiota that we had published

using the same samples from children enrolled in INSIGHT,20 we

tested for associations between bacterial groups and butyrate adjusted

metabolite concentration. First, we considered the cumulative abun-

dance (determined by classified normalized read counts from 16S

rDNA gene sequencing) of all bacteria assigned to the Firmicutes phy-

lum, as the majority of butyrate-producing bacteria belong to this phy-

lum.46 We found no significant association between this abundance

and butyrate adjusted metabolite concentration (R2 = 0.00391, p-

value = 0.428; Figure 3(A)). Second, we only considered bacteria that

could synthesize butyrate, as identified by Vital and colleagues46 based

on the presence of genes encoding enzymes in the butyrate synthesis

pathway, and tested the association of their abundances with butyrate

concentration. We found that the abundance of bacteria in this group

did correlate positively with butyrate adjusted metabolite concentra-

tion (R2 = 0.0315, p-value = 0.0234; Figure 3(B)). Third, among these

butyrate-producing bacteria, we further focused on Firmicutes, which

represent the majority of bacteria within this group. This increased the

significance of the positive association with butyrate adjusted metabo-

lite concentration (R2 = 0.0341, p-value = 0.0184; Figure 3(C)). Finally,

among butyrate-producing Firmicutes, those belonging to the genus

Faecalibacterium seem to drive the observed relationship, with an even

stronger association between their abundance and butyrate adjusted

metabolite concentration (R2 = 0.0412, p-value = 9.61 � 10�3;

Figure 3(D)). Thus, butyrate-producing Firmicutes, and those in the

Faecalibacterium genus in particular, appear to be important contribu-

tors to determining the stool butyrate adjusted metabolite concentra-

tion in our samples.

4 | DISCUSSION

In this study, we found that stool butyrate concentration has a signifi-

cant positive association with a child's weight outcomes at age

2 years. It is consistently selected as a significant predictor in all

regression models for each one of the three child weight outcomes

we considered as the response—BMI, BMI z-score and growth index.

Butyrate is a SCFA, a group of metabolic products formed by anaero-

bic microbial fermentation of non-digestible carbohydrates (such as

resistant starch, dietary fibre and other polysaccharides) in the host

small intestine and colon.50 The SCFAs, acetate and propionate, are

largely produced by the Bacteroidetes phylum, whereas butyrate is

mainly the product of the Firmicutes phylum.50 SCFAs can influence

host physiology by signalling through the free fatty acid receptors

GPR41 and GPR43. When activated, these receptors lead to an

increase in the satiety hormone PYY and in intestinal mobility. GPR41

activation also stimulates the expression of leptin in adipocytes and

increases hepatic lipogenesis. Furthermore, butyrate and propionate

play a role in decreasing appetite through the formation of the gut

hormone GLP-1.50

To date, the evidence concerning the association of butyrate with

weight gain has been mixed. However, consistent with our findings,

some studies have shown higher levels of butyrate in children and

adults with obesity.16,51 This could be due to a higher abundance of

gut bacteria that ferment carbohydrates in individuals with obesity,

which subsequently results in an increase in production of SCFAs.
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This increase in SCFAs can provide extra energy to the host that can

be stored as lipids or glucose.52 Other studies have shown an anti-

inflammatory/anti-obesity role for butyrate.50,53,54 This metabolite is

likely to play an important role in gut homeostasis, possibly through

the gut-brain axis.55,56 However, investigating the mechanism by

which butyrate influences a child's weight is outside the scope of this

study—a larger, longitudinal study collecting data on the host gut cell

physiology and the utilization of metabolites (as in Cuesta-Zuluaga

et al.15) would be necessary to elucidate mechanistically the met-

abolome's effects on human health. This study provides evidence of

an association between butyrate adjusted metabolite concentration

and child weight outcomes at the age of 2 years. This brings us closer

to more fully understanding factors, which could impact an individual's

risk of developing obesity.

As mentioned above, butyrate (and other SCFAs) could act as an

intermediary between the gut microbiota and the host physiology.

Since we have previously characterized the microbiota of these same

samples, it seemed logical to examine the relationship between the

microbiota and butyrate. When we combined the abundance of all

bacteria categorized as Firmicutes, there was no significant associa-

tion between bacterial abundance and butyrate concentration. How-

ever, although the majority of bacteria that synthesize butyrate

belong to the Firmicutes phylum, not all Firmicutes produce butyrate.

Instead, we grouped bacteria according to function (rather than

according to phylogeny) based on the presence of butyrate synthesis

pathway genes.46 This approach proved successful in identifying

Faecalibacterium as potentially driving the association between the

microbiota and butyrate concentration. These results are consistent

with literature on Faecalibacterium as a butyrate producer57,58 being

found in higher concentrations in the gut of children with obesity

when compared to children with normal weight.16,59,60 It is of course

important to note that our study established statistical associations

among butyrate, microbiota, and BMI—not causative links. We could

be observing a compensatory increase in butyrate production to coun-

ter the effects of increased BMI or we could be observing a change in

butyrate production as a result of a dysbiosis in the gut microbiota.

Furthermore, we are also only investigating an association between

butyrate concentration and microbiota abundance, which is different

from a direct assessment of the microbiota's production of butyrate.

There are other potential sources for butyrate in the gut that we can-

not account for (e.g., archaea, fungal, dietary sources etc.). In order to

properly unravel causality, a large, longitudinal study that records

changes in microbiota community composition (including all micro-

organisms and not just bacteria), anthropometric measurements, phys-

iological measurements of gut cell health, and relevant covariate data

(e.g., diet, health history, etc.) is essential.

We used three related outcomes in order to show stability in the

results of the statistical analyses. For example, butyrate was selected

as a significant variable regardless of the weight outcome considered.

The selection of covariates was less consistent, although several of

them were selected across multiple outcomes. One such strong find-

ing was maternal smoking status during pregnancy, which had a signif-

icant positive relationship with BMI and BMI z-score based on both

regression procedures, and a marginally significant positive relation-

ship with growth index based on one of the regression procedures.

Many previous studies have documented a role of maternal smoking

status during pregnancy, which was found to be positively associated

with obesity risk for the child.30,61–68 However, there is no consensus

F IGURE 3 Relationship between the abundance of different groups of bacteria and butyrate adjusted metabolite concentration. (A) All
bacteria classified as Firmicutes; (B) All bacteria identified in Vital et al. as having butyrate synthesis potential; (C) Firmicute bacteria with butyrate
synthesis potential, as identified in Vital et al.; (D) Faecalibacterium (one outlier was removed). The black solid lines indicate the fitted linear
regression models; the R2 and the p-values correspond to Pearson's correlation

NANDY ET AL. 9 of 13



on the underlying mechanism linking maternal smoking to a child's

weight gain.

Another strong covariate found to have a significant negative

association with two weight outcomes (BMI and BMI z-score) and a

marginally significant for the third (growth index) was the interaction

between a child's exact age (in months) and butyrate adjusted metab-

olite concentration. This negative statistical effect on weight outcome

suggests that the positive statistical effect of butyrate adjusted

metabolite concentration in relation to weight outcome decreases in

older children (here, the term “statistical effect” refers to the esti-

mated coefficient in the regression model). This could potentially be

related to the plasticity of the gut microbiota. For instance, Rivière

and colleagues69 found that the abundance of Clostridial clusters is

low immediately after birth, and increases between the ages of 6 and

24 months. Not until around 6 years of age70 are these bacteria at a

higher abundance where they remain through adulthood. Note that

the range of children's ages in our study is very narrow (24.01–

25.49 months, as recorded at the two-year study visit when stool

samples were collected)—yet these �1.5 months could be sufficient

for the gut microbiota to have partially evolved in composition, partic-

ularly if there is a concurrent evolution in diet, health, or behaviour.

However, to the best of our knowledge, microbiota changes during

this small amount of time have not been evaluated previously and

should be considered in future studies.

Finally, there are several covariates that are statistically signifi-

cantly associated with just one weight outcome, such as, excessive

maternal gestational weight gain, frequency of a child's per day

meats consumption (significantly positive coefficient estimates in

regressions with growth index), and frequency of a child's per day

grains consumption (significant positive coefficient estimate in

regressions with BMI z-score). These variables have also been

shown in the literature to be associated with child weight71–73 but

in this study, their association with child's weight seems to be less

compelling. However, these data could serve to support future

hypotheses regarding the impacts of maternal factors and diet on

children's weight trajectories.

4.1 | Statistical considerations

The LASSO and the BIC best subset selection regression procedures

produced non-identical but consistent results for the three weight out-

comes considered—BMI, BMI z-score and growth index. Many other

statistical techniques could be used for analysing the metabolomics

data. Among the ones most frequently used in the field are Principal

Components Analysis74,75 and clustering,76 which are unsupervised

techniques, and orthogonal partial least squares—regression/discrimi-

nant analysis (OPLS/OPLS-DA77), which are supervised tech-

niques.75,78–80 The regression approach we employed in this study

provides a simple and useful alternative. Its main advantage is its inter-

pretability, as we are able to focus on the selection of individual pre-

dictor terms (metabolites, covariates, and interactions) instead of linear

combinations, as produced by methods such as the OPLS. Additionally,

as previously mentioned, the use of three weight outcomes, and of

two regression procedures for each, helps us validate our selection of

relevant variables and gauge the robustness of our conclusion. Vari-

ables that are selected across multiple outcomes and multiple methods

display stable statistical signals. From a different perspective, consider-

ing multiple outcomes may also reveal associations that are outcome-

specific, and should be considered when conducting multi-study

meta-analyses.

Our analyses relied on the tuning of the penalization parameter in

the LASSO and on the choice of a criterion for the best subset selec-

tion regression procedures. We tuned the LASSO penalization param-

eter minimizing a 10-fold cross-validation error, averaged over

100 repetitions of the cross-validation random fold splits. For best

subset selection, we used the BIC—but other criteria such as the

Akaike Information Criterion81,82 or Mallow's Cp83,84 could also

be used.

4.2 | Limitations and future directions

The individuals enrolled in the INSIGHT study19 were recruited from

Central Pennsylvania and are largely of European descent (see

Table S1). Consequently, our results might not generalize to other

populations. Furthermore, our sample size (n = 170) is rather mod-

est—though similar to those of other metabolomic studies.85,86 The

sample size is one consideration for deciding between a targeted ver-

sus an untargeted metabolomics approach, as the dimension of the

data increases by orders of magnitude in an untargeted metabolomics

approach. In our case, with a modest sample size, a targeted met-

abolomics approach was more realistic. However, this does limit our

ability to detect novel associations. It is possible that metabolites we

did not query could impact child weight as well. A significant advan-

tage of our cohort over some other cohorts studied is its deep

characterization, that is, the wealth of information on children's and

mothers' covariates that were collected and incorporated into our

analyses. Nevertheless, for a more comprehensive understanding of

the effect of the metabolome on children weight outcomes, our

results should be replicated with larger cohorts of children belonging

to different ethnicities, ideally also incorporating additional pheno-

typic and clinical covariates along with longitudinal information. The

results that we discuss here are cross-sectional (i.e., the data were col-

lected at a single time point) and as such we can only report on associ-

ations between the metabolites and child weight. A longitudinal study

would be able to address how changes in the metabolites relate to

changes in a child's weight over time.

While the present study focused on metabolites, multiple cross-

sectional “omics” data sets are available or are in the process of being

generated for the INSIGHT children cohort—including data on

microbiota,20 genetic87 and epigenetic variants. Moreover, longitudi-

nal metabolomic and microbiomic profiles are being collected for the

SIBSIGHT cohort38,88 (second born siblings of the children within

INSIGHT). This will allow us to leverage “multi-omics” approaches to

consolidate and expand our findings on childhood obesity. “Multi-
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omics” approaches are indeed becoming increasingly popular to gain a

comprehensive understanding of diseases—including obesity and

other metabolic disorders.13,89–93
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