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Abstract
Aims/hypothesis The action of incretin hormones including
glucose-dependent insulinotropic polypeptide (GIP) and
glucagon-like peptide-1 (GLP-1) is potentiated in animal
models defective in glucagon action. It has been reported that
such animal models maintain normoglycaemia under
streptozotocin (STZ)-induced beta cell damage. However,
the role of GIP in regulation of glucose metabolism under a
combination of glucagon deficiency and STZ-induced beta
cell damage has not been fully explored.
Methods In this study, we investigated glucose metabolism in
mice deficient in proglucagon-derived peptides (PGDPs)—
namely glucagon gene knockout (GcgKO) mice—adminis-
tered with STZ. Single high-dose STZ (200 mg/kg, hSTZ) or
moderate-dose STZ for five consecutive days (50 mg/kg×5,
mSTZ) was administered to GcgKO mice. The contribution of

GIP to glucose metabolism in GcgKO mice was also investi-
gated by experiments employing dipeptidyl peptidase IV
(DPP4) inhibitor (DPP4i) or Gcg–Gipr double knockout
(DKO) mice.
Results GcgKO mice developed severe diabetes by hSTZ ad-
ministration despite the absence of glucagon. Administration
of mSTZ decreased pancreatic insulin content to 18.8± 3.4
(%) in GcgKO mice, but ad libitum-fed blood glucose levels
did not significantly increase. Glucose-induced insulin se-
cretion was marginally impaired in mSTZ-treated GcgKO
mice but was abolished in mSTZ-treated DKO mice.
Although GcgKO mice lack GLP-1, treatment with DPP4i
potentiated glucose-induced insulin secretion and amelio-
rated glucose intolerance in mSTZ-treated GcgKO mice,
but did not increase beta cell area or significantly reduce
apoptotic cells in islets.
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Conclusions/interpretation These results indicate that GIP
has the potential to ameliorate glucose intolerance even under
STZ-induced beta cell damage by increasing insulin secretion
rather than by promoting beta cell survival.
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Abbreviations
BW Body weight
DKO Gcg–Gipr double knockout
DPP4 Dipeptidyl peptidase IV
DPP4i DPP4 inhibitor
GcgKO Glucagon gene knockout mice, which lack all

the PGDPs including glucagon and GLP-1
GIP Glucose-dependent insulinotropic polypeptide
GiprKO GIP receptor knockout
GLP-1 Glucagon-like peptide-1
Gluc-DTR Micewith diphtheria toxin mediated-ablation of

alpha and L cells
hSTZ High-dose streptozotocin
IPGTT Intraperitoneal glucose tolerance test
mSTZ Moderate-dose streptozotocin
PGDPs Proglucagon-derived peptides
STZ Streptozotocin

Introduction

Glucagon is secreted from pancreatic alpha cells and contrib-
utes to promoting hepatic glucose production [1]. Diabetic
patients show a paradoxical secretion of glucagon in response
to meal test [2] and such diabetic hyperglucagonaemia is
thought to be due to the relative deficiency of insulin action
[3]. Thus, blockade of glucagon action is considered to be a
novel target for glucose-lowering drug development [3].

Several animal models deficient in glucagon action have
been reported, including prohormone convertase 2 knockout
mice [4, 5], glucagon receptor knockout (Gcgr−/−) mice [6],
mice treated with glucagon receptor antisense oligonucleotide
[7] and mice having pancreas-specific Arx ablation [8]. All of
these animal models show lower blood glucose levels, sug-
gesting that glucagon plays a major role in hepatic glucose
production and the maintenance of blood glucose levels.
Moreover, several studies demonstrated that such animal
models do not develop hyperglycaemia after beta cell destruc-
tion by streptozotocin (STZ) treatment [8–11], suggesting that
glucagon plays an indispensable role in hyperglycaemia
caused by beta cell destruction.

Glucose-dependent insulinotropic polypeptide (GIP) and
glucagon-like peptide-1 (GLP-1) are incretins released from

intestinal K- and L cells, respectively, and potentiate insulin
secretion from beta cells in a glucose-dependent manner
[12, 13]. GLP-1 is produced from proglucagon, which also
serves as a precursor of glucagon. Several animal models
deficient in glucagon action show markedly elevated plas-
ma GLP-1 levels [5–7, 14], suggesting that GLP-1 might
contribute to normoglycaemia under STZ-induced beta cell
destruction via extra-pancreatic effects. We previously gen-
erated mice lacking proglucagon-derived peptides (PGDPs),
including glucagon and GLP-1 (GcgKO mice) [15].
GcgKO mice display increased insulin sensitivity due to
glucagon deficiency and enhanced early-phase insulin se-
cretion in a GIP-dependent manner [16]. In the present
study, we investigated glucose metabolism in GcgKO mice
administered with STZ. We found that GcgKO mice devel-
oped marked hyperglycaemia under the severe insulin defi-
ciency caused by STZ-induced beta cell destruction despite
the absence of glucagon. However, GcgKO mice displayed
normoglycaemia under moderate insulin deficiency caused
by moderate beta cell damage. We also investigated in-
volvement of GIP in resistance to beta cell damage in
GcgKO mice.

Methods

Materials Acetaminophen, STZ and BSA were obtained
from Sigma-Aldrich (St Louis, MO, USA). Anagliptin, a
dipeptidyl peptidase IV (DPP4) inhibitor (DPP4i) was
provided from Sanwa Kagaku Kenkyusho Co. (Nagoya,
Aichi, Japan).

Animals GcgKO mice in a C57BL/6 background were
established and maintained as previously reported
(Gcgtm1Yhys) [15]. GcgKO heterozygous and wild-type mice
were used as controls.GcgKO and heterozygous mice express
green fluorescent protein (GFP) in cells expressing the gluca-
gon gene. GIP receptor knockout (GiprKO) mice, originally
generated in the C57BL/6 background (Giprtm1Yse) [17], were
obtained from RIKEN BRC (Tsukuba, Japan) through the
National Bio-Resource Project of the Ministry of Education,
Culture, Sports, Science and Technology, Japan. GcgKO and
GiprKO mice were intercrossed to obtain Gcg–Gipr double
knockout (DKO) mice [16]. All mice used in this study were
male. All procedures were conducted according to protocols
and regulations approved by the Nagoya University Animal
Experiment Committee.

STZ treatment To induce moderate damage to beta cells in
the mice, STZ was administered i.p. at a dose of 50 mg
(kg body weight [BW])−1 for five consecutive days
(moderate-dose STZ [mSTZ]) [18]. To induce beta cell
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destruction, 200 mg STZ (kg BW)−1 was injected after
16 h-fast (high-dose STZ [hSTZ]) [19].

DPP4i treatment Anagliptin was administered through feed
water at a concentration of 0.625 mg/ml from 7 days before
starting STZ treatment to the end of the experiment.

Glucose tolerance tests OGTT and i.p. glucose tolerance test
(IPGTT) (2 g/kg BW)were performed as previously described
[16].

Gastric emptying Liquid and solid phase of gastric emptying
were assessed as previously described [20].

Biochemical analyses Blood glucose levels were measured
using an Antsense Blood Glucose Meter (Horiba, Kyoto,
Japan). Plasma GIP and insulin were measured using Rat/
Mouse GIP (total) ELISA (Merck Millipore, Darmstadt,
Germany) and Mouse Insulin ELISA Kit (Morinaga Institute
of Biological Science, Kanagawa, Japan) as previously report-
ed [21]. Blood samples for measurements of biologically in-
tact GLP-1 and GIP were collected using BD P800 tubes
(Becton Dickinson, Franklin Lakes, NJ, USA). Plasma levels
of biologically intact GLP-1 and GIP were evaluated using the
following immunoassays according to manufacturers’ instruc-
tions: GLP-1, Active GLP-1 (ver. 2) Kit (Meso Scale
Discovery, Rockville, MD, USA) and GIP, Mouse GIP,
Active form Assay Kit (Immuno-Biological Laboratories,
Gunma, Japan).

Pancreatic insulin and GIP content analysis Pancreatic
tissue was homogenised in Krebs-Ringer buffer (pH 7.4)
on ice. Tissue homogenate was extracted overnight in
acid-ethanol (1.5% (vol./vol.) HCl in 75% (vol./vol.)
EtOH). Tissue extracts were diluted 1:100 or 1:200 for
insulin measurement. Diluted extracts were measured by
HTRF Insulin Kit (Cisbio Bioassays, Codolet, France).
Pancreatic insulin content was corrected by tissue weight
for analysis. Tissue extracts were diluted 1:3 with Krebs-
Ringer buffer for GIP measurement and protein content
assay. Diluted extracts were measured by Rat/Mouse
GIP (total) ELISA (Merck Millipore) and BCA protein
assay (Sigma-Aldrich). Pancreatic GIP content was
corrected by protein content for analysis.

Immunohistochemistry Tissue preparation and analyses
have been described in detail previously [16]. Pancreas tissue
was collected 1 day after the final administration of mSTZ to
analyse cleaved caspase-3 and at 9 weeks of age to analyse
beta cell mass. For analysis of cleaved caspase-3, sections
were treated in citrate buffer-based Target Retrieval Solution
(Dako, Glostrup, Denmark) before primary antibody incuba-
tion. Sections were incubated overnight with primary

antibodies to cleaved caspase-3 (1:300; #9661; Cell
Signaling Technology, Danvers, MA, USA) and/or insulin
(1:150; ab7842; Abcam, Cambridge, MA, USA). Secondary
antibodies (Alexa fluor 488, 594; 1:500; A-11073, A-11037 or
A-11076; Molecular Probes, Eugene, OR, USA) were applied
and incubated for 90 min at room temperature. Antibodies
used are commercially available and widely used for
immunohistochemistry. Fluorescent images were taken
using BZ-9000 Fluorescence Microscope (Keyence,
Osaka, Japan). The number of islets used to analyse
cleaved caspase-3 was 355. The total areas of islets,
insulin-positive cells (beta cells) and cleaved caspase-3
were analysed using BZ-X analyser software (Keyence).

Statistical analysis Results are presented as means ± SEM.
Statistical significance was evaluated by ANOVA or a
Student’s t test using GraphPad Prism 6 for Windows
(GraphPad Software, La Jolla, CA, USA).

Results

Severe hyperglycaemia is induced by hSTZ-induced beta
cell ablation in GcgKO mice To evaluate glucose metabo-
lism under beta cell dysfunction in the GcgKO and control
mice, STZ was given at a high dose (200 mg/kg, one shot;
Fig. 1). As shown in Fig. 1a, both GcgKO and control mice
displayed severe hyperglycaemia at 4, 7 and 9 days after hSTZ
administration. In accord with the blood glucose levels,
plasma insulin levels were significantly decreased to
<40 pmol/l in both groups (Fig. 1b). Pancreatic insulin
content was analysed 9 days after hSTZ administration,
and showed nearly 90% of the beta cells to be ablated in
both GcgKO and control mice (Fig. 1c). These findings
demonstrate that severe destruction of beta cells causes
hyperglycaemia even in GcgKO mice, which lack PGDPs
including glucagon, indicating that glucagon action is not
requisite for persistent hyperglycaemia.

Normoglycaemia is maintained in GcgKO mice after
mSTZ treatment We next analysed glucose metabolism in
mSTZ (50 mg/kg once daily for 5 days)-treated control and
GcgKO mice (Fig. 2). Beta cell damage in mice treated with
mSTZ was milder than that in mice treated with hSTZ by
analysis of the fluorescent images of cleaved caspase-3
(Electronic SupplementaryMaterial [ESM] Fig. 1). In contrast
to hSTZ administration, mSTZ treatment revealed differential
effects on blood glucose levels in control and GcgKO mice.
As shown in Fig. 2a, blood glucose levels in mSTZ-treated
GcgKO (mSTZ-GcgKO) mice were not significantly elevated
compared with those in saline (154 mmol/l NaCl)-treated
GcgKO (saline-GcgKO) mice, whereas those in mSTZ-
treated control (mSTZ-control) mice were significantly
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elevated at 2 weeks and thereafter. After mSTZ administra-
tion, plasma insulin levels in control mice were significantly
decreased, but they were not changed in GcgKO mice
(Fig. 2b). Plasma GIP levels were significantly higher in
GcgKO than in control mice. To determine whether absence
of GLP-1 and increased GIP modify motility of the gastroin-
testinal tract in GcgKO mice, the gastric emptying rate
was evaluated to assess solid phase gastric emptying.
Acetaminophen absorption test also was performed to assess
liquid phase gastric emptying. There was no significant differ-
ence between control and GcgKO mice in either liquid
(152.02 ± 6.79 μmol/l in control; 161.66 ± 13.94 μmol/l in
GcgKO; p=0.557) or solid phase (39.3± 11.3% in control;
28.5 ± 12.2% in GcgKO; p= 0.539) gastric emptying rate
(ESM Fig. 2).

GIP contributes to glucose homeostasis in GcgKO mice
To assess the role of GIP in glucose homeostasis of mSTZ-
treated GcgKO mice, we treated the DKO mice with mSTZ
(mSTZ-DKO) and analysed glucose tolerance. Glucose tol-
erance of DKO mice without STZ treatment was compara-
ble with that of control mice [16]. Blood glucose levels
under ad libitum-fed conditions in mSTZ-DKO mice were
not significantly different from those in mSTZ-GcgKO mice
or non-diabetic GiprKO mice; and plasma insulin levels
under ad libitum-fed conditions in mSTZ-DKO mice were
not significantly different from those in mSTZ-GcgKO mice
(Fig. 3a, b). However, glucose tolerance and insulin secre-
tion during OGTT in mSTZ-DKO mice were impaired

compared with those in mSTZ-GcgKO and saline-treated
mice (Fig. 3c, d and data not shown), indicating a signifi-
cant role of GIP in beta cell function under mSTZ-induced
damage. On the other hand, no significant difference in
glucose levels was observed between mSTZ-GcgKO and
mSTZ-DKO mice during IPGTT (Fig. 3e). Significant in-
crease in insulin level in response to i.p. glucose load was
observed in mSTZ-GcgKO but not in mSTZ-DKO mice
(Fig. 3f). The apparently differential insulin sensitivity ob-
served between these two models might be due to presence
or absence of the GIP receptor. Previous studies have shown
that mice deficient in GIP action are more sensitive to
insulin than control mice [22, 23].

DPP4i enhances glucose-induced insulin secretion only in
mSTZ-treated GcgKO mice Because GIP and GLP-1 are
rapidly inactivated by DPP4 [12], DPP4 inhibitors are widely
used for clinical treatment of diabetes as an insulin secreta-
gogue. In addition, GIP and GLP-1 are considered to play a
critical role in glucose-induced insulin secretion from pancre-
atic beta cells and anti-apoptotic action for beta cell survival
mediated by DPP4 inhibition [24, 25]. To investigate whether
enhancement of GIP signalling by DPP4i improves glucose
tolerance and/or protects beta cells in mSTZ-GcgKO mice,
DPP4i was administered as shown in Fig. 4a. This treatment
improved glucose tolerance by increasing insulin secretion
during OGTT in non-diabetic wild-type mice (ESM Fig. 3a,
b), but did not during IPGTT (ESM Fig 3c, d). DPP4i treat-
ment also significantly increased active GIP and GLP-1 levels
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Fig. 1 (a) Blood glucose levels,
(b) plasma insulin levels and
(c) pancreatic insulin content in
control and GcgKO mice after
hSTZ treatment (200 mg/kg).
STZ was i.p. injected at a dose of
200 mg/kg BWafter overnight
(16 h) fast. (a) Blood glucose
levels under ad libitum-fed states
were measured in both GcgKO
and control mice before (baseline)
and at 4, 7 and 9 days after hSTZ
administration. (b) Plasma insulin
levels under ad libitum-fed states
were measured before and 9 days
after hSTZ injection.
(c) Pancreatic insulin content was
analysed at 9 days after hSTZ
injection. **p< 0.01, saline-
treated vs hSTZ-treated. White
bars, saline-control; light grey
bars, hSTZ-control; black bars,
saline-GcgKO; dark grey bars,
hSTZ-GcgKO. n= 6–9 per group
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during OGTT as well as under ad libitum-fed status (ESM
Fig 3e–h). Treatment with DPP4i did not affect blood glucose
levels under ad libitum-fed states in either control or GcgKO
mice after mSTZ treatment (Fig. 4a). Pancreatic insulin con-
tent was decreased to 18.1±0.2 (%) in control mice and to
18.8±3.4 (%) inGcgKOmice 9 weeks after mSTZ treatment,
and DPP4i did not increase pancreatic insulin content in either
mSTZ-control mice or mSTZ-GcgKO mice (Fig. 4b). On
IPGTT and OGTT, both mSTZ-control and mSTZ-GcgKO
mice showed impaired glucose intolerance relative to the cor-
responding saline-treated animals (Fig. 4c, e, g, i). However,
treatment with DPP4i showed differential effects on mSTZ-
control and mSTZ-GcgKO mice. Treatment by DPP4i failed
to improve glucose intolerance and insulin secretory response
in mSTZ-control mice during IPGTT (Fig. 4c, d) and OGTT
(Fig. 4g, h). On the other hand, with the same treatment in
GcgKOmice, blood glucose levels were significantly reduced
at 30, 60 and 120 min during IPGTT (Fig. 4e) and at 30 and
60 min during OGTT (Fig. 4i). In addition, glucose-induced
insulin secretion was increased during IPGTT and OGTT by
chronic DPP4 inhibition in mSTZ-GcgKO mice (Fig. 4f, j).

DPP4i treatment did not improve glucose tolerance or insulin
secretion in mSTZ-DKO mice (ESM Fig. 4). These results
indicate that insulin secretion by GIP plays an essential role
in glucose metabolism in mSTZ-GcgKO mice under treat-
ment with DPP4i. Pancreatic GIP contents were not reduced
in hSTZ- or mSTZ-control mice. On the other hand, pancre-
atic GIP contents were significantly reduced in hSTZ-GcgKO
mice but not in mSTZ-GcgKO mice (ESM Fig. 5).

GIP in GcgKO mice did not enhance beta cell survival
after mSTZ treatment It was reported that endogenous GIP
plays a limited role in beta cell survival in STZ-induced
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Fig. 3 (a) Blood glucose levels, (b) plasma insulin levels, (c, d) OGTT
and (e, f) IPGTT in saline-GiprKO, mSTZ-treated GiprKOmice (mSTZ-
GiprKO), mSTZ-GcgKO andmSTZ-DKOmice. OGTTand IPGTTwere
performed 3 and 4 weeks after mSTZ administration, respectively.
Plasma insulin levels were evaluated at 5 weeks (b). White triangles
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GiprKO; horizontal-striped bars, mSTZ-GiprKO; dark grey bars,
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Fig. 2 (a) Blood glucose levels, (b) plasma insulin levels and (c) plasma
GIP levels in control and GcgKO mice after mSTZ treatment in ad
libitum-fed states. STZ or saline was i.p. injected once daily at a dose
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diabetes models [25, 26]. To investigate the role of GIP in beta
cell survival in the absence of PGDPs including GLP-1, we
analysed apoptosis in islets and beta cell mass in the pancreas
of mSTZ-GcgKO mice. The percentage of beta cells positive
for cleaved caspase-3 was increased significantly by mSTZ
treatment. Treatment of mSTZ-GcgKO with DPP4i did not
significantly reduce caspase-positive cells (Fig. 5a, b) and beta
cell mass in DPP4i-mSTZ-GcgKOmice was comparable with
that in mSTZ-GcgKO mice (Fig. 5c, d). Pancreatic insulin
content was similar between GcgKO mice and DKO mice
5 weeks after mSTZ treatment (ESM Fig. 6). These results
suggest that improvement of insulin secretion and glucose
tolerance in mSTZ-GcgKO mice by DPP4i-treatment is me-
diated through mechanisms other than promotion of beta cell
survival.

Discussion

Glucagon increases hepatic glucose production; insulin in-
hibits glucose production [27]. The relative contribution of
dysregulated glucagon secretion and impairment of insulin
secretion to hyperglycaemia in diabetic patients has been a

matter of debate [28]. It has been shown recently that admin-
istration of STZ to Gcgr−/− mice disrupted 90% of the beta
cells and abolished glucose-induced insulin secretion yet
failed to cause hyperglycaemia [10]. Based on this observa-
tion, it has been proposed that hyperglucagonaemia itself
plays an essential role in increasing blood glucose levels.

However, in the present study we observed that GcgKO
mice lacking both glucagon and GLP-1 developed
hyperglycaemia upon hSTZ-induced beta cell ablation. This
difference between Gcgr−/− and GcgKO is most likely due to
the presence or absence of extra-pancreatic GLP-1 action.
Several studies have shown that GLP-1 exhibits extra-
pancreatic action in increasing insulin sensitivity and modu-
lating glucose metabolism [9, 20, 29]. This is supported by
studies employing Gcgr−/− Glp1r−/− double knockout mice
and mice with diphtheria toxin mediated-ablation of alpha
and L cells (Gluc-DTR). Both models are deficient in GLP-1
action and exhibit hyperglycaemia on STZ treatment,
underscoring the critical importance of GLP-1 on glycaemic
control under STZ-induced beta cell ablation [30–32].
Nevertheless, there are unique characteristics among Gcgr−/−

Glp1r−/−, Gluc-DTR and GcgKO mice. GcgKO mice lack all
proglucagon-derived peptides throughout life, while there is a

0

10

20

30

a

Time (weeks)

B
lo

od
 g

lu
co

se
 (

m
m

ol
/l)

1 2 3 4 5 6 7 8 9

****

**

**

**
**

**

**

** **
**

** ** ** **

****
**

****

STZ

DPP4i

Sali
ne

-c
on

tro
l

m
STZ-c

on
tro

l

m
STZ-D

PP4i-
co

nt
ro

l

Sali
ne

-G
cg

KO

m
STZ-G

cg
KO

m
STZ-D

PP4i-
Gc
gK

O

0

50

100

150

200
b

In
su

lin
 c

on
te

nt
(n

g/
m

g 
of

 p
an

cr
ea

s)

NS
NS

0

10

20

30

40

c

Time (min)

B
lo

od
 g

lu
co

se
 (

m
m

ol
/l)

*
**

**
0

50

100

150

200

d

Time (min)
In

su
lin

 (
pm

ol
/l)

0

10

20

30

40

e

Time (min)

B
lo

od
 g

lu
co

se
 (

m
m

ol
/l)

** **
**

**

**
**

0

50

100

150

200

f

Time (min)

In
su

lin
 (

pm
ol

/l)

**

**

0

10

20

30

40

g

Time (min)

B
lo

od
 g

lu
co

se
 (

m
m

ol
/l)

*

****
**

**
0

200

400

600

800

h

Time (min)

In
su

lin
 (

pm
ol

/l)

**

0

200

400

600

800

j

Time (min)

In
su

lin
 (

pm
ol

/l)

**

**

*

0 30 60 90 120 0 15 0 15 0 15 0 30 60 90 120 0 15 0 15 0 15

0 30 60 90 120 0 15 0 15 0 15 0 15 0 15 0 150 30 60 90 120
0

10

20

30

40

i

Time (min)

B
lo

od
 g

lu
co

se
 (

m
m

ol
/l)

**
**

** **
**

Fig. 4 (a) Blood glucose levels,
(b) pancreatic insulin content, (c–
f) IPGTT and (g–j) OGTT in
GcgKO and control mice treated
with DPP4i. IPGTT and OGTT
were performed at 6 and 7 weeks
after mSTZ injection,
respectively. *p < 0.05,
**p< 0.01, vs saline-treated
(a, c, e, g, i). *p < 0.05,
**p< 0.01; NS, not significant
(b, d, f, h, j). White circles and
solid line, saline-control; black
circles and solid line, mSTZ-
control; black triangles and solid
line, mSTZ-DPP4i-control; white
squares and dashed line, saline-
GcgKO; black squares and dashed
line, mSTZ-GcgKO; black
diamonds and dashed line, mSTZ-
DPP4i-GcgKO (a, c, e, g, i). White
bars, saline-control; light grey bars,
mSTZ-control; horizontal-
striped light grey bars, mSTZ-
DPP4i-control; black bars,
saline-GcgKO; dark grey bars,
mSTZ-GcgKO; diagonal-
striped dark grey bars, mSTZ-
DPP4i-GcgKO (b, d, f, h, j).
n= 4–7, saline-control; n = 3–7,
mSTZ-control; n = 7–8, mSTZ-
DPP4i-control; n = 4–9, saline-
GcgKO; n = 5–9, mSTZ-
GcgKO; n = 5–6, mSTZ-
DPP4i-GcgKO
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decrease in PGDPs in Gluc-DTR mice: GLP-1 synthesis in
Gluc-DTR mice returns to normal levels 7 days after injection
of diphtheria toxin [33]. GLP-2 is present inGcgr−/− Glp1r−/−

mice, but is reduced or absent in Gluc-DTR andGcgKOmice,
respectively. Thus, the presence or absence of GLP-2 and
residual glucagon in Gluc-DTR mice does not seem to affect
glycaemic control under beta cell ablation.

Nevertheless, GcgKO mice, which lack GLP-1, main-
tain normoglycaemia after mSTZ treatment, which causes
persistent hyperglycaemia in the control mice. Thus, the
requirement for insulin to maintain normal blood glucose
levels is lower in both GcgKO and Gcgr−/− mice [9, 15, 34,
35]. In the present study, plasma insulin levels under ad
libitum-fed states were comparable between mSTZ-control
and mSTZ-GcgKO mice (Fig. 2b). Insulin levels in
GcgKO mice before STZ treatment were not significantly
different from those after mSTZ treatment. These findings
indicate that insulin plays a critical role in the maintenance
of glucose levels in mSTZ-GcgKO mice. Incretins regulate

insulin secretion and GIP is the major incretin in GcgKO
mice, which lack GLP-1 [36].

Several reports suggest that GIP potentiates the early phase
of glucose-induced insulin secretion to contribute to im-
proved glycaemic control [16, 37–39]. GIP also has been
reported to contribute to beta cell survival in vitro [40, 41],
while GIP overexpression was found to enhance the incre-
ment of insulin content induced by high-fat diet feeding by
decreasing beta cell apoptosis [39]. We previously reported
that GIP was expressed not only in the gastrointestinal tract
but also in pancreatic beta cells in GcgKO mice and that GIP
hypersecretion contributes to the enhanced glucose-induced
insulin secretion and improved glucose tolerance under non-
diabetic states in GcgKO mice [16]. These findings led us to
investigate whether GIP contributes to resistance to develop-
ing diabetes in mSTZ-GcgKO mice.

Moderate beta cell damage abolished insulin secretion in
DKO but not in GcgKO mice (Fig. 3). Treatment with DPP4i
potentiated glucose-induced insulin secretion and ameliorated
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Fig. 5 (a, b) Cleaved caspase-3
immunopositivity and (c, d) beta
cell area of islets from GcgKO
mice. (b) Representative images
of cleaved caspase-3-positive
islets. Red, cleaved caspase-3;
green, insulin; blue, DAPI. Scale
bars, 50 μm. (d) Representative
images of pancreas. Red, insulin;
green, GFP (glucagon); blue,
DAPI. Scale bars, 300 μm. Black
bars, saline-GcgKO; dark grey
bars, mSTZ-GcgKO; diagonal-
striped dark grey bars, mSTZ-
DPP4i-GcgKO (a, c). *p < 0.05,
**p< 0.01; NS, not significant
(p = 0.07 for [a])
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glucose intolerance in mSTZ-GcgKO but not in mSTZ-DKO
mice (Fig. 4, ESM Fig. 4). These results indicate that GIP
played an important role in protecting mice deficient in
PDGPs from diabetes. However, treatment with DPP4i
did not significantly reduce the number of apoptotic cells
in islets (Fig. 5), and blocking GIP actions did not mod-
ify pancreatic insulin content in mSTZ-treated mice (ESM
Fig. 6). These results indicate that GIP does not contribute
to beta cell protection in mSTZ-GcgKO mice but that it
does contribute to increase insulin secretion from each of
the beta cells.

It was reported recently that GIP and GLP-1 are secreted
not only from enteroendocrine K- and L cells but also from
pancreatic islets [16, 42–45]. In the present study, pancreatic
GIP content in control mice decreased neither by hSTZ treat-
ment nor by mSTZ treatment, most likely because GIP is
expressed in pancreatic alpha cells [16, 26, 45]. On the other
hand, GIP content in GcgKO pancreas was decreased by
hSTZ treatment, confirming our previous results showing that
GIP is expressed in beta cells in GcgKO. However, pancre-
atic GIP content was not changed by mSTZ treatment
(ESM Fig. 5). The mechanism underlying the lack of
change in pancreatic GIP content under the mSTZ-induced
beta cell damage, including that of regeneration of GIP-
positive cells, remains to be elucidated.

Islet-derived GLP-1 has been shown to enhance glucose-
induced insulin secretion in vitro by using DPP4i in non-
diabetic human and mouse islets [46]. In the present study,
IPGTT and OGTT analyses suggested that both islet-derived
GIP and gut-derived GIP contributes to improving glucose
metabolism in mSTZ-GcgKO mice. In, addition, our results
indicate that islet-derived GIP can exert an insulinotropic ef-
fect even when islet insulin contents are decreased under
glucagon-deficient states. We therefore propose that combina-
tion therapy with glucagon antagonist and DPP4i might be
considered as a therapeutic option to treat diabetes.
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