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ABSTRACT

Long interspersed nuclear element 1 is an au-
tonomous non-long terminal repeat retrotransposon
that comprises ~17% of the human genome. Its
spontaneous retrotransposition and the accumula-
tion of heritable L1 insertions can potentially re-
sult in genome instability and sporadic disorders.
Moloney leukemia virus 10 homolog (MOV10), a pu-
tative RNA helicase, has been implicated in inhibit-
ing L1 replication, although its underlying mech-
anism of action remains obscure. Moreover, the
physiological relevance of MOV10-mediated L1 reg-
ulation in human disease has not yet been exam-
ined. Using a proteomic approach, we identified
RNASEH2 as a binding partner of MOV10. We show
that MOV10 interacts with RNASEH2, and their inter-
play is crucial for restricting L1 retrotransposition.
RNASEH2 and MOV10 co-localize in the nucleus, and
RNASEH2 binds to L1 RNAs in a MOV10-dependent
manner. Small hairpin RNA-mediated depletion of
either RNASEH2A or MOV10 results in an accu-
mulation of L1-specific RNA-DNA hybrids, suggest-
ing they contribute to prevent formation of vital L1
heteroduplexes during retrotransposition. Further-
more, we show that RNASEH2-MOV10-mediated L1
restriction downregulates expression of the rheuma-
toid arthritis-associated inflammatory cytokines and
matrix-degrading proteinases in synovial cells, impli-
cating a potential causal relationship between them
and disease development in terms of disease predis-
position.

INTRODUCTION

Long interspersed nuclear element 1 (LINE-1; L1), the only
active non-long terminal repeat (LTR) transposable ele-
ment in humans, comprises ~17% of the whole human
genome (1). L1 retrotransposition is primarily known to be
active in germline cells or embryonic stem cells during early

embryonic development, but the L1 mobility in somatic and
transformed human cells is still controversial. L1 is capa-
ble of retrotransposing autonomously across the genome
through target site-primed reverse transcription (TPRT) in
an L1 ORF2p-dependent manner (2,3). L1 retrotransposi-
tion has long been considered to be a causative factor of ge-
nomic instability and diverse genetic alterations throughout
the entire human genome (4). The accumulation of herita-
ble L1 insertions can cause the evolvability of human ge-
netic disorders (5,6). Furthermore, it has been suggested
that L1-derived nucleic acids have the potential to stimu-
late a range of aberrant inflammatory responses, including
autoimmune responses. Mutations of genes that contribute
to cellular nucleic acid metabolism appear to be linked to
immunological abnormalities (7,8); however, it is less clear
how the L1-derived nucleic acids trigger aberrant immune
responses and early onset of certain autoimmune diseases.
Moloney leukemia virus 10 homolog (MOV10), a mem-
ber of the ATP-dependent RNA helicase superfamily 1, was
first identified as a factor that prevents production of infec-
tious Moloney leukemia virus (MLV) in mice (9). MOV10
displays broad RNA binding properties and 5’ to 3’ RNA-
duplex unwinding activity (10). Interestingly, MOV10 also
inhibits replication of a number of retroviruses (11,12) and
mobility of retroelements, including LTR and non-LTR
retrotransposons in somatic cells (13-17). Considering phy-
logenetic studies (18,19), non-LTR retrotransposons are re-
garded as likely progenitors of either retroviruses or endoge-
nous retroelements. Accordingly, it is not surprising that
MOV10 is capable of inhibiting L1 retrotransposition.
MOVI10 is associated with the Argonaute 2 protein
(AGO2) of the RNA-induced silencing complex that is re-
quired for miRNA-mediated gene silencing (20); however,
MOV10-mediated L1 restriction occurs independent of this
pathway (15). Furthermore, MOV 10 co-localizes with L1
ORF1pin cytoplasmic processing bodies (P-bodies) (11,21)
that play a role in the storage and degradation of trans-
lationally repressed mRNAs. Therefore, MOV10 has been
implicated in facilitating sequestration of L1 ribonucleo-
proteins (RNPs) and a degradation of L1 RNAs (15). On
the other hand, several studies have highlighted diverse
functions of nuclear MOV10 (22), including suppression
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of retroelements (17). Hence, the exact mode of MOV10-
mediated L1 restriction remains uncertain.

Ribonuclease H2 (RNASEH2) is a nuclear het-
erotrimeric enzyme that hydrolyzes RNA strands of
RNA-DNA hybrids, which spontaneously form during
cellular transcription and DNA replication (23,24). Un-
like RNASEHI1, RNASEH2 is capable of removing the
5’-phosphodiester bond of ribonucleotides (rNTPs) em-
bedded in DNA duplexes (25). Given that misincorporated
ribonucleotides may be the most abundant non-canonical
nucleotides present in genomic DNA, their removal by
RNASEH?2 is likely critical for maintaining genomic
integrity (26). RNASEH2 has also been shown to be
contributed to human immunodeficiency virus type 1
(HIV-1) replication (27). Due in part to the scarcity of
cellular deoxyribonucleoside triphosphates (dNTPs) in
terminally differentiated macrophages (28), the HIV-1
reverse transcriptase may misincorporate ribonucleoside
triphosphates (rNTPs) into viral cDNA during HIV-1
reverse transcription. For this reason, RNASEH2 has been
considered as a positive regulator of HIV-1 replication by
eliminating misincorporated rNTPs during HIV-1 reverse
transcription (29).

Genetic alterations in any of the three subunits of the hu-
man RNASEH?2 cause Aicardi-Gouti¢res syndrome (30),
an autoimmune encephalopathy with similarities to con-
genital viral infections (31). A recent study has shown that
DNA-RNA immunoprecipitation (DRIP) peaks are en-
riched in L1 and LTR-containing sequences in RNASEH2-
deficient AGS fibroblasts (32). In line with this, homozy-
gotic mutations near the catalytic core of RNASEH2A
subunit also result in a substantial decrease in enzymatic
activity in mice, thereby upregulating diverse interferon-
stimulated genes and increasing L1-derived DNA levels as
seen in AGS patients (33). However, it remains unclear
whether the increase in L1 DNA is a result of LI reac-
tivation in either AGS fibroblasts or the mice. Although
it has been most recently reported that CRISPR/Cas9-
mediated knockout of RNASEH?2A leads to a substantially
reduced retrotransposition (34), the role of RNASEH2 in
L1 metabolism is thus far not fully proven.

Herein we report that RNASEH2 contributes to
MOV 10-mediated L1 inhibition. RNASEH?2 interacts with
MOV10 in an RNA-dependent manner, and their interplay
is essential for suppressing L1 mobility. Further biochem-
ical and microscopic analyses reveal that RNASEH2
associates with L1 RNAs in a MOV 10-dependent manner,
and that Ll-derived RNA-DNA hybrids preferentially
accumulate in either RNASEH2A- or MOV10-deficient
cells. These findings suggest that RNASEH2 and MOV10
are capable of inhibiting formation of L1-derived RNA-
DNA hybrids during L1 retrotransposition. Furthermore,
we show that RNASEH2-MOV10-mediated L1 regulation
limits induction of inflammatory cytokines and activa-
tion of matrix metalloproteinase 3 (MMP-3) in synovial
cells, suggesting that L1 regulation potentially affects
rheumatoid arthritis-related pathophysiology.
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MATERIALS AND METHODS
Plasmids

FLAG-haemagglutinin (HA)-tagged Moloney leukemia
virus 10 homolog (F/H-MOV10) was purchased from
Addgene (plasmid #10976) (35). HA-MOV10X3%4 and
RNASEH2ASYS_.FLAG variants were prepared using site-
directed mutagenesis. Substitutions were confirmed by
DNA sequencing. L1-neo T (36) was a gift from Dr. Astrid
Roy-Engel (Addgene plasmid #51284). L1-luciferase plas-
mids (pYXO015, pYXO017) (37) and pAD3TE1 (38) carry-
ing 24 copies of the MS2 stem-loop RNA-binding repeat
upstream of the mmneol indicator cassette were generously
provided by Dr. Wenfeng An and Dr. Aurélien Doucet, re-
spectively. pMS2-GFP was provided by Dr. Robert Singer
and purchased through Addgene (plasmid #27121) (39).
To generate L1 ORF1p-EGFP construct, we employed
the Gateway™ cloning system (Invitrogen). L1 ORF1 was
amplified by polymerase chain reaction (PCR) from L1-
neo T and cloned into pEGFP-N3 expression vector. For
RNA-DNA hybrid-binding retention assay, a fusion pro-
tein of the 52-residue RNA-DNA hybrid-binding domain
(HB) of RNASEHI and enhanced green fluorescent pro-
tein (EGFP) (hereafter referred to as HB-GFP) was con-
structed, as previously described (40). The HB domain of
RNASEH1 was amplified by PCR and cloned into pEGFP-
N3 expression vector.

Cells

HelLa, HEK 293T and SW982 cells were maintained in
Dulbecco’s modified Eagle’s medium (DMEM, Hyclone)
supplemented with 10% (v/v) fetal bovine serum (FBS,
HyClone), antibiotics mixture (100 units/ml, penicillin-
streptomycin, Gibco) and 1% (v/v) GlutaMAX-I (Gibco).
Cells were incubated at 37°C under a 5% CO; atmosphere.

LINE-1 (L1) retrotransposition assay

For neo” expression cassette-based L1 retrotransposition
assays, either HeLa or SW982 cells (3 x 10° cells/ml)
were transfected with 0.2 ~ 1 pg of Ll-neo™7T using
Lipofectamine™ 3000 (Invitrogen) following the manufac-
turer’s instructions. If indicated, the L1 cassette was co-
transfected with either MOV 10 or RNASEH?2 components
(A, B and C) at a ratio of 1:1. After 48 h of incuba-
tion, the cells were trypsinized and re-seeded in 60 mm
petri-dishes at 2 ~ 6 x 10* cells/ml, as indicated. Cells
were maintained in the presence of G418 (1 mg/ml) for
up to 14 days. Subsequently, cells were fixed and stained
with 20% ethanol-containing crystal violet solution (Sigma-
Aldrich). Colonies were counted manually or digitally using
the OpenCFU software (41) with customized micros.

For dual luciferase-mediated retrotransposition assays,
HeLa cells (5 x 10* cells/ml) were transfected using Lipo-
fectamine™ 3000 following the manufacturer’s instructions.
Cells were co-transfected at a 1:1 ratio with the L1-/uc
expression cassette (pYX017) and either MOV 10 variants
or RNASEH?2 components. As a negative control for the
assay, pYXO015 (an inactive L1-luc construct which con-
tains loss-of-function mutations in ORF1p) was trans-
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fected, if indicated. Puromycin (Sigma-Aldrich) was added
after 24 h of incubation at a final concentration of 1 wg/ml.
Cells were harvested at 4 days post-transfection, and lumi-
nescence was monitored using the Dual-Luciferase® Re-
porter Assay System (Promega) following the manufac-
turer’s instructions. L1 activity was determined as the ra-
tio of firefly to Renilla luciferase activity (Fluc/Rluc), as
previously reported (37). If indicated, the nucleoside re-
verse transcriptase inhibitor (NRTTI), 2’-3’-didehydro-2'-3'-
dideoxythymidine (d4T; Stavudine), was added to a fi-
nal concentration of 50 wM. Typically, cells were treated
with complete medium for 24 h prior to transfection, and
medium was replaced every 24 ~ 48 h onward until the end-
point of each experiment.

Quantitative real-time PCR (qPCR)

Equivalent amounts of purified genomic DNA (50 ~
100 ng) from each sample were analyzed by qPCR. For
RT (reverse transcription)-qPCR, 1 ~ 2 g of RNA was
reverse-transcribed using the ReverTra Ace qPCR RT
Kit (TOYOBO) following the manufacturer’s instructions.
The resulting complementary DNA (¢cDNA) was diluted
with sterile deionized H,O (1:10). RT-qPCR reactions
were performed in TOPreal qPCR PreMIX (Enzynomics)
with 4 pl of the diluted cDNA. The total reaction volume
was 20 pl, and all reactions were performed in triplicate.
The PCR reactions were performed using the iCycler
iQ real-time PCR detection system (Bio-Rad). Data
were normalized according to the expression levels of
GAPDH, MDM?2 and RN7SLI, as indicated. Spliced L1
insertions or RNAs were detected with primers specific
to an exon-exon junction within the firefly luciferase
gene (Fluc). qPCR analyses were performed using the
following primer sets specific to: spliced Fluc (Forward,
5-CCTTCGTGACTTCCCATTTGCC-3’; Reverse, 5'-
GGATGATCTGGTTGCCGAAG-3), RNASEHI (For-
ward, 5-AGTTTGCCACAGAGGATGAG-3; Reverse,
5- CGCTTGCTGGCTTTCGCCTCCGAT-3"), THOCI
(Forward, 5-CAGAGACAAGGGAACACATG-3; Re-
verse, 5-CAGAAGGAGGCGGTAATTCC-3), SETX
(Forward, 5-CTTCATCCTCGGACATTTGAG-3"; Re-
verse, 5'- TTAATAATGGCACCACGCTTC-3), RN7SLI
(Forward, 5-GGGCTGTAGTGCGCTATGC-3; Re-
verse, 5-CCCGGGAGGTCACCATATT-3), GAPDH
(Forward, 5-GCAAATTCCATGGCACCGT -3; Re-
verse, 5-TCGCCCCACTTGATTTTGG-3'), and MDM?2
(Forward, 5-GGTTGACTCAGCTTTTCCTCTTG -3;
Reverse, 5-GGAAAATGCATGGTTTAAATAGCC-3).

RNA immunoprecipitation (RIP)

RIP was performed to analyze potential interactions be-
tween L1 RNAs and associated proteins. Cells were co-
transfected with pYXO017 (L1-luc) and corresponding ex-
pression constructs at a 1:1 ratio using Lipofectamine™
3000 following to manufacturer’s instructions. Transfected
cells were cross-linked with 1% (v/v) formaldehyde in 1x
phosphate-buffered saline (PBS) for 10 min at room tem-
perature, and the reaction was quenched by the addition
of 1 M glycine pH 7.0 to a final concentration of 0.25 M

and incubated at room temperature for 5 min. Cells were
rinsed with ice-cold 1x PBS and resuspended in RIPA
buffer (50 mM Tris-HCI pH 7.5, 1% NP-40, 0.5% sodium
deoxycholate, 0.05% sodium dodecyl sulphate (SDS), 1 mM
ethylenediaminetetraacetic acid (EDTA), 150 mM NaCl, 1
mM dithiothreitol (DTT)) containing 1x cOmplete™ Pro-
tease Inhibitor Cocktail (Roche) and RNase inhibitor (En-
zynomics). Cell extracts were sonicated and centrifuged for
10 min at 9000 x g at 4°C, and the resulting supernatant
was pre-cleared by subsequent incubation with Protein G
Sepharose (GE healthcare) at 4°C for 1 h. The pre-cleared
supernatant was incubated with either anti-HA (Sigma-
Aldrich) or anti-FLAG-conjugated agarose beads (Sigma-
Aldrich) overnight at 4°C. The beads were then washed
with RIPA buffer (50 mM Tris-HCI pH 7.5, 1% NP-40,
1% sodium deoxycholate, 0.1% SDS, | mM EDTA, 1 M
NaCl, 2 M urea) containing 1x cOmplete™ Protease In-
hibitor Cocktail. The beads were resuspended in reverse
cross-link buffer (50 mM Tris-HCI pH 7.0, 5 mM EDTA,
10 mM DTT, 1% SDS) and then incubated for 1 h at 70°C.
The resulting immunoprecipitated RNAs were isolated with
TRIzol™ reagent (Ambion) following the manufacturer’s
protocol and subjected to RT-qPCR using primers specific
to spliced Fluc cassette. The IP signal was calculated as en-
richment over input using the following equation: AC; =
2(Ctlnput- CUP) The RNA enrichment results were normal-
ized to the results obtained using a control primer pair spe-
cific to RN7SLI and quantitated using the equation, AAC;
= AC&periment A C control Gy dent’s t-test was used to assess
statistical significance.

RINA-DNA hybrid immunoprecipitation (DRIP)

DRIP was performed as described previously (42) with
the following modifications. Briefly, corresponding HeLa
cells were lysed with lysis buffer (10 mM Tris-HCI pH
8.0, 100 mM NacCl, 25 mM EDTA pH 8.0, 0.5% SDS, 10
pg/ml Proteinase K (MACHEREY-NAGEL)) and incu-
bated overnight at 55°C. If indicated, HeLa cells were trans-
fected with pYXO017 (L1-/uc) using Lipofectamine™ 3000
following to the manufacturer’s instructions and harvested
at 24 h or 36 h post-transfection. Total nucleic acids were
extracted using the standard phenol-chloroform extraction
method and resuspended in Tris-EDTA (TE) pH 8.0 (Am-
bion). The nucleic acids were digested with a restriction en-
zyme cocktail (20 units of EcoRI, BamHI, HindIII, BsrBI
and Xhol; New England BioLabs) overnight at 37°C. The
digested nucleic acids were subsequently used for qPCR re-
actions. As a negative control, half of the sample was treated
with 10 units of RNase H (M0297; New England BioLabs)
overnight at 37°C. The resulting fragmented DNA sam-
ples were isolated using the phenol-chloroform extraction
method and resuspended in TE buffer. RNA-DNA hybrids
were immunoprecipitated from total nucleic acids by adding
10 g of S9.6 antibody (ENHO001; Kerafast) in IP buffer (10
mM NaPOy4 pH 7.0, 140 mM NacCl, 0.05% Triton X-100)
and incubating overnight at 4°C. Dynabeads Protein A (50
wl; Invitrogen) were used to pull-down the DNA-antibody
complexes. The beads were incubated with the samples at
room temperature for 3 h and then washed three times with
IP buffer. The DNA was eluted with IP buffer and treated



for 1 h with 10 1 of proteinase K (10 wg/ml) at 55°C. Ad-
ditionally, RNase A (EN0531; Thermo Fisher Scientific)
was added and incubated with the samples for 1 h at 37°C
to degrade RNA. Subsequently, DNA was purified follow-
ing the phenol-chloroform extract method. For DRIP-RT-
qPCR, the precipitated nucleic acids were denatured at 98°C
and then treated with DNase I (2270B, Takara) at 37°C
for 1 h. The resulting RNA was isolated using TRIzol™
reagent. The relative abundances of immunoprecipitated
RNA-DNA hybrids at the indicated region were calculated
as follows: AC, = 2(Ctlnput— _IP) Nycleic acid enrichment
was further normalized to a control primer pair specific to
either MDM?2 or RN7SLI and calculated using the equa-
tion, AAC; = ACSperiment / ACcontrol Giyident’s ¢-test was
used to assess statistical significances.

Enzyme-linked immunosorbent assay (ELISA)

SW982 cells (3 x 10> cells/ml) were co-transfected with 0.5
ng of L1-neo ™ T and either MOV 10 or RNASEH2 compo-
nents (A, B and C, respectively) at a ratio of 1:1 using Lipo-
fectamine™ 3000 following the manufacturer’s instructions.
After incubation for 72 h, the cell culture supernatant was
harvested and analyzed by ELISA to detect levels of human
IL-6 and TNF-a following the manufacturer’s instructions
(Human ELISA MAX™, Biolegend).

Matrix metalloproteinase 3 (MMP-3) activity assay

SW982 cells (3 x 10° cells/ml) were co-transfected with
0.5 wg of L1-neo ™7 expression cassette and correspond-
ing components at a ratio of 1:1 using Lipofectamine™
3000 according to the manufacturer’s recommendation. At
72 h post-transfection, the cell culture supernatant was
harvested and was analyzed for MMP-3 activity using a
fluorescence-based assay following manufacturer’s instruc-
tions (MMP-3 Activity Assay Kit, Abcam).

Statistical analysis

Statistical analyses were performed using GraphPad Prism
5 (GraphPad Software). Comparisons between two groups
were performed using two-tailed Student’s 7-test. Results are
expressed as the mean + SD, and p-values < 0.05 are con-
sidered statistically significant.

RESULTS
Identification of RNASEH?2 as a MOV10-interacting factor

Considering the functions of MOV10 as a putative RNA
helicase and an L1 restriction factor, we hypothesized that
a novel effector molecule involved in RNA metabolism may
be required for MOV 10-mediated L1 restriction. To identify
proteins that associate with MOV 10 during L1 regulation,
we co-purified MOV 10-interacting proteins using dual-tag
affinity purification followed by LC-MS analysis. Of note,
we identified the RNASEH2A and B peptides among the
prominent bands at ~43 kDa (Supplementary Table S1 and
Figure S1A). Thus, we hypothesized that RNASEH2 func-
tions as an effector molecule in MOV 10-mediated L1 re-
striction.
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To assess whether co-purified RNASEH2 is a bona fide
interacting protein with MOV10, MOV10 expression con-
struct was co-transfected with RNASEH2A, B or C to
HeLa cells. As shown in Figure 1A, RNASEH2A, a cat-
alytic core component of RNASEH2, was reproducibly co-
immunoprecipitated with MOV10 in whole cell lysates of
transfected cells. The two auxiliary subunits of RNASEH?2
(B and C) were also co-purified with ectopically expressed
MOV10 (Figure 1A). However, their interaction was sub-
stantially reduced by treatment with RNase A prior to
the immunoprecipitation procedure, suggesting that these
protein-protein interactions might be dependent on RNA
binding (Figure 1A). Endogenous RNASEH2A was also
consistently associated with endogenous MOV10 (Fig-
ure 1B), indicating that the co-immunoprecipitation data
strongly supported the LC-MS results.

To verify if RNASEH2 functionally interacts with
MOV10, we performed a nuclear/cytoplasmic fractionation
experiment using HeLa cells. A higher proportion of en-
dogenous MOV 10 was found in the cytoplasm than in the
nucleus. However, endogenous RNASEH2A was predomi-
nantly found in the nucleus (Figure 1C), suggesting a func-
tional association between RNASEH?2 and MOV 10 in the
nucleus.

Because MOVI10 interacts with L1 ORFlp (15,43-
44) (Supplementary Figure S1B), we next tested whether
MOVI10 functions as a molecular platform to influence
an interaction between RNASEH2 and L1 ORF1p. Small
hairpin RNA (shRNA)-mediated depletion of endogenous
MOV10 (Figure 1D) markedly decreased the association of
RNASEH2 components with L1 ORF1p, suggesting that
MOV10 mediates the interaction between RNASEH2 and
L1 ORFlp (Figure 1E). Collectively, MOV 10 interacts with
RNASEH2, and it is required for the association between
RNASEH2 and L1 ORF1p.

Interplay between RNASEH?2 and MOV10 is required for in-
hibition of L1 mobility

Since MOV10 controls L1 mobility through its helicase
activity (15), we next investigated whether co-purified
RNASEH?2 would affect the MOV 10-mediated L1 restric-
tion. As a proof-of-principle, we performed a cell-based en-
gineered L1-retrotransposition assay (3,36). The expression
cassette carried a neomycin phosphotransferase gene (neo”)
within the 3’ untranslated region (UTR) in an anti-sense
orientation relative to a CMV promoter. This gene was dis-
rupted by the addition of intronic sequences. When L1 has
been successfully retrotransposed following transcription,
self-splicing, TPRT and integration across the genome, the
cells become resistant to neomycin (Figure 2A).

Upon ectopic expression of MOV10, the number of
G418-resistant colonies was markedly reduced by 4-fold
when compared to the control condition (cells transfected
with empty vector) (Figure 2B). Consistent with this, tran-
sient overexpression of either RNASEH2 or RNASEH2
in combination with MOV10 also effectively impaired L1
mobility to similar level (Figure 2B). These results demon-
strated that both RNASEH2 and MOV 10 potently suppress
L1 mobility and thereby function as negative regulators of
L1 retrotransposition.
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cells. (E) L1 retrotransposition assays performed in MOV 10-depleted HeLa cells by introduction of the indicated expression vectors and the L1-neo ET
expression cassette at a ratio of 1:1. Representative culture dishes for each condition are shown. The graph represents quantitation of the L1 assays, and the
Y-axis depicts the number of G418-resistant foci per 20,000 ~ 60,000 cells, as indicated. Data are shown as the mean =+ standard deviation (SD) of a single
experiment with three replicates. Statistical significance was determined by two-tailed Student’s #-test with the p-values indicated (ns = not significant).
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Consistent with the previous study (13), the number
of G418-resistant colonies representing a successful L1
retrotransposition dramatically increased when endoge-
nous MOVI10 was depleted by shRNA-mediated knock-
down (Figure 1D and 2C). Similarly, knockdown of en-
dogenous RNASEH2A resulted in increased L1 mobility
(Figure 1D and 2C). Furthermore, simultaneous depletion
of both cellular MOV10 and RNASEH2A resulted in a
similar degree of L1 restriction that was achieved by in-
dividual knockdown of the genes (Figure 1D and 2C). In
agreement with these results, the elevated L1 retrotrans-
position rate was accompanied by a concomitant increase
in spliced L1 DNA levels in MOV10- and RNASEH2A-
deficient HeLa cells transfected with the Fluc-carrying L1
cassette (pYXO017) (Supplementary Figure S2A). To verify
the specificity of our knockdown experiments by reconstitu-
tion with shRNA-resistant expression vectors (hereafter re-
ferred to as MOV 10,escue Or RNASEH2A escue ), the ShRNA-
resistant MOV10 (MOV10;escue) Was co-transfected with
L1-neo™T into HeLa cells transduced with shRNA tar-
geting MOVI10 mRNA or a control (Supplementary Fig-
ure S2B). The expression of MOV 10,esue markedly de-
creased the number of G418-resistant cells, suggesting that
the observed increase of L1 retrotransposition upon knock-
down of MOVI10 likely reflects an on-target rather than
off-target effect of the MOV 10 shRNA (Figure 2E). Sim-
ilarly, the shRNA-mediated RNASEH2A knockdown phe-
notype was rescued by ectopic expression of the shRNA-
resistant RNASEH2A (RNASEH2A ¢scue) in combination
with RNASEH2B and C subunits (Figure 2D and Supple-
mentary Figure S2C).

Because RNASEH? interacts with MOV 10 in an RNA-
dependent manner and restricts L1 retrotransposition,
we thus hypothesized that RNASEH?2 may function to-
gether with MOVI10 to prevent L1 mobility. To ad-
dress this hypothesis, we transiently co-transfected the
L1 expression cassette with the MOV10 expression vec-
tor into RNASEH2A-deficient HeLa cells. Ectopically ex-
pressed MOV10, despite its potent anti-retroelement ac-
tivity, failed to restrict L1 retrotransposition (Figure 2D)
in RNASEH2A-depleted cells. Instead, the retrotranspo-
sition efficiency was similar to that in helicase-defective
MOV 105304 expressing cells (Figure 2D). Given the role
of RNA helicase activity in MOV 10-mediated L1 control,
overexpression of MOV10X33%A served as a negative con-
trol. Conversely, overexpression of RNASEH2 in cellular
MOV 10-deficient cells did not affect L1 replication despite
its ability to inhibit L1 mobility (Figure 2C and 2E), indicat-
ing that RNASEH?2 is a negative regulator of L1 function
in a MOV10-dependent manner. The functionally defective
RNASEH2 (30) found in AGS patient (RNASEH2AG7S)
was included as a negative control. We thus concluded that
the interplay between RNASEH?2 and MOV 10 is crucial for
controlling L1 retrotransposition.

RNASEH2 associates with L1-derived RNAs in a MOV10-
dependent manner

To determine if both RNASEH2 and MOV10 associate
with L1-derived RNAs, especially in the nucleus, we tran-
siently co-transfected pAD3TE1 with RNASEH2 compo-

nents and MOV 10 into HeLa cells. The pAD3TE1 plasmid
contains the MS2 stem loop structures in the L1 3" UTR
(38). Thus, we employed this expression cassette to visual-
ize the asymmetric distribution and trafficking of de novo,
intercellular L1-derived RNAs. When RNASEH2 compo-
nents were co-expressed with MS2 stem loops-containing
L1 RNAs, both RNASEH2A and L1-derived RNAs were
co-localized in the nucleus (Figure 3A, upper panel). Given
that human RNASEH?2 originally assembles in the cyto-
plasm and translocates to the nucleus in an RNASEH2B-
dependent manner (45), the co-localization in the nucleus
may confer its enzymatic function. MOV10 was similarly
present with L1-derived RNAs in cytoplasmic foci as well
as in the nuclei of transfected cells indicated by the white
arrow (Figure 3A, middle panel). Of note, we observed nu-
clear co-localization of RNASEH2A and MOV10 in L1-
expressing HeLa cells (Figure 3A, lower panel), indicating
that both RNASEH?2 and MOV10 can associate with L1-
derived RNAs in the nucleus.

To further substantiate this conclusion, we next exam-
ined the association of individual proteins and spliced L1-
specific RNAs using RNA immunoprecipitation assays.
These results revealed a significant abundance of L1-derived
RNAs in immunoprecipitates from MOV 10-expressing cells
when compared with control cells (Figure 3B), suggest-
ing that MOV 10 associates with de novo L1 RNAs. Sim-
ilarly, co-precipitated L1-derived RNAs were highly en-
riched in RNASEH2A immunoprecipitates, whereas the
signal was diminished in the control immunoprecipitation
samples where cells were transfected with empty vectors.
These results suggest an association between RNASEH2A
and spliced L1-specific RNAs (Figure 3C). Notably, the
fold change was more pronounced in cells co-expressing
RNASEH2A and MOV10, with an ~7-fold increase (Fig-
ure 3C). These results demonstrate an association between
RNASEH2A and spliced L1-derived RNAs in a MOV10-
dependent manner. In contrast, depletion of endogenous
MOV10 resulted in a significant decrease in de novo L1
RNA abundance (Figure 3D). Taken together, these data
support the conclusion that RNASEH?2 interacts with de
novo L1 RNAs in a MOV 10-dependent manner.

Loss of MOV10 results in an accumulation of L1-derived
RNA-DNA hybrids

Impairment of RNA-DNA hybrid resolution has been sug-
gested to be associated with genomic instability and an ac-
cumulation of L1 DNAs in AGS patient-derived fibroblasts
(32). Using S9.6 antibody that specifically recognizes the in-
termediate A/B helical RNA-DNA duplex conformation
(46), we explored whether deficiency of MOV 10 would re-
sult in accumulation of RNA-DNA hybrids.

A nuclear enrichment of the S9.6-positive foci was ob-
served in stably RNASEH2A-depleted cells (Figure 4A,
white arrowheads). The few cytoplasmic signals may be due
to mitochondrial DNA replication (47) or unusual RNA
conformations (48). Intriguingly, shRNA-mediated deple-
tion of MOVI10 also led to an accumulation of the S9.6-
positive nucleolar localization signals in the nucleus (Fig-
ure 4A, white arrowheads), suggesting that endogenous
MOV 10 prevents formation of RNA-DNA hybrids. In con-
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Figure 3. Association of RNASEH?2 with L1 RNAs in MOV10-dependent manner. (A) Immunofluorescent confocal microscopy (including Z-stacks)
showing the subcellular distribution of L1-derived RNAs, MOV10 and RNASEH2A. HeLa cells were transfected with pAD3TE]1, a plasmid expressing a
nuclear localized MS2-GFP fusion protein. These microscopy results revealed L1 RNA accumulation in both cytoplasmic and nuclear foci by exploiting the
24 MS2-binding sites in the pAD3TE1-derived L1 RNA. For detection of MOV 10 and RNASEH2A, either anti-MOV 10 antibody or anti-RNASEH2A
antibody was used as a primary antibody, respectively. Green and red lines indicate corresponding points in the orthogonal planes, showing localization of
the label within the pictured cell. The scale bar represents 10 pm. (B) RNA immunoprecipitation carried out in HeLa cells co-transfected with either N-
terminally HA-tagged MOV 10 or N-terminally HA-tagged MOV 10%330A and the L1-/uc cassette (pYX017). At 48 h post-transfection, whole cell extracts
were subjected to RNA immunoprecipitation using anti-HA antibody. The RT-qPCR was carried out using primers specific to spliced Fluc cassette. The
relative abundances of the immunoprecipitated RNA are represented as fold change over the input, relative to RN7SLI levels. (C) RNA immunoprecipita-
tion performed in HeLa cells co-expressing the indicated combinations of expression plasmids with pYX017. The anti-FLAG antibody was used for RNA
immunoprecipitation, and the resulting RNAs in the immunoprecipitates were quantified by RT-qPCR using primers specific to spliced Fluc cassette. The
relative abundances of the immunoprecipitated RNA are represented as fold change over the input, relative to RN7SLI levels. (D) RNA immunoprecipita-
tion performed in HeLa cells co-transfected with C-terminally FLAG-tagged RNASEH2A or C-terminally FLAG-tagged RNASEH2A S with pYX017.
Cell extracts were subjected to immunoprecipitation using anti-FLAG antibody. The resulting RNAs were subjected to RT-qPCR using primers specific
to spliced Fluc cassette. The relative occupancy of the resulting immunoprecipitated RNAs is represented as fold change over the input material, relative
to RN7SLI levels. Data are presented as the mean £ SD of three independent experiments. Statistical significance was determined using the two-tailed
Student’s z-test with the p-values indicated.
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Figure 4. Accumulation of L1-derived RNA-DNA hybrids in MOV 10- and RNASEH2A-deficient cells. (A) Immunofluorescence analysis of RNA-DNA
hybrids using S9.6 antibody showing the control, MOV 10- and RNASEH2A-depleted cells, respectively. A merge of the two channels is shown with the
nucleus stained with DAPI. The scale bar represents 10 wm. (B) A schematic comparison of DRIP-qPCR and DRIP-RT-qPCR procedure. (C) Results
of DRIP-qPCR following immunoprecipitation using the S9.6 antibody upon 36 h post-transfection with pY X017 (L1-/uc). DRIP-qPCR was performed
using primers specific to the spliced Fluc region in transfected HeLa cells. The relative abundance of RNA-DNA hybrids immunoprecipitated is repre-
sented as fold change over the input material. The data were normalized to MDM?2 levels. The data are represented as mean + SD values from three
independent experiments analyzed by two-tailed Student’s 7-test with p-values indicated. (D) DRIP-RT-qPCR performed in HeLa cells transfected with
pYXO017 (L1-luc). Samples were harvested at 24 h post-transfection and subjected to immunoprecipitation using the S9.6 antibody. The resulting RNAs in
the immunoprecipitates were quantified by RT-qPCR using primers specific to spliced Fluc cassette. The relative occupancy of immunoprecipitated RNA
is represented as fold change over the input material. The data were normalized to RN7SLI levels. — RT indicates the negative controls for each sample
without reverse transcriptase. Data are presented as the mean £ SD of three independent experiments and were analyzed by two-tailed Student’s 7-test
with the p-value indicated. (n/a = not available). (E) L1 retrotransposition assay using L1-/uc cassette (pYX017) performed in HeLa cells transfected with
corresponding siRNAs. This luciferase reporter-based L1 assay system was previously described (37). A firefly luciferase (Fluc) gene, instead of neo”, is
disrupted by an intronic sequence and inserted in the 3’ UTR of L1 in an anti-sense orientation relative to the L1 genes under the control of an independent
promoter. A Renilla luciferase (Rluc) cassette is inserted in the same backbone to allow the normalization. Luciferase activity was determined as the ratio of
Fluc/Rluc. Cells treated with 50 wM stavudine (d4T) served as a negative control. Data are presented as the mean & SD of three independent experiments
and were analyzed with two-tailed Student’s #-test with the p-values indicated.



trast, nucleoplasmic foci were rarely detected in control cells
(Figure 4A).

The RNA-DNA hybrids accumulation in either MOV 10-
or RNASEH2A-deficient cells was also quantitated by HB-
GFP retention FACS analysis (40). As HB-GFP interacts
with heteroduplexes in the nucleus, it is retained in the nu-
cleus following permeabilization with detergent. This leads
to a significant number of GFP-positive cells, whereas cy-
toplasmic GFP is completely washed out. Similar to the in-
tense staining in the nucleolar region with the S9.6 antibody
(Figure 4A), depletion of either MOV 10 or RNASEH2A in-
creased the number of GFP-positive cells (Supplementary
Figure S3A).

L1-derived RNA-DNA hybrids are produced as vital in-
termediates during L1 TPRT (3). To investigate whether
RNASEH2 and MOV10 prevent formation of L1-derived
heteroduplexes, we quantitated either L1-derived DNAs or
RNAs following RNA-DNA hybrid immunoprecipitation
(hereafter referred to as DRIP-qPCR) (Figure 4B). Results
from DRIP-qPCR using primers specific to spliced Fluc
cassette revealed an accumulation of L1-derived heterodu-
plexes in both RNASEH2A- and MOV 10-deficient cells
(Figure 4C). This was concomitant with an increase in HB-
GFP retention by ectopic introduction of the L1-neo™®T
expression cassette into either RNASEH2A- or MOV10-
depleted cells (Supplementary Figure S3B). Cells trans-
fected with the L1 expression cassette (pYX017) exhibited
a significant change in abundance of de novo L1-specific
RNAs (Figure 4D), demonstrating that both RNASEH?2
and MOV10 are involved in resolving heteroduplex inter-
mediates during L1 retrotransposition.

We then sought to determine whether other proteins in-
volved in resolution of cellular RNA-DNA hybrids con-
tribute to L1 control. To examine this, we transiently
knocked-down a panel of cellular R-loop suppressors (49),
especially RNASEH1, THO complex subunit 1 (THOCI)
and a probable helicase senataxin (SETX) and performed
dual luciferase-based L1 retrotransposition assays. Most of
the R-loop suppressors did not affect L1 control (Figure
4E, Supplementary Figure S3C and S3D). Intriguingly, hu-
man RNASEH]1 did not exert any inhibitory effects on L1
suppression despite its RNase H activity, suggesting that
RNASEH?2 specifically recognizes L1-derived RNA-DNA
intermediates (Figure 4E). Overall, these results indicate
that RNASEH2, together with MOV10, specifically con-
tribute to prevention of L1 heteroduplex formation during
L1 retrotransposition.

Interaction of MOV10 with L1 ORF1p and MOV 10 helicase
activity are required for RNASEH2-mediated L1 restriction

RNA helicase activity of MOV10 has been implicated as a
crucial modulator of L1 mobility (15). Thus, we hypothe-
sized that the putative helicase domain is necessary for the
anti-L1 activity of MOV 10. To analyze the functions of the
MOV10 domains, we constructed two truncated MOV10
variants, N-terminal MOV 10 and C-terminal MOV 10 (Fig-
ure 5A). Since the N-terminal domain of MOV10 is re-
quired for its interaction with the HIV-1 nucleocapsid pro-
tein (12), we first determined if MOV 10 interacts with L1
ORFIlp via its N-terminal domain. As shown in Figure
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5B, the full-length MOV10 strongly interacted with L1
ORF1p and the N-terminal MOV10 also associated with
L1 ORFl1p. However, no interaction was observed with
the C-terminal MOV 10 (Figure 5B), indicating that the N-
terminal portion of MOV10 is required for its association
with L1 ORF1p.

Next, we tested interactions between the truncated
MOV10 variants and RNASEH?2. Similar to their interac-
tions with L1 ORF1p, the N-terminal region of MOV10
was sufficient to interact with the catalytic subunit of
RNASEH2A (Figure 5C). However, only the full-length
MOV10 was able to interact with the auxiliary subunits of
RNASEH?2 (Figure 5D and 5E), demonstrating that full-
length MOV10 is crucial for a functional interaction to
occur with both L1 ORF1p and RNASEH?2. Consistent
with this, ectopic expression of the N-terminal portion of
MOV 10 lacking the RNA helicase domain completely abol-
ished its anti-L1 activity (Figure 5A). Overexpression of
either the C-terminal portion of MOV10 or the helicase-
defective MOV 10 variant (MOV10X33%4) also failed to con-
trol L1 mobility (Figure 5A). Taken together, these results
indicate that MOV 10 mediates a functional association with
both L1 ORF1p and RNASEH?2, and its RNA helicase ac-
tivity is required for the RNASEH2-mediated L1 suppres-
sion.

RNASEH2-MOV10-mediated L1 restriction is linked to
rheumatoid arthritis progression

To gain insight into the biological implications of L1
suppression, we sought to examine whether RNASEH?2-
MOVI10-mediated L1 regulation affects the progression
of Ll-derived autoimmune diseases, such as rheumatoid
arthritis (RA). To test this, we performed the neo” indicator-
based L1 assays using the human synovial sarcoma cell
line, SW982, which is known to express inflammatory cy-
tokines and MMPs in response to IL-1B (50). Overexpres-
sion of MOV10 led to a significant decrease in L1 mobil-
ity in SW982 cells; however, helicase-defective MOV 10%3304
lost its ability to negatively control L1 retrotransposition
(Figure 6A). Introduction of RNASEH2 also impaired
the formation of G418-resistant foci to similar level in
MOV 10-expressing cells. In contrast, the functionally de-
fective RNASEH2AS?7S failed to prevent L1 retrotranspo-
sition, indicating that RNASEH?2 activity is required for L1
restriction. Furthermore, the anti-L1 activity was markedly
attenuated when RNASEH2AG”S was co-expressed with
MOV10, suggesting that the interplay between MOV 10 and
RNASEH?2 is essential for inhibition of L1 retrotransposi-
tion (Figure 6A).

We next tested whether the RNASEH2-MOVI10-
mediated L1 restriction would prevent activation of
synovial cells. To test the hypothesis, we measured IL-6
and TNF-a levels in culture media of cells used in L1
assays. L1 activation led to significantly elevated levels of
both IL-6 (Figure 6B) and TNF-a (Figure 6C) in SW982
cells, while secretion of these cytokines was markedly di-
minished by RNASEH2-MOV10-mediated L1 restriction.
However, co-expression of MOV10 with an enzymatically
inactive form of RNASEH2A did not inhibit L1 activity,
thereby increasing IL-6 (Figure 6B) and TNF-a production
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Figure 6. A causal relationship between L1 restriction and RA-related gene expressions. (A) L1 retrotransposition assays using L1-neo T cassette per-

formed in synovial SW982 cells co-transfected with corresponding expression vectors and the L1-neo TET expression cassette at a ratio of 1:1. The transfected
cells were subjected to selection for 10 ~ 12 days with G418 (1 mg/ml). Following selection, G418-resistant foci were stained with crystal violet solution.
Representative culture dishes for each condition are shown. Quantitation of the L1 assays was plotted. The Y-axis depicts the number of G418-resistant
foci per 40,000 cells. Data are shown as the mean + SD from an experiment with three replicates and were analyzed by two-tailed Student’s #-test with
the p-values indicated. (B-D) Levels of inflammatory cytokines and MMP-3 activity. In parallel to L1 assay shown in (A), cell culture supernatants were
harvested at 72 h post-transfection and analyzed by enzyme-linked immunosorbent assay (ELISA) to detect (B) IL-6 and (C) TNF-« levels in SW982
cells, and fluorometric immunocapture assays were performed to detect (D) MMP-3 activity. Data are presented as the mean + SD of three independent
experiments, and statistical significance was determined using the two-tailed Student’s 7-test with the p-values indicated.
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(Figure 6C). These data demonstrated that the RNASEH2-
MOV10-mediated L1 control is linked to regulation of
RA-related cytokine induction.

Activated synovial cells also express matrix-degrading
enzymes, a pathological indicator of RA. Thus, the MMP-3
activity in cell culture supernatant was monitored. MMP-
3 activity profiles displayed a causal relationship with the
RNASEH2-MOV10-mediated L1 suppression (Figure 6D),
suggesting a potential causal relationship between L1 sup-
pression and RA-related disease progression.

DISCUSSION

The function of MOV 10 to inhibit L1 retrotransposition is
conserved across diverse host species (13,15). Early studies
showed that MOV 10 localizes to cytoplasmic granules. It se-
questers L1 RNPs by interacting with L1 ORF1p, thereby
facilitating L1 RNA degradation. Later, it was revealed that
MOV10 suppresses L1 mobility in the nucleus (17). How-
ever, the precise mechanism has not been fully determined.
Therefore, the elucidation of MOV 10-interacting networks
could contribute to a better understanding of the cellular
functions of MOV 10, particularly how MOV 10 controls L1
mobility.

In the present study, we identified a novel interaction
partner of MOV10, the host protein complex RNASEH2.
RNASEH?2 associates with L1-derived RNAs in a MOV 10-
dependent manner, and the interplay between RNASEH?2
and MOV 10 is crucial for L1 suppression. Furthermore, we
have shown that the RNASEH2-MOV10-mediated L1 con-
trol inhibits expression of RA-related indicators in synovial
cells, which provided evidence of its physiological relevance.
Our results have identified a previously unknown mecha-
nism by which both RNASEH2 and MOV 10 specifically in-
terfere a formation of L1-drived RNA-DNA hybrids during
L1 retrotransposition in the nucleus (Supplementary Figure
S4).

Extrapolating from a study on MOV 10-mediated retro-
viral restriction (51), MOV 10 may enhance RNASEH?2 ac-
tivity during L1 retrotransposition by either changing L1
RNA secondary structures or through steric hindrance. In
support of this hypothesis, the helicase-defective form of
MOV 10 was unable to restrict L1 mobility (Figure SA). Itis
also plausible that the 5’ to 3’ unwinding activity of MOV 10
causes steric hindrances during L1 ORF2p-dependent re-
verse transcription. Even though an interaction between
MOV10 and L1 ORF2p was not observed in our experi-
ments (Supplementary Figure S1B), this possibility cannot
be ruled out. There may be an additive or even a synergistic
benefit for the RNASEH2-mediated resolution of L1 hybrid
intermediates during L1 retrotransposition.

Remarkably, depletion of either RNASEH2A or MOV 10
leads to an increase in L1-specific RNA-DNA hybrids, in
agreement with a previous study (32). During TPRT, L1
ORF2p binds to the polyA tract of L1 RNA to bring the
RNA template to the insertion site (52) where it nicks the
genomic DNA to initiate reverse transcription in the 3’ to 5’
direction. Consistent with this, L1-specific signals were pre-
dominantly detected at the L1 3’ UTR (Figure 4C and 4D).
The predominance of 3 UTR signal is most likely due to 5’
truncations of L1 during retrotransposition (3). The com-

plexity of L1 RNA structures may have also influenced the
DRIP-based qPCR results, because RNA-DNA hybrids are
often present at UTRs of genes that post-transcriptionally
control gene expressions (42).

In addition to RNASEH2, RNASEHI1 is also capable of
catalyzing the cleavage of RNAs via hydrolysis; however,
it does not affect L1 restriction (Figure 4E). This suggests
that these enzymes might have different substrate specifici-
ties. Based on these results, it is possible that RNASEH?2
functionality as a L1 restriction factor depends on MOV 10,
which may enable RNASEH?2 to recognize the characteris-
tic heteroduplexes of L1. Therefore, RNASEH?2 appears to
be the primary enzyme that specifically regulates a forma-
tion of L1-derived RNA-DNA hybrids.

Since a potential role of retroelements as immunogenic
sources in autoimmune diseases has been a major interest
over the past decades (8), understanding the interplay be-
tween RNASEH2 and MOV10 in the impairment of L1
retrotransposition will expand the spectrum of their anti-L1
activity beyond the certain disease regulation. Such insights
may improve our understanding of RNASEH2-MOV10-
mediated nucleic acid pathways in the context of innate im-
munity.
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