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Abstract

Human respiratory syncytial virus (HRSV) is the main cause of bronchiolitis during the first

year of life, when infections by other viruses, such as rhinovirus, also occur and are clinically

indistinguishable from those caused by HRSV. In hospitalized infants with bronchiolitis, the

analysis of gene expression profiles from peripheral blood mononuclear cells (PBMC) may

be useful for the rapid identification of etiological factors, as well as for developing diagnostic

tests, and elucidating pathogenic mechanisms triggered by different viral agents. In this

study we conducted a comparative global gene expression analysis of PBMC obtained from

two groups of infants with acute viral bronchiolitis who were infected by HRSV (HRSV

group) or by HRV (HRV group). We employed a weighted gene co-expression network anal-

ysis (WGCNA) which allows the identification of transcriptional modules and their correla-

tions with HRSV or HRV groups. This approach permitted the identification of distinct

transcription modules for the HRSV and HRV groups. According to these data, the immune

response to HRSV infection—comparatively to HRV infection—was more associated to the

activation of the interferon gamma signaling pathways and less related to neutrophil activa-

tion mechanisms. Moreover, we also identified host-response molecular markers that could

be used for etiopathogenic diagnosis. These results may contribute to the development of

new tests for respiratory virus identification. The finding that distinct transcriptional profiles

are associated to specific host responses to HRSV or to HRV may also contribute to the elu-

cidation of the pathogenic mechanisms triggered by different respiratory viruses, paving the

way for new therapeutic strategies.
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Introduction

Viral bronchiolitis is frequent and has an important impact on the children’s health care due

to the high rates of hospitalization and mortality, especially of young infants [1, 2]. Human

respiratory syncytial virus (HRSV) is the predominant etiological agent, but infections by

other respiratory viruses, such as human rhinovirus (HRV), metapneumovirus, parainfluenza,

influenza, adenovirus, and coronavirus, also occur. These infections with different respiratory

virus present similar clinical characteristics, so etiological diagnosis can be carried out in clini-

cal practice only by virus identification, either by molecular tests, immunofluorescence or cul-

ture methods [1–5]. Although the current guidelines do not indicate routine tests to identify

the etiologic agent in infants with bronchiolitis, the etiological diagnosis may contribute to the

prevention of nosocomial acquisition, since the transmission mechanisms diverge among

respiratory viruses. Knowledge on molecular epidemiology also contributes to programming

and organizing prophylactic strategies, such as the use of monoclonal antibodies to HRSV and

influenza vaccination [3, 6]. Etiological diagnosis may also contribute for developing specific

therapeutic approaches for each agent.

Clinical and epidemiological evidences indicated that pathogenic pathways are different in

HRSV and HRV infections [7]. HRSV is the main agent of bronchiolitis, responsible for high

rates of hospitalization and it is a major cause of mortality, especially in premature infants and

those with risk factors. Despite this fact, the therapeutic approach consists mainly in support-

ive measures [3]. HRV is the most common agent of cold and triggering asthma attacks in

atopic individuals, however around 35% of asymptomatic subjects have positive results for

HRV tests [8]. Serious infections by both agents in early life are associated with recurrent

wheezing in the following years, but this association is stronger with HRV. While HRSV infec-

tion leads to structural and functional changes in the airways, HRV infections do not cause as

many changes and are more related to atopy and asthma [9]. Clinical studies suggest that the

use of corticosteroids during the acute phase of infection with high levels of HRV may reduce

the risk of recurrent wheezing in the subsequent year [10, 11].

Differential patient responses to respiratory viruses lead to different clinical outcomes and,

interestingly, it has been found that infections with different respiratory viruses (HRSV, HRV,

Influenza A), as well as with different genotypes of the same virus (HRSV), present distinctive

PBMC transcriptome signatures [12] [13]. Furthermore, PBMC transcriptome profiles can be

used to assess disease severity in infants with HRSV [7] and to predict individualized responses

to HRV [14]. Thus, besides contributing to clarify the etiology, genomic methods can bring

important information on the pathogenic role of the different respiratory virus as single

agents, or in codetection, and in symptomatic and asymptomatic patients, which is especially

important in HRV infections.

In this study, we conducted a comparative global gene expression analysis of PBMC

obtained from patients with acute viral bronchiolitis infected by HRSV (HRSV group) or by

HRV (HRV group). We employed a weighted gene co-expression network analysis (WGCNA)

which allows the identification of transcriptional modules and their correlation with HRSV or

HRV groups. This approach permitted the identification of distinct transcription modules for

the HRSV and HRV groups. Moreover, differentially expressed genes in the PBMC expression

profiles presented significant high fold-changes between HRSV and HRV groups and could be

potential etiological markers.
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Materials and methods

Ethics statement

This study was approved by the Research Ethics Committee of the Hospital Universitário da

Universidade de São Paulo under number 1011/10. The infants’ legal guardians signed the

Informed Consent Form after the presentation of the study by one of the authors and

answered standardized questionnaires for the obtaining clinical, demographic and epidemio-

logical data. All infants were submitted to molecular analysis of nasopharyngeal secretion for

viral identification. Patients’ peripheral blood samples were collected for genomic analysis.

Patient characteristics

A total of 12 out of 124 infants under 6 months of age—hospitalized between 2013 and 2015 at

the Hospital Universitário da Universidade de São Paulo—were selected from a prospective

cohort study on the etiology of acute viral bronchiolitis [15]. Diagnosis of bronchiolitis was

defined as the first wheezing crisis, beginning no more than 3 days before hospital admission.

In this study we included only infants infected with HRSV A ON1 or HRV as a single agent.

Patients’ demographic and clinical data are listed in Table 1. The median age of the infants of

the HRSV group and the HRV group were similar (41.5 days and 64 days, respectively;

p = 0.8). There was a predominance of males in both groups (66.6% in the HRSV group and

83.3% in the HRV group). The mean length of hospital stay in the HRSV group was 6 days and

in the HRV group was 2 days.

Sample collection and total RNA extraction

Whole blood was collected in an EDTA-containing tube within a maximum of 24 hours after

hospital admission. The peripheral blood mononuclear cells (PBMC) were immediately sepa-

rated by gradient centrifugation using Ficoll-Paque Plus (GE Heathcare, cat. no. 17144002).

After cell separation, the PBMC were collected, preserved in RNAlater (Qiagen, cat. no. 76106)

Table 1. Demographic and clinical data of infants with HRSV or HRV infection.

days Percentage

Sample Gender Age HS WBC/mm3 LYMP MNC Neutrophils Neutrophil/LYMP

RV46 Male 51 1 14000 81.0 7.0 12.0 0.15

RV66 Male 83 1 12210 57.0 10.0 33.0 0.58

RV81 Male 79 1 9830 67.8 9.1 23.1 0.34

RV109 Male 10 9 11010 43.0 11.0 46.0 1.07

RV116 Male 32 1 11120 67.3 14.6 18.1 0.27

RV117 Female 32 1 13090 68.3 13.3 18.4 0.27

Median 48 2� 11877� 64.1 10.8 25.1 0.45

RSV2 Female 31 4 11500 51.0 11.0 38.0 0.75

RSV6 Male 27 9 6080 66.0 12.0 22.0 0.33

RSV24 Male 88 5 6440 46.0 13.0 41.0 0.89

RSV32 Male 40 4 12000 84.0 6.0 10.0 0.12

RSV45 Male 130 6 8380 26.0 4.0 70.0 2.69

RSV48 Female 150 5 10400 53.0 8.0 39.0 0.74

Median 78 6� 9133� 54.3 9.0 36.7 0.92

HS–hospital stay; WBC—leukocytes; LYMP—lymphocytes; MNC—monocytes

�median significantly different between HRSV and HRV groups (t-test, p<0.05).

https://doi.org/10.1371/journal.pone.0213501.t001
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and stored at -20˚C until RNA extraction. PBMC were lysed with 300 μl of RLT buffer and the

total RNA was extracted using RNeasy Mini Kit (Qiagen, cat. no. 74106). RNA purity analysis

and quantification were performed using the NanoVue spectrophotometer (GE Heathcare

Life Sciences, Marlborough, MA). RNA quality was assessed on the Agilent BioAnalyzer 2100

(Agilent, Santa Clara, CA). All samples presenting RIN� 7.0 were stored at -80˚C until used

in hybridization experiments.

Microarray hybridization and global gene expression

In order to determine gene expression profiles, 44 K DNA microarrays (Whole Human

Genome Microarray Kit, Agilent Technologies, cat no. G4112F, Santa Clara, CA, USA) were

used. The procedures for hybridization using the fluorescent dye Cy3 followed the manufac-

turer’s protocols (One-Color Microarray-Based Gene Expression Analysis—Quick Amp

Labeling). The microarray images were captured by the reader Agilent Bundle, according to

the parameters recommended for bio-arrays and extracted by Agilent Feature Extraction soft-

ware version 9.5.3. Spots with two or more flags (low intensity, saturation, controls, etc.) were

considered as NA, that is, without valid expression value. The R software version 2.11.1 and an

in-house script were used for: i) excluding transcript spots presenting one or more NAs; iii)

converting gene expression values to log base 2. Through this procedure the gene expression

matrix with only expressed transcripts were obtained. Data normalization was performed

using R software and the Lowess method [16]. TMEV software version 4.6.1 and t-test with

p<0.05 and fold-change value� 2.0 was used for obtaining the differentially expressed genes

for the comparison (HRSV versus HRV). All microarray raw data have been deposited in

Expression Omnibus (GEO) public database under accession number GSE124124.

Weighted gene coexpression network analysis (WGCNA)

WGCNA is a method that identifies and characterizes gene modules whose members share

strong coexpression. Networks were constructed using the WGCNA R software package [17].

Pearson’s correlation coefficient was used for obtaining gene coexpression similarity measures

and for the subsequent construction of an adjacency matrix using soft power and topological

overlap matrix (TOM). Soft-thresholding process transforms the correlation matrix to mimic

the scale free topology. TOM is used to filter weak connections during network construction.

Module identification is based on TOM and in average linkage hierarchical clustering. Finally,

dynamic cut-tree algorithm was used for dendrogram’s branch selection. The module eigen-

gene (ME) is defined as the first principal component of a given module, which can be consid-

ered a representative of the gene expression profiles in a module. Module Membership (MM),

also known as eigengene-based connectivity (kME), is defined as the correlation of each gene

expression profile with the module eigengene of a given module [17].

Module-HRSV or HRV association. Firstly, we obtained the gene significance (GS),

which is a value of the correlation between the trait (here is represented by HRSV or HRV

groups) and the gene expression values. The mean GS for a particular module is considered as

a measure of module significance (MS). The GS values were obtained using Pearson’s correla-

tion and to assign a p-value to the module significance, we used Student’s t test. The modules,

which presented high positive correlation value with HRSV or HRV groups (r� 0.6 and

p< 0.05) were selected for biological functional analysis.

Intramodular analysis for hub selection. The MM and GS values were used for gene cat-

egorization. Genes presenting high GS and MM were considered as hubs in the module and

significantly associated with HRSV or HRV groups. We plotted all gene values in a MM (x-

axis) vs GS graphic (y-axis).
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Functional enrichment analysis

KEGG pathway enrichment was performed using Enrichr online web-based tool [18] to ana-

lyze the network modules that are associated with the HRSV or HRV groups (p< 0.05). The

biological function analysis for the selected genes was done using the Gene Ontology database.

Results

Transcriptional analysis revealed that 283 out of 6,615 GO annotated genes were differentially

expressed (DE, fold-change� 2.0) when compared between the HRSV and HRV groups. In

the HRSV group most of the DE genes (204 genes) were hyper-expressed and only 79 genes

were hypo-expressed when compared with the HRV group. The gene CCDC177 (C14orf162)

presented the highest fold-change value (16.3). Moreover, 22 genes were differentially

expressed and presented high fold-change values between 16.3 and 4.0 (S1 Fig). Table 2 lists

these high fold-change DE genes, where 21 genes were hyper-expressed and one was hypo-

expressed in HRSV group.

The enrichment analysis of the DE genes, based on Biological Process (BP) terms of Gene

Ontology database, showed that 99 DE genes (60 hyper-expressed and 39 hypo-expressed

genes in the HRSV group in comparison with the HRV group) are significantly over-

Table 2. Differentially expressed genes with high fold-change (>4.0) for HRSV group in comparison with HRV group.

Gene Gene expression average FC� Adj p Functional description

HRSV group HRV group HRSV/HRV

C14orf162 2602.4 160.0 16.3 0.02 aliase CCDC177; coiled-coil domain containing 177

ZDHHC20 556.4 66.1 8.4 0.00 palmitoyltransferase activity

FAM118A 6773.3 999.9 6.8 0.00 protein binding

TTC28 2678.2 401.9 6.7 0.00 cell division

ZNF2a 6052.0 910.6 6.6 0.00 regulation of transcription, DNA-templated

ZSCAN2 3203.1 482.2 6.6 0.00 regulation of transcription, DNA-templated

POLR2J2 3675.9 587.7 6.3 0.00 transcription, DNA-templated

TBXA2R 4479.4 759.7 5.9 0.00 G-protein coupled receptor signaling pathway; inflammatory response

KIAA1875 13424.5 2329.1 5.8 0.00 aliase WDR97; WD repeat domain 97; function unkhown

COX6B2 22173.3 4028.8 5.5 0.00 protein binding; mitochondrial crista

LOC284454 2120.3 412.8 5.1 0.01 ncRNA

SOX13 509.6 102.7 5.0 0.01 DNA-binding transcription factor activity

LAG3 408.5 82.7 4.9 0.00 MHC class II protein binding; positive regulation of natural killer cell mediated cytotoxicity

HYAL4 7786.2 1615.4 4.8 0.00 glycosaminoglycan catabolic process

ZNF713 9430.2 1961.7 4.8 0.01 regulation of transcription, DNA-templated

EVX1b 2108.4 445.8 4.7 0.00 regulation of transcription, DNA-templated

SERPING1 148.5 32.4 4.6 0.04 complement activation, classical pathway

WDR90 1029.3 244.6 4.2 0.00 WD repeat domain 90; protein binding

LGALS3BPb 1167.2 286.0 4.1 0.00 cellular defense response; receptor-mediated endocytosis

MOCS3 4127.3 1026.0 4.0 0.00 Mo-molybdopterin cofactor biosynthetic process

AMN 966.0 242.7 4.0 0.00 receptor-mediated endocytosis

SIRPB1 109.8 607.9 -5.5 0.02 neutrophil degranulation

agene also is HGS-hub of the HRV group
bgenes also are HGS-hub of the HRSV group

�FC, fold-change was calculated by the ratio of gene expression median in HRSV/HRV groups. The comparison was done using t-test with adjusted Bonferroni

correction (p<0.05 was considered significant).

https://doi.org/10.1371/journal.pone.0213501.t002
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represented in BP terms. Twenty-one hyper-expressed genes are involved in immune response

processes, such as inflammatory response, apoptosis, response to interferon-γ, and neutrophil

chemotaxis. Thirteen hypo-expressed genes are also related to immune response, involving

neutrophil degranulation, inflammatory response, apoptosis and phagocytosis (Fig 1; S1 and

S2 Tables).

Fig 1. Enrichment analysis for DE genes. Gene categorization and distribution according to the terms listed for

Biological Process in the Gene Ontology database (p<0.05). Hyper- (A) and hypo-expressed (B) genes in the HRSV

group.

https://doi.org/10.1371/journal.pone.0213501.g001
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WGCNA

The coexpression network was constructed by Pearson’s correlation between all genes and

considering a soft-thresholding power β of 22, resulting in a scale-free network. Following

dynamic tree cut, the hierarchical clustering dendrogram identified 17 distinct gene modules

(Fig 2). Modules are defined as branches of the network dendrogram and identified by differ-

ent color. Modules size ranged from 51 (grey60 module) to 1,196 (turquoise module) genes.

Genes not classified in any correlated module were grouped in a grey module.

After the modules were generated, HRSV and HRV groups were then correlated with the

modules. A total of five modules were significantly (p<0.05) associated with HRSV. Three of

those five modules were positively associated with HRSV group: midnight blue (MS = 0.79,

p = 0.002), turquoise (MS = 0.69, p = 0.01) and tan (MS = 0.63, p = 0.03) modules. Others two

modules were positively associated with HRV group: purple (MS = 0.78, p = 0.003) and brown

(MS = 0.59, p = 0.04) modules. None module was associated with gender (Fig 2B).

The functional profiles of these five gene modules—based on enrichment analysis using

KEGG pathways database—showed that the midnight blue and tan modules (positively associ-

ated to HRSV) contain a high proportion of genes (about 60%) involved in cell signaling and

in immune response to viral infection. Conversely, the turquoise (positively associated to

HRSV), brown, and purple modules (positively associated to HRV) have relatively few genes

(26% in brown, 19% in turquoise, and 3.7% in purple) involved in cell/ immune response to

viruses (Fig 3). A complete list of KEGG pathways found for these modules are listed in S3

Table.

Then, we categorized the genes of the five modules positively associated with HRSV (mid-

night blue, turquoise, and tan) or with HRV (brown and purple) considering module member-

ship (MM) and gene significant (GS) values for HRSV or HRV groups (S2 Fig). We identified

a total of 42 and 57 genes with highest GS and MM values (GS and MM values� 0.75;

p< 0.01 was considered significant; S4 and S5 Tables) for HRSV and for HRV groups, respec-

tively. These genes were named here as HGS-hubs. The biological function of the HGS-hubs

in HRSV and HRV groups is listed in Tables 3 and 4, respectively. Functional and gene expres-

sion profiles of the HGS-hubs and their distribution in the modules of HRSV and HRV groups

are depicted in Fig 4.

In the HRSV group, 16 out of 46 HGS-hubs were related to immune and inflammatory

responses, phagocytosis and apoptosis (Table 3). Moreover, the majority of these HGS-hubs is

hyper-expressed in the HRSV group. It’s interesting to note that 11 out of 28 HGS-hubs had

fold-change values> 2.0. Seven of these genes are involved in immune responses: six are

hyper-expressed (TPX2, CXCR6, DCST2, LGALS3BP, APOL1, and IDO1); and one (EFNB1) is

hypo-expressed.

In the HRV group, comparatively to the HRSV group, just a small number (19 out of 71

genes) of HGS-hubs are involved in cell response to virus and majority of them is hyper-

expressed in the HRV group (Table 4). Three hyper-expressed HGS-hubs are involved in

immune response signaling pathways, such as negative regulation of NF-KappaB kinase signal-

ing pathway (RASSF2 and CHIP) and TOR signaling pathway (CCDC88A). Only two HGS-

hubs, CBL and PACS2, had fold-change values> 2.0 and are involved in inflammatory

response and autophagic process, respectively.

Discussion

Bronchiolitis is frequently caused by HRSV but HRV is also an important etiological agent.

Infections by these two viruses present similar clinical features, thus rendering etiological diag-

nosis difficult. Moreover, no vaccines or effective/specific therapies are available. The
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Fig 2. WGCNA dendrogram and modules correlation with HRSV group and gender. A- Hierarchical clustering

dendrogram and module identification, indicated by different colors; B- Heatmap of the relationship between modules

(MEs) and traits (infection and gender). Only the HRSV group is shown. Numbers inside each colored box are the

correlation coefficients between the ME and the specific trait, with p-value between brackets. The same values are true

for the HRV group, but with an opposite correlation coefficient signal. The more intense the color of the box, the more
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identification of the etiology in infant bronchiolitis by obtaining peripheral blood samples and

performing molecular marker analyses would be of great utility in clinical practice. These

methods are non-invasive and reflect quite well the host’s immunological response [21], thus

allowing a better understanding of the molecular mechanisms involved in the pathogenesis of

HRSV infection.

Previous epidemiological and genotypical studies have indicated that the diseases caused by

HRSV and HRV display some differences [4]. Infants, especially under 6 months of age, are

more susceptible to hospitalization and death in HRSV infections [1, 2]. Rodriguez-Fernandez

et al [13] showed that infants with bronchiolitis presented different transcriptome profiles for

distinct HRSV genotypes. For instance, the GA5 genotype was associated with diminished

interferon activation and increased expression of genes involved in neutrophil activation, com-

paratively to other HRSV genotypes. Considering these facts, we selected infants under 6

months of age, who had a first episode of wheezing, and only infants with single infection with

HRSV A ON1 genotype.

In this study, we found two distinct PBMC transcriptomic profiles and the differentially

expressed genes subsets are related to different innate immune response of the patients with

HRSV or HRV bronchiolitis. Mejias et al. [7] also showed a specific gene expression profile in

infants infected with HRSV, characterized by overexpression of innate immunity and suppres-

sion of adaptive immunity, and associated with neutrophil response, inflammation, IFN acti-

vation and suppression of T and B cell genes. Here is important to recall that HRSV infects

PBMCs during the immune response to viral challenge, when these cells are recruited to the

respiratory trait, and differential immune response to HRSV is determined early after exposure

[22].

Additionally, the leukogram profile (Table 1) showed significantly (Mann-Whitney test,

p = 0.03) more leukocytes in infants with HRV infection than in infants with HRSV infection.

Choi et al [23] also found leukocytosis in infants with HRV infection compared with other

respiratory viruses (HRSV, influenza virus, parainfluenza virus, human coronavirus, human

bocavirus, human metapneumovirus). However, all infants studied here had neutropenia

(neutrophil/lymphocyte ratio� 1.0) and no significant difference between HRSV and HRV

groups was found. It’s interesting to mention that Choi et al [23] found a different neutrophil

count, which neutrophil/lymphocyte ratio was over than 3.0 for HRV and less than 1.0 for

HRSV infection. This neutropenia observed in both group of infants in our study probably

was caused by neutrophil migration to lung as previously observed by Everard et al [24] ana-

lyzing bronchial secretion of children with HRSV infection.

It is well established that systemic neutrophil response correlates with increased disease

severity and it is mediated by the neutrophil chemoattractant. In the fatal cases of HRSV

inflammatory neutrophils were found widespread in lung tissue [25]. Moreover, Choi et al

[23] showed that HRV is associated with neutrophil activation and inflammatory response

while HRSV is associated with lymphocyte-mediated inflammation. In this study, the PBMC

transcriptomic analysis revealed different expression profiles between HRSV and HRV infec-

tion. Five hypo-expressed genes in HRSV group—SYNGR1, AGL, LAMP2, ORM2, and SIRPB1
–are involved in neutrophil activation processes, while three genes expressing neutrophil che-

moattractants—CCL15, CCL24, and LGALS3—were hyper-expressed in HRSV infection (S1

and S2 Tables). Our results indicated that the host response to HRSV, compared with HRV,

are related to diminished neutrophil activation and increase neutrophil chemotaxis. This

negatively (green) or positively (red) correlated is the module with the trait. Five modules presented significant

association (p<0.05) with the HRSV group and these modules are indicated by black borders.

https://doi.org/10.1371/journal.pone.0213501.g002
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Fig 3. KEGG enrichment analysis of significantly associated modules with HRSV or HRV groups. Midnight blue (MS = 0.79, p = 0.002),

turquoise (MS = 0.69, p = 0.01) and tan (MS = 0.63, p = 0.03) are modules positively associated with HRSV. Purple (MS = 0.78, p = 0.003) and brown

(MS = 0.59, p = 0.04) are modules positively associated with HRV. The bar colors correspond to each module.

https://doi.org/10.1371/journal.pone.0213501.g003
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Table 3. Functional description of the HGS-hub genes in modules highly and positively associated with HRSV group.

ME Gene FCa GO terms or PubMed Biological function

Midnight blue CCNA2 2.62 positive regulation of transcription, DNA-templated; viral process transcription/viral process

MED6 1.19 regulation of transcription by RNA polymerase II transcription

PPP2R1B 1.36 positive regulation of extrinsic apoptotic signaling pathway in absence of ligand apoptosis

PGRMC2 1.39 protein binding protein binding

CD28 1.51 positive regulation of inflammatory response to antigenic stimulus inflammatory response

TPX2 2.20 apoptotic process apoptosis

HIST1H1B 2.03 histone deacetylase binding transcription

FEN1 1.67 double-strand break repair replication

CCNB1 1.81 histone H3-S10 phosphorylation involved in chromosome condensation epigenetic process

PDCD1 1.70 positive regulation of T cell apoptotic process apoptosis

KIF23 1.90 antigen processing and presentation of exogenous peptide antigen via MHC class II immune response

CXCR6 2.42 chemokine-mediated signaling pathway; inflammatory response inflammatory response

NPEPL1 0.74 aminopeptidase activity metabolic process

SLC25A16 0.57 mitochondrial transport mitochondrion

LOC388242 0.43 pseudogene ND

TSPAN32 0.60 cell surface receptor signaling pathway signaling

ANKRD13D 0.73 late endosome [19] ubiquitination

Turquoise PFDN1 1.17 regulation of transcription, DNA-templated transcription

CSNK2B 1.29 macroautophagy; neutrophil degranulation autophagic process

DCST2 3.89 codifies a dendritic cell-specific transmembrane protein immune response

LGALS3BP 4.23 cell adhesion; cellular defense response; receptor-mediated endocytosis immune response/antiviral response

FAM48A 1.82 alias SUPT20H; regulation of transcription by RNA polymerase II transcription

YWHAQ 1.49 negative regulation of transcription, DNA-templated transcription

HIST1H2AM 1.63 chromatin organization transcription

B4GALT2 2.18 galactosyltransferase activity metabolic process

TMEM160 1.57 integral component of membrane protein binding

HIST2H2AC 1.83 chromatin organization transcription

RNASEH2A 1.58 DNA replication replication

EVX1 4.89 positive regulation of transcription from RNA polymerase II promoter transcription

PFKP 1.29 glucose catabolic process metabolic process

CCDC84 0.70 coiled-coil domain protein ND

EFNB1 0.43 ephrin receptor signaling pathway; T cell costimulation immune response

BTAF1 0.62 negative regulation of transcription, DNA-templated transcription

TRIT1 0.62 mitochondrial tRNA modification mitochondion

DENND4B 0.63 regulation of Rab protein signal transduction signaling

ZMIZ2 0.59 positive regulation of transcription by RNA polymerase II transcription

RNASEH2C 0.65 RNA catabolic process Rnase

C19orf6 0.54 aliase TMEM259; codifies an aspecific BCL2 ARE-binding protein 1 ER

GUSB 0.69 carbohydrate metabolic process metabolic process

Tan TRAFD1 1.60 response to cytokine inflammatory response

APOL1 2.09 cytolysis; killing of cells of other organisms immune response/antiviral response

IDO1 3.81 NOT regulation of activated T cell proliferation immune response

aFC, HRSV/HRV fold-change>1.0 –hyper-expressed genes or < 1.0—hypo-expressed genes

ME–module eigengene.

https://doi.org/10.1371/journal.pone.0213501.t003
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Table 4. Functional description of the HGS-hub genes in modules highly and positively associated with HRV group.

ME Gene FCa GO terms or PubMed Biological function

Purple STK11IP 1.54 neutrophil degranulation immune response

PPP1R16A 1.54 regulation of phosphoprotein phosphatase activity metabolic process

FRY 1.99 microtubule organizing center microtubule

TPPP3 2.80 microtubule bundle formation microtubule

EFEMP2 2.09 calcium ion binding; extracellular matrix organization matrix organization

KCNQ1 1.77 calmodulin binding ion transport

RASSF2 1.36 negative regulation of NIK/NF-kappaB signaling; positive regulation of apoptotic process apoptosis

ZNF562 1.30 regulation of transcription, DNA-templated transcription

CHP 1.48 negative regulation of NF-kappaB transcription factor activity immune response

MSRA 1.46 response to oxidative stress metabolic process

RCOR1 1.76 histone H4 deacetylation; viral process transcription/viral process

UHRF1BP1 1.56 histone deacetylase binding epigenetic process

WDFY2 1.67 positive regulation of protein phosphorylation ion binding

H3F3A 1.28 histone binding transcription

CCDC88A 1.83 TOR signaling autophagic process

GBE1 1.70 glucose metabolic process metabolic process

CBL 2.12 ephrin receptor binding inflammatory response

SLC16A5 1.54 monocarboxylic acid transport metabolic process

TNFRSF4 0.57 positive regulation of T cell cytokine production inflammatory response

SLC38A5 0.48 amino acid transport protein transport

IGSF8 0.70 protein binding; cell motility; immunoglobulin protein superfamily; cell migration and viral infection immune response/antiviral

response

FTSJ3 0.79 rRNA methyltransferase activity transcription

HAX1 0.81 interleukin-1 binding; negative regulation of apoptotic process anti-apoptosis

CCDC101 0.70 histone H3 acetylation; SAGA complex; SAGA complex mediates the transcriptional up-regulation of

antiviral RNA silencing [20]

antiviral response

PSMC4 0.85 antigen processing and presentation of peptide antigen via MHC class I; apoptosis immune response

MRPL49 0.73 mitochondrial translation translation

Brown ZDHHC8 1.66 regulation of mitochondrion degradation mitochondrion

PTAR1 1.59 protein prenylation metabolic process

FAM122B 1.50 ND ND

VHL 1.51 negative regulation of apoptotic process; ubiquitin protein ligase activity anti-apoptosis

TSC1 1.85 GTPase regulator activity; cell-matrix adhesion cell adhesion

IFT172 1.54 Notch signaling pathway inflammatory response

PACS2 2.74 autophagosome assembly; apoptotic process autophagic process

SLTM 1.71 apoptotic process apoptosis

ASCC1 1.31 DNA repair DNA repair

SLC12A6 1.73 protein kinase binding protein binding

HIPK1 1.74 extrinsic apoptotic signaling pathway apoptosis

TMEM107 1.46 cilium assembly cytoskeleton/cilium

REEP5 1.35 protein binding protein binding

TBC1D9 1.84 GTPase activator activity GTPase

CROCC 1.39 actin cytoskeleton cytoskeleton/cilium

MLL 1.44 chromatin modifying enzymes transcription

CBR4 1.74 oxidation-reduction process Redox

TMEM129 1.70 ubiquitin protein ligase activity Ubiquitin

POP1 1.34 tRNA processing translation

SNAPC4 1.46 chromatin binding transcription

(Continued)
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response could well be associated to disease severity and, consequently, to longer periods of

hospitalization (Table 1).

Another subset of hyper-expressed genes—OAS2, PTAFR, PML, MEFV, CCL15, and

CCL24—in HRSV group is related to interferon-gamma pathway (S1 Table). Interferon

induces antiviral effectors encoding genes and exerts a protective effect [25, 26]. Moreover,

the balance between pro- and anti-inflammatory T-cell cytokine responses may determine

the clinical outcome of HRSV infection. High levels of IFN-gamma might reduce viral repli-

cation but increase immunopathology. However, decreased IFN-gamma response has been

reported to be associated with severe HRSV infection [27]. The treatment with systemic ste-

roids is controversial regarding the efficacy of systemic steroid use in severe bronchiolitis.

Pinto et al [28] showed that infants with severe illness had higher plasma cortisol levels than

infants with mild disease, and a decreased IFN-gamma production by PBMCs in severely

affected infants. Nevertheless, these two molecular mechanisms—neutrophil chemotaxis

and IFN-gamma/cortisol–seem to be important therapeutic targets for modulating HRSV-

derived immunopathologies.

The gene coexpression network analysis revealed distinct modules (tan, midnight-blue, tur-

quoise, purple and brown) containing genes involved in immune response, activation of inter-

feron pathway and apoptosis. Module analysis identified HGS-hubs associated with HRSV

and HRV groups. In network, hubs are important to maintain the structure of the network or

modules [29–31]. Additionally, high gene significant (HGS) value implies that the gene is sig-

nificantly associated to phenotypic/genotypic features of the group [17], i.e., HRSV or HRV

infections and the gene is differentially expressed between groups. Therefore, these HGS-hubs

might be used to differentiate these two etiologies.

Several HGS-hubs in both groups (14 out of 42 in HRSV group and 14 out of 57 in HRV

group, Tables 3 and 4) are involved in immune response but the molecular mechanism differs

between HRSV and HRV groups: the HGS-hubs involved in inflammatory response, apopto-

sis, and autophagy are not the same in each group. It’s is interesting to mention that nine

HGS-hubs had fold-change > 2.0 and are involved in immune response, inflammatory, and

apoptosis. Moreover, eight of these genes might be potential therapeutic/vaccine targets and/

or molecular markers, as commented below.

Table 4. (Continued)

ME Gene FCa GO terms or PubMed Biological function

ZADH2 1.58 oxidation-reduction process Redox

FBXO41 1.62 ubiquitin-protein transferase activity Ubiquitin

CTNNB1 0.83 transcription elongation from RNA polymerase II promoter transcription

DYNLRB1 0.68 SMAD binding; cell-matrix adhesion cell adhesion

ZDHHC24 0.77 microtubule motor activity microtubule

GTF2B 0.72 regulation of transcription, DNA-templated transcription

ZFR 0.80 pyruvate metabolic process metabolic process

ZNF2 0.15 protein transmembrane transport protein transport

TIMM17B 0.75 protein-cysteine S-palmitoyltransferase activity metabolic process

ADRM1 0.76 poly(A) RNA binding translation

PDHX 0.71 transcription, DNA-templated transcription

aFC, HRV/HRSV fold-change>1.0 –hyper-expressed genes or < 1.0—hypo-expressed genes

ME–module eigengene.

https://doi.org/10.1371/journal.pone.0213501.t004
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Six out of eight HGS-hubs were previously described as potential therapeutic targets: i)

LGALS3BP encodes for galectin 3 binding protein, an antiviral protein that interferes with

Fig 4. Functional profile of the HGS-hub genes. Biological function categorization and distribution of HGS-hubs in the five modules positively associated with

HRSV or HRV groups.

https://doi.org/10.1371/journal.pone.0213501.g004
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human immunodeficiency virus type 1 replication diminishing the virions infectivity [32]; ii)

EFNB1 codifies an ephrin-B1; members of Efns family are expressed in thymocytes and T cells

and they are capable to modulate T cell responses and survival contributing to the integrity of

an immune response [33]; iii) APOL1, codifies for an apolipoprotein 1, which is a mediator

protein acting on IFN-activated genes [34, 35] and the proteins of the apolipoprotein family,

such as APOL6, has an HRSV antiviral activity related to apoptosis [36]; iv) IDO1 encoded

protein was described to control viral infection by modulating specific metabolic events [37].

IDO1 was hyper-expressed after IFN-mediated induction in response to Influenza A viruses

and this enzyme is involved in cytokine overproduction and T cell suppression [38]; v) CBL,

alias C-CBL, encodes for RING finger E3 ubiquitin ligase and it is involved in antiviral process

by activation IFN-I pathway [39]; and vi) PACS2, that codifies for a sorting protein PACS-2,

interacts with a protein Nef of the human immunodeficiency virus type 1 [40]. This interaction

mediates the MHC-I down-regulation and consequently the virus escape from host immunity

[40].

Another strategy to combat HRSV could be a vaccine therapy. We identified one HGS-hub

that might be a potent vaccine target: CXCR6, that codifies for a chemokine expressed by natu-

ral killer T (NKT) cells and it’s essential for NKT cells trafficking [41]. It was described that the

activation of NKT cells by intranasal coadministration of α-galactosylceramide, in a nasal vac-

cine against influenza, can potently enhance protective immune responses through increasing

NKT cell population in nasal mucosa [41].

Finally, two HGS-hubs could be potential molecular markers for HRSV infection.

LGALS3BP, which is also a potential therapeutic target [32], and the other is DCST2 that codi-

fies for a dendritic cell-specific transmembrane protein and its intracellular localization is due

in response to toll-like receptor ligation [42]. These genes presented high fold-changes and

were hyper-expressed in PBMC from infants infected with HRSV. Additionally, 22 DE genes

had higher fold-changes (� 4.0) and six of them (one is the HGS-hub LGALS3BP) are involved

in immune response, and other two genes related to transcriptional regulation are HGS-hubs

(Table 2). Finally, the gene CCDC177 codifying a coiled-coil domain protein presented the

highest fold-change 16.3.

Conclusions

The PBMC transcriptional profiles of hospitalized infants with HRSV or HRV bronchiolitis

are different and probably correlated with distinctive etiopathogenic mechanisms. Addition-

ally, the infants with HRSV had leukopenia and they usually demand more hospitalization

days. The immune response to HRSV infection, comparatively to the response to HRV infec-

tion, appears to be more associated to the activation of the IFNγ signaling pathways and less

related to neutrophil activation. Moreover, we also identified potential host-response molecu-

lar markers that could be used for HRSV or HRV etiopathogenic diagnosis. These results may

contribute to the development of future tests for respiratory virus identification. Additionally,

a better understanding of PBMC specific host responses to HRSV or HRV—here disclosed by

different gene expression profiles—may serve to elucidate the pathogenic mechanisms trig-

gered by different viral agents and, therefore, contribute to the development of new therapeu-

tic approaches.
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S1 Fig. Fold-change value distribution for 283 differentially expressed (DE) genes (HRSV x

HRV). Twenty-two genes were identified as candidate gene markers. The red dot line indicates
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the cut off (fold-change 4.0) adopted here to consider highly differentially expressed genes.

(TIF)

S2 Fig. HGS-hub categorization for HRSV and HRV groups. Scatterplots between MM (x-

axis) and GS (y-axis) of the genes in the i) midnight blue, turquoise, and tan modules of the

HRSV group; ii) brown and purple modules of the HRV group. The red or blue dot lines indi-

cate, respectively, the cut off of GS or MM values significantly for HRSV or HRV groups

(p< 0.01).

(TIF)

S1 Table. Enrichment analysis for hyper-expressed genes in HRSV group.

(XLSX)

S2 Table. Enrichment analysis for hypo-expressed genes in HRSV group.

(XLSX)

S3 Table. KEGG pathway enrichment analysis of the network modules associated with the

HRSV or HRV groups (p<0.05 was considered significant).

(XLSX)

S4 Table. HGS-hubs in modules highly and positively associated with HRSV group.

(XLSX)

S5 Table. HGS-hubs in modules highly and positively associated with HRV group.

(XLSX)
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