9634 - The Journal of Neuroscience, December 9, 2020 - 40(50):9634-9649

Systems/Circuits

Complementary Inhibitory Weight Profiles Emerge from
Plasticity and Allow Flexible Switching of Receptive Fields

Everton J. Agnes,! ““Andrea I. Luppi,’ and “Tim P. Vogels'>
'Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, United Kingdom, and *Institute of Science and Technology
Austria, Klosterneuburg, 3400, Austria

Cortical areas comprise multiple types of inhibitory interneurons, with stereotypical connectivity motifs that may follow spe-
cific plasticity rules. Yet, their combined effect on postsynaptic dynamics has been largely unexplored. Here, we analyze the
response of a single postsynaptic model neuron receiving tuned excitatory connections alongside inhibition from two plastic
populations. Synapses from each inhibitory population change according to distinct plasticity rules. We tested different com-
binations of three rules: Hebbian, anti-Hebbian, and homeostatic scaling. Depending on the inhibitory plasticity rule, synap-
ses become unspecific (flat), anticorrelated to, or correlated with excitatory synapses. Crucially, the neuron’s receptive field
(i.e., its response to presynaptic stimuli) depends on the modulatory state of inhibition. When both inhibitory populations are
active, inhibition balances excitation, resulting in uncorrelated postsynaptic responses regardless of the inhibitory tuning profiles.
Modulating the activity of a given inhibitory population produces strong correlations to either preferred or nonpreferred inputs, in
line with recent experimental findings that show dramatic context-dependent changes of neurons’ receptive fields. We thus confirm
that a neuron’s receptive field does not follow directly from the weight profiles of its presynaptic afferents. Our results show how
plasticity rules in various cell types can interact to shape cortical circuit motifs and their dynamics.
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Neurons in sensory areas of the cortex are known to respond to specific features of a given input (e.g., specific sound frequencies),
but recent experimental studies show that such responses (i.e., their receptive fields) depend on context. Inspired by the cortical
connectivity, we built models of excitatory and inhibitory inputs onto a single neuron, to study how receptive fields may change on
short and long time scales. We show how various synaptic plasticity rules allow for the emergence of diverse connectivity profiles
and, moreover, how their dynamic interaction creates a mechanism by which postsynaptic responses can quickly change. Our work
emphasizes multiple roles of inhibition in cortical processing and provides a first mechanistic model for flexible receptive fields. J
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Introduction
Inhibitory neurons exhibit large variability in morphology, con-
nectivity motifs, and electrophysiological properties (Markram
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et al., 2004; Jiang et al., 2015; Jouhanneau et al.,, 2018; Gouwens
et al., 2019). Inhibition often balances excitatory inputs, thus
stabilizing neuronal network activity (Van Vreeswijk and
Sompolinsky, 1996; Vogels et al., 2011) and allowing for a range
of different functions (Hennequin et al, 2017; Maffei, 2017;
Sprekeler, 2017; Chiu et al, 2019; Nicola and Clopath, 2019).
When both inhibitory and excitatory inputs share the same sta-
tistics and their weight profiles are similar (Froemke et al., 2007),
the resulting state of the postsynaptic neuron is one of precise
balance of input currents (Hennequin et al., 2017). Modulation
of inhibition (e.g., a decrease or increase in local inhibitory activ-
ity) and, consequently, a change in the balance between excita-
tion and inhibition, can control the activity of neuronal groups
(Letzkus et al., 2015; Kuchibhotla et al., 2017), and it is believed
that disinhibition is an important mechanism for the implemen-
tation of high-level brain functions, such as attention (Zhang et
al., 2014; Kuchibhotla et al., 2017), memory retrieval (Vogels et
al.,, 2011; Barron et al., 2016; Vallentin et al., 2016), signal gating
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(Vogels and Abbott, 2009; Kremkow et al.,, 2010), and rapid
learning (Nicola and Clopath, 2019).

The state of balance is thought to be achieved and maintained
by inhibitory plasticity, for example, a Hebbian-like inhibitory plas-
ticity rule (Vogels et al., 2011) (increase in synaptic weights for cor-
related presynaptic and postsynaptic activity), as observed in
auditory cortex (D’amour and Froemke, 2015). Other types of in-
hibitory plasticity have also been observed, for example, changes in
chloride reversal potential (Woodin et al., 2003) that locally decrease
the driving force of inhibitory synapses following correlated presyn-
aptic and postsynaptic activity, suggesting a form of anti-Hebbian
inhibitory plasticity that has been proposed as a mechanism for
memory formation (Hendin et al., 1997).

Given that cortical circuit motifs feature multiple interneuron
types (Jiang et al., 2015; Matftei, 2017; Gouwens et al., 2019), we
wondered how these opposing types of plasticity may act in con-
cert on the same postsynaptic target, and how the resulting syn-
aptic weight profiles can help to shape the receptive field (i.e., the
neurons’ response to presynaptic stimuli). We speculated that
two plasticity rules could form complementary synaptic weight
profiles for inhibitory connections, such that synapses following
a Hebbian-like inhibitory plasticity rule would mirror excitatory
inputs; anti-Hebbian plasticity should impose strong inhibitory
inputs for weak excitatory ones, and vice versa. Such opposite
wiring profiles of distinct inhibitory synapse populations are in
line with intracellular recordings showing that strong inhibitory
postsynaptic potentials can be elicited by stimuli with preferred
orientations of the postsynaptic neuron (Ferster, 1986; Douglas
and Martin, 1991), but also by stimuli with nonpreferred orienta-
tions (Volgushev et al., 1993; Pei et al, 1994). What’s more,
dynamically changing receptive fields could be achieved through
targeted modulation of a specific type of inhibition.

Altered receptive field properties have been widely observed
(e.g., in mouse auditory cortex where neurons change their pre-
ferred sound frequency with varying sound intensity) (Bathellier
et al, 2012). In macaque primary visual cortex (V1), neurons
can modulate their response according to an extra cue of a differ-
ent (auditory) sensory nature (McClure and Polack, 2019).
Intriguingly, they responded either more strongly to their pre-
ferred stimulus or, on the contrary, they were more suppressed
when a pure tone was played alongside the presentation of the
visual stimuli. In macaque V4 (Ruff and Cohen, 2014) and V5
(Ruff and Cohen, 2019), neurons have been shown to change
how they represent different stimuli during detection and dis-
crimination tasks; and in macaque V4 (Benjamin et al., 2019),
some neurons change their hue preference when subjected to
single-hue or naturally colored images. Receptive field profiles
have also been shown to induce localized changes (around pre-
ferred inputs) in attention tasks (Fritz et al., 2003), and adapta-
tion of the postsynaptic activity to repetitive stimulation (Kohn
and Movshon, 2004). Finally, recent work by Billeh et al. (2019)
showed that, in mice, visual neurons change their response to the
direction of motion of visual stimuli depending on either the
temporal or the spatial frequency of the stimulus (drifting gra-
ting). These results suggest that receptive fields of sensory neu-
rons are dramatically affected by input (i.e., contextual/
attentional states) (Fritz et al., 2003; Kohn and Movshon, 2004;
Ruff and Cohen, 2014, 2019; Benjamin et al., 2019; McClure and
Polack, 2019), or different aspects of the sensory stimulus
(Bathellier et al., 2012; Billeh et al., 2019), but it is unclear by
which mechanisms such changes can transpire.

Here, we tested how the response of a single neuron is
affected when the activity of presynaptic inhibitory populations
is modulated. We combined two hypotheses to address this
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Figure 1. Leamning of two distinct inhibitory populations and postsynaptic response
because of attentional switch between contexts. A, Schematic of co-active plasticity rules. A
postsynaptic neuron (black triangle) receives tuned excitatory input (red population) and in-
hibition from two distinct populations (blue populations). The two inhibitory populations fol-
low different synaptic plasticity rules. Aw indicates change in synaptic weight, and At
indicates interval between presynaptic and postsynaptic spikes. B, Initially untuned inhibitory
weights (blue lines) acquire different synaptic weight profiles after leaing that depend on
the excitatory weight profile (red dashed line). ¢, Contextual changes (e.g., because of atten-
tion), which we hypothesize to be responsible for modulating the activity of inhibitory popu-
lations, result in different postsynaptic responses to the same stimulus (Bathellier et al.,
2012; Ruff and Cohen, 2014, 2019; Benjamin et al., 2019; Billeh et al., 2019; McClure and
Polack, 2019), such that preferred (green) and nonpreferred (purple) stimuli elicit postsynap-
tic responses with different amplitudes.

question. First, we considered that different types of inhibitory
interneurons may follow distinct synaptic plasticity learning
rules (Fig. 1A), thus creating different connectivity profiles onto
postsynaptic neurons (Hennequin et al., 2017) (Fig. 1B), such as
those observed for parvalbumin-positive (PV ") and somatosta-
tin-positive (SOM™) interneurons (Wilson et al, 2012). PV™"
interneurons may follow a Hebbian-like plasticity rule (Vogels et
al,, 2011; D’amour and Froemke, 2015), thus targeting pyramidal
neurons with similar preferred orientation (Wilson et al., 2012).
SOM™ interneurons, on the other hand, could follow a non-
Hebbian plasticity rule (e.g., anti-Hebbian or homeostatic),
which results in a nonselective connectivity (Wilson et al., 2012).
Our second hypothesis posits that changes in the activity of in-
hibitory neurons are responsible for the highly variable receptive
fields observed in recent experiments (Bathellier et al., 2012; Ruff
and Cohen, 2014, 2019; Benjamin et al.,, 2019; Billeh et al., 2019;
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McClure and Polack, 2019) (Fig. 1C). This hypothesis extrapo-
lates from evidence of cortical disinhibition during functional
tasks (Pi et al.,, 2013; Letzkus et al., 2015), and requires that a dif-
ferent brain region provide attentional or contextual signals,
such as observed in PFC and regions in the frontal lobe
(Noudoost et al.,, 2010; Anderson et al., 2011; Baluch and Itti,
2011; Benchenane et al., 2011).

To determine the origins of such varying responses from the
same cell, we investigated the behavior of a single postsynaptic
neuron model receiving tuned excitatory inputs, and inhibition
from two distinct populations. Input tuning may correspond to
preference for a specific sound frequency (Froembke et al., 2007),
orientation of visual cues (Smith et al., 2013), or to color hue
(Benjamin et al., 2019), taste (Haley et al., 2016), whisker stimu-
lation (Estebanez et al., 2018), or position in space (Harvey et al.,
2009). We show that, when distinct biologically plausible plastic-
ity rules operate on the synapses of different inhibitory popula-
tions, at least three different tuning profiles may emerge. After
learning, the postsynaptic neuron arrives at a balanced state with
respect to its excitatory and inhibitory inputs. In this state, pre-
ferred signals are transiently revealed, but steady-state responses
are indiscriminate of the stimulus preference (Vogels et al., 2011)
(i.e., its “orientation,” etc.), regardless of the inhibitory connec-
tivity. However, we could substantially alter the responses of the
postsynaptic neuron by modulating the activity of either of the
two presynaptic inhibitory populations, allowing for the propa-
gation of facets of the input patterns that were previously
quenched by inhibition. Such inhibitory modulation can thus
serve as a mechanism to selectively filter stimuli according to, for
example, attentional cues, as observed in recent experiments
(Bathellier et al., 2012; Ruff and Cohen, 2014, 2019; Benjamin et
al., 2019; Billeh et al., 2019; McClure and Polack, 2019). In sum-
mary, our work proposes a simple biological implementation for
an attentional switch of input selectivity, and provides a solution
for how such a neuronal circuit can emerge with autonomous
and unsupervised, biologically plausible plasticity rules. To our
best knowledge, our model is the first proof of principle that the
receptive field of a neuron (i.e., its response to presynaptic stim-
uli) does not have to follow directly from the (excitatory) presyn-
aptic weight profiles.

Materials and Methods

Neuron model

To investigate changes in neuronal response because of specific inhibitory
connectivity motif, we simulated a postsynaptic leaky integrate-and-fire
neuron (LIF) receiving excitatory and inhibitory afferents. Postsynaptic
neuronal membrane potential dynamics is governed by the following:

du(t)
Tmq; = —[u(t) = Upest]
—ge()[u(t) — Ee] — &i(t)[u(t) — Ei, (1)

where u(t) is the somatic voltage at time ¢, 7, = RC is the membrane
time constant (membrane resistance, R, times membrane capacitance,
C), Uyest is the resting membrane potential, and Er and Ej are the reversal
potential for excitatory and inhibitory synapses, respectively. Synaptic
conductances, gi (f) and g (t), evolve according to the following:

Bl 8013 wise @

T ‘=
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Table 1. Simulation parameters for the postsynaptic neuron

Parameter Symbol Value Figures
Membrane time constant Tm 30ms 4-1
Resting potential Urest -65mV 4-11
Excitatory reversal potential E 0mV 4-1
Inhibitory reversal potential I -80mvV 4-11
Excitatory time constant TE 5ms 4-1
Inhibitory time constant 7 10 ms 4-1
Spiking threshold Ush -50mV 4-1
Reset potential Ureset -65mV 4-1
Refractory period Tref 5ms 4-1
Simulation time step At 0.1 ms 4-1
dai(t) _ 7w+ i wi(£)Si(t) (3)
d U i e

Both excitatory and inhibitory conductances decay exponentially to zero
with time constants 7 and 7y, respectively. Presynaptic action potentials
trigger increase in synaptic conductances through the sum of Dirac §
functions as follows:

Si(t)=>_8(t—ty), (4)

where #;; is the time of the kth spike of presynaptic afferent j. The contri-
bution of a given presynaptic afferent j to changes in conductances is
given by the synaptic weight w;(t), which was fixed for excitatory synap-
ses and could change over time because of plasticity mechanisms for in-
hibitory synapses. The total number of presynaptic afferents is
N = Ng + Ny, with Ng being the number of excitatory and Ny of inhibi-
tory presynaptic afferents.

An action potential is triggered at the postsynaptic neuron once its
membrane potential u(t) crosses the spiking threshold uy, from below.
The membrane potential is then instantaneously reset t0 i ese, being
clamped at this value for the duration of the refractory period, 7,.r. The
postsynaptic spike train is described as a sum of Dirac deltas as follows:

Sposl(t) = Z 6(t - tk)7 (5)
k

where # is the time of the kth spike of the postsynaptic neuron, or the
time the membrane potential crosses the spiking threshold from below.
Parameters used for the postsynaptic neuron are detailed in Table 1.

Inputs

To mimic experimentally observed synaptic input profiles (Froemke et
al.,, 2007), we divided the synaptic inputs into P signal groups (u = 1,...,
P) that share the same fluctuation in firing rate. We tested two cases: nat-
ural input and pulse input. Both are described below.

Natural input. For presynaptic activity mimicking a natural input,
activity follows an inhomogeneous Poisson process that changes accord-
ing to a modified Ornstein-Uhlenbeck (OU) process. We first defined an
auxiliary variable for each pattern, y,(f), that follows a stochastic first-
order differential equation given by the following:

dyu(t) _ _ﬁ
) ©

where u is the signal group index, 7oy is the time constant for the decay-
ing process that changes because of a Gaussian noise term & ,(t) with
unitary standard deviation (SD). The mean value of the variable y, is
zero, and thus it assumes positive and negative values for long periods.
The spike train of an afferent in a given signal group w is given by
the variable, v, (t), which is a rectified version of the auxiliary variable
plus a term to generate background firing rate, vxyg, where X indicates
the presynaptic population (X = E for excitatory and X =1 for inhibitory).
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Table 2. Simulation parameters for the inputs
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Table 3. Simulation parameters for the weights

Parameter Symbol Value Figures Parameter Symbol Value  Figures
No. of excitatory afferents Ne 3200 411 Excitatory baseline weight Wro 0.5 4-1

No. of inhibitory afferents N, 800 4-11 Noise parameter for excitatory weights €f 0.01 4-11

No. of signal groups P 16 4-11 Inhibitory baseline weight (one inhibitory population) Wi 0.4 Data not
Refractory period for excitatory afferents Thref 5ms 2, 4-11 shown
Refractory period for inhibitory afferents Tiref 2.5ms 2,4-1 Noise parameter for inhibitory weights (one inhibitory € 0.01 Data not
0U time constant Tou 50 ms 2,411 population) shown
0U update time step AT Tms 2,41 Inhibitory baseline weight Wi Varying 5,6
Excitatory firing rate amplitude for OU Vi 5Hz 2,411 Noise parameter for inhibitory weights € 0.01 56
Inhibitory firing rate amplitude for OU Vi 10 Hz 2,411 Inhibitory baseline weight (Hebbian & scaling) Wi 0.8 7
Excitatory background firing rate Vgbg 2Hz 2,41 Noise parameter for inhibitory weights (Hebbian & scaling) € 03 7
Inhibitory background firing rate Vb 4Hz 2,411 Inhibitory baseline weight (Hebbian & anti-Hebbian) Wi 0.55 9

Pulse amplitude reference V" 5Hz 4,8,10, 11 Noise parameter for inhibitory weights (Hebbian & € 0.01 9
Excitatory ratio for pulse input ag, 1 4,8,10, 11 anti-Hebbian)

Inhibitory ratio for pulse input ay, 2 4,8,10, 11 Correcting factor for plot ay 44 57,9
Synaptic weight profile amplitude ry 4 4-11

Synaptic weight profile slope b 0.25 4-11

Preferred pattern index Mo 9 411

S}lnaptlf We'.ght profile power ¢ 2 41 Responses to the pulse input were divided in two bins: phasic and
Simulation time step At 0.1ms 2, 4-1

The spike trains of the afferents of signal group u are generated by the
following:

Vxu(t) = Vxou(B)]5 + Vg, (7)

where vy, is the amplitude of the modulated firing rate fluctuations, and
[-] is a rectifying function, as follows:

y,ify>0
bl = {0, otherwise. (8)

Because of the symmetry of y, (), an afferent is half the time in the back-
ground state and half the time in the active state.

Presynaptic action potentials were generated as an inhomogene-
ous Poisson process according to the modified OU process
described above and a fixed background firing rate. Additionally, we
implemented a refractory period, Tg,. for excitatory and 7y, for in-
hibitory inputs. Given the time step of the simulation At, spikes of a
presynaptic afferent that is part of the signal group u are generated
with a probability px,(t) = vx,(t)At if there was no spike elicited
during the refractory period beforehand, and thus the average firing
rate of a X=E (excitatory) or X =1 (inhibitory) afferent that is part
of the signal group u becomes the following:

1 Txref /At
Fu(t) = 1pn®) (1= pul®) ©

Pulse input. To test transient responses to brief changes in pre-
synaptic activity, we also quantified postsynaptic responses to pulse
inputs. In this case, we simulated the postsynaptic neuron receiving
inputs with constant background firing rate. For 100ms, we
increased the probability of presynaptic spikes for a given signal
group u by a factor kv*, with k being an integer larger or equal than
zero and v+ = 5Hz. Thus, presynaptic spikes are generated by the
following:

Uxu(t) = ax k™ + v, (10)
during the 100 ms step and by the following:
Vxﬂ(t) = Vng (11)

during only background activity. Parameter ays, is a scalar that sets the
ratio of excitatory and inhibitory firing rate.

tonic. Phasic responses were defined as the postsynaptic activity elicited
in the first 50 ms of the pulse input. Tonic activity was correspondingly
defined as having occurred in the last 50 ms of the stimulus. We simu-
lated 100 trials per input strength kv, and defined the response (for
both phasic and tonic) as the average number of spikes on the period for
the strength kv minus the average number of spikes on the same period
without extra input, multiplied by 20 to convert to Hz. We subtracted
background spikes to ascertain that we quantified the response to the
extra step input alone. The tonic input window was used to assess persis-
tent, steady-state postsynaptic responses to elevated inputs. To confirm
that the firing behavior within these 50 ms indeed reflected a steady state,
we ran control simulations with a variety of intervals: from 50 to 500 ms.
All tests showed that our 50 ms window was sufficient to obtain a repre-
sentative sample of steady-state, “tonic” activity. Parameters used for
inputs are detailed in Table 2.

Synaptic tuning
Based on Vogels et al. (2011), we used a synaptic weight profile for the
excitatory population given by the following:

) = (1 Ji r0> * (1 -rfro) (1 + b(; - #0)‘)’ (12)

where 1y, b, and ¢ are parameters defining the shape of the synaptic
weight profile and u, defines the preferred signal group, which maxi-
mizes r(u); (o) =1. Note that rg > 1, 0<b < 1, uy >0, and c is an
even positive integer.

For simplicity, we define {; as the signal group of which that afferent
jis part. Thus, excitatory synapses are set as follows:

Wi :Wgor({j)-i-ej? ]: 17..4,I\TE7 (13)

where wr is a normalization factor for excitatory weights, and €; is a
noise term drawn from a uniform random distribution between —e;
and €j.
Initial conditions for all inhibitory populations were flat with noise
(see Figs. 5,7, 9), as follows:
w;(0) =wgp+e€, j=Ng+1,.,N. (14)
In all cases, except for one (see Fig. 5), all inhibitory synapses
changed according to inhibitory plasticity rules (details below). For
Figure 5, one population of inhibitory afferents were plastic and
another was kept fixed throughout the learning period of the simu-
lations. Parameters used for synaptic weights are detailed in Tables
2 and 3.
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Because of the small number of inhibitory afferents compared with
the excitatory ones, and the difference in driving force, inhibitory
weights were much larger than excitatory ones. Thus, we plotted excita-
tory weights multiplied by the parameter «,,.

Plasticity models

In this work, we used three different inhibitory synaptic plasticity rules.
We termed them “Hebbian,” “scaling,” and “anti-Hebbian.” Both Hebbian
and anti-Hebbian plasticity rules are triggered by presynaptic and postsy-
naptic spikes, and depend on a low-pass filter of these spike trains. The
presynaptic trace (low-pass filter) is given by the following:

dxi(t) _ x(f)
dr 7@ +Sj(t)a (15)

where x;(t) is the value of the trace of the spike train of presynaptic affer-
ent j at time #; Tsypp is the time constant of the trace, and Si(¢) is a sum
of Dirac & functions (Eq. 4) representing the spike train of afferent j.
The same is considered for the postsynaptic neuron, as follows:

dxpon (£ Xpost (t
%() = - %ﬁp) + Spost(t)7 (16)
where x4 (£) is the postsynaptic trace, and Sy (£) is the spike train of
the postsynaptic neuron (Eq. 5). We used the same time constant for
both presynaptic and postsynaptic traces.

Hebbian inhibitory plasticity. Precise balance of excitatory and inhib-
itory inputs was learned by a Hebbian inhibitory plasticity rule (Vogels
et al, 2011). The weight of the jth inhibitory synapse changes according
to the following:

dw;(t)
dt

= Ny [5(£) Spost (£) + xpout (£)S(1) — uaS;(1)], (17)

where 7y is the learning rate, and ay; is a parameter that defines the
postsynaptic firing rate. The first two terms on the right-hand side of
Equation 17 are Hebbian terms that increase the weights when both pre-
synaptic and postsynaptic activities are correlated. The last term on the
right-hand side of Equation 17 is a penalty term for inhibitory spikes
alone, which creates a homeostatic setpoint for the postsynaptic firing
rate given by the following:

ay
Po R —- (18)
0 2Tsrpp

Later we describe how to arrive at this approximation.

Inhibitory synaptic scaling for flat tuning. One of the synaptic weight
profiles we used for inhibitory synapses was flat (i.e., all synapse groups
had the same mean strength). To learn the flat profile from random ini-
tial weights, we implemented a scaling plasticity rule, partially based on
experimental work that observed synaptic scaling on inhibitory synapses
(Stellwagen and Malenka, 2006; Zhong et al, 2018). Weights are
increased if the postsynaptic firing rates are too high, and decreased oth-
erwise, as follows:

dﬂ(/;t(t) = 'T]sWIs[yPnsl(t) - PO]G(yPOS[(t) — ang)

- Wst(t)[Po 7}’}’05((0]@)(&7ypost(t))7 (19)

Qs

where 7, is a learning rate, wy, is a reference weight, p, is a firing rate
reference value, chosen to be the same as the one for Hebbian plasticity
rule, O(-) is the Heaviside function, and e is a term that sets the firing
rate range for which synapses do not change. Postsynaptic neuron’s fir-
ing rate is computed with a slow averaging of the postsynaptic activity
through the following:

Agnesetal. o Flexible Switch in Sensory Circuits

AYpost (1) Ypost ( t) 1
—_ + Spou(£), 20
dt Tscaling ? l( ) ( )

Tscaling

where Tcing is the time constant for the postsynaptic activity and
Spost(t) is the postsynaptic spike train (Eq. 5). The last term on the
right-hand side of the equation above is divided by 7Tycling 50 that
Ypost (t) is in units of rate. Synaptic depression is weight-depend-
ent, whereas synaptic potentiation is not, which ensures that all
synaptic weights tend to the same value. When the postsynaptic
neuron is firing below a threshold p,/as, all inhibitory synapses in
the flat group have their weights decreased proportionally to the
difference between the target firing rate and the average firing rate,
but also proportional to the current weight value. This way, strong
synapses undergo stronger decrease than weak ones. Conversely,
when the postsynaptic neuron is firing above a threshold ag po, all
synapses increase in value by the same amount. Intuitively, these
mechanisms ensure that all synapses converge to the same value
for a long run (see below).

Anti-Hebbian inhibitory plasticity. The third inhibitory plasticity
rule we used is an anti-Hebbian rule inspired by experimental data
(Woodin et al., 2003; Ormond and Woodin, 2009, 2011) and theoretical
work on recurrent networks (Hendin et al., 1997). Synaptic weights
change according to the following:

dw;(1)
dt

= = M (D[35()Spost (£) + Xpou (1) S () — (1)), 2y

where 7,4(t) is a variable learning rate and a,y is a parameter to
counterbalance the anti-Hebbian term (see also Discussion). The
resulting rule dictates that coincident events decrease inhibitory
synapses, whereas noncoincident ones increase synaptic weights.
Because of the unstable nature of this plasticity rule (see details
below), we implemented a time-varying learning rate, which evolves
according to the following:

Nau(t)
ar T + Mau(t), (22)

dnu(t) _

where 7,y is the decay time constant for the learning rate, and M,y (¢) is
an external signal to transiently activate plasticity. We speculate that
such signal could come from modulatory neurons, such as dopaminergic
or cholinergic and assumed that the external signal peaks at a time £, (be-
ginning of the simulation), so that

My(t) = niyd(t — t), (23)

where 717, is the maximum learning rate before decaying to zero, and t,
is the time when plasticity at these synapses is initiated. Parameters used
for plasticity models are detailed in Table 4.

Mean-field analysis of the plasticity rules. We were interested in
plasticity rules with stable dynamics. For a better intuition on fixed-
point dynamics and stability, we consider here a simplified dynam-
ics of a mean-field model for both the Hebbian (Vogels et al., 2011)
and the anti-Hebbian models. We define the postsynaptic firing rate
as Vpost (1) and the presynaptic firing rates as v(t). The traces of
both presynaptic afferent and postsynaptic neuron thus have an av-
erage of 7srppyj(t) and Tsrpplpost(t), respectively (Zenke et al.,
2015). Neglecting any correlation between presynaptic and postsy-
naptic spikes, the average weight change for Hebbian synapses is
given by the following:

<dWi(t)

d > = nH[zTSTDPVj(t)Vpost(t) - aHVj(t)]7 (24)

where (-) represents average over time. Intuitively, the postsynaptic fir-
ing rate, Vo (£), changes negatively with changes in inhibitory weights:
increased inhibition generates fewer postsynaptic spikes and vice versa
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Table 4. Simulation parameters for the plasticity rules

Parameter Symbol Value Figures
STDP time constant TsTpp 20 ms 57,9
Hebbian learning rate M4 103 57,9
Hebbian decay term ay 0.2 57,9
Firing rate setpoint Po 5Hz 57,9
Scaling time constant Tsealing 1000 ms 7
Scaling learning rate 75 1077 7
Scaling learning rate weight Wi 0.8 7
Scaling threshold parameter a 2 7
Anti-Hebbian initial learning rate N 10°° 9
Anti-Hebbian learning rate time constant TaH 250's 9
Anti-Hebbian increase term ay 0.165 9
Anti-Hebbian peak time to 0ms 9
Simulation time — 30 min 57,9

for decreased inhibition. This means that average firing rates are inver-
sely linked to average inhibitory weights, as follows:

dupost(t)> <dwj(t)> B a
ar x—\=q |~ 21,v;(t) Tstop {m

- Vposl(t):| .
(25)

The steady state is computed by considering the vanishing point of the
equation above (we assume that the presynaptic activity is nonzero); thus,

Qay

Vpost(t) = Py- (26)

2Tgrpp

This means that the postsynaptic activity vp,.(t) increases (via reduc-
tion in inhibitory efficacy) when below p, and decreases when above po,
creating a stable fixed point for the postsynaptic firing rate.

The opposite is true for the anti-Hebbian plasticity rule. Changes in
postsynaptic firing rate (with the same assumption as for the Hebbian
plasticity rule) follow the following:

daH

<dljp05t(t) - Vpnst(t) - pl‘ (27)

T > X Vpnst(t)

2Tsrpp

Because postsynaptic activity increases when it is above threshold p,
and decreases when it is below, this rule is unstable. The postsynaptic fir-
ing rate eventually explodes or vanishes. We chose the simplest way to
overcome these problems by setting a time-varying learning rate. Other
intricate mechanisms could be implemented, but this is not the scope of
our work.

Convergence of weights following the scaling plasticity rule. Our scal-
ing plasticity rule has two different mechanisms: one for LTD and one
for LTP. LTD is multiplicative, and LTP is additive (Eq. 19). The com-
bined effect ensures that all incoming weights collapse to the same value
(synaptic changes do not depend on presynaptic activity either). Here we
present a mathematical intuition to explain how synaptic weights can
converge to the same value. First, we rewrite the scaling plasticity rule
into two simplified terms. We consider constant postsynaptic firing rate
during LTD, ypest(t) = po — j/II;OTS? » With ypest (£)<po/as. Consequently,
the LTD part is described by the following:

dw; (1)

T NW;(E)V post (28)
with solution as follows:
wi(t) = w;(0) exp(—nsFhant)- (29)

Doing the same for LTP (ypost(t) = Jjou + Po» With ypost(£)>poats), we
arrive at the following:

J. Neurosci., December 9, 2020 - 40(50):9634-9649 - 9639

(1)
dt

— gl (30)
with solution as follows:
w;(t) = w;(0) + nswls)’/tgt. (31)

Defining ™7 as the ith interval in which LTD occurred and 'F as the
ith interval in which the synapse underwent LTP, we can combine
Equations 29 and 31 to rewrite the synaptic strength, wj(t), at time ¢ as
follows:

Trrp
w;(t) = w;(0) exp (— NIrn Y “’)
i=1

Tirp Tip
~LTP LTP =LTD LTD
+ T]swlsyposlz i exp| — MY post z I ) (32)
i=1 k=i+1

where Tirp and Tirp are the number of intervals with LTD and LTP,
respectively. We assume that LTP is always followed by LTD in
Equation 32 for simplicity, and thus Ty rp =T rp = 1. The first term on
the right-hand side of Equation 32 vanishes for long times, and the sec-
ond term dominates with the late terms (i >> 1, or, from Ti1p — k to
Ty 1p for small k), as follows:

Tirp Titp
lim w;(t) & nwiFpe > 4 exp (— N DY fﬁ”) ;o (33

e i=Tirp—r k=it1
which is finite given that the postsynaptic neuron’s firing rate fluctuates
around the target firing rate, p,, and does not depend on the initial
weight w;(0).

Correlation

We quantified the response of the postsynaptic neuron to natural inputs
with the Pearson correlation between postsynaptic firing rate and input
firing rate fluctuations, per signal group. We computed the firing rate of
a signal groups as the low-pass filter of the spike trains of its excitatory
afferents, as follows:

0 _ 1)+ S(0), (34)

dt ‘
i

where Z,(t) is the firing rate of the signal group u at time ¢, filtered with
a time constant 7. The postsynaptic activity is also computed through a
low-pass filter of its spike train, as follows:

dy(t)

5 = =Y (t) + Spoue (1), (35)

Ty

where Y(¢) is the activity of the postsynaptic neuron at time t filtered
with a time constant 7y. The correlation is then computed as follows:

c_ cov(Z,,Y) _ (2. — (36)

T e wne - o

where cov(z, y) is the covariance between variables z and y, o is the SD
of variable z, and (-) represents time average.

Subsequently, we computed a performance index AC as the differ-
ence between the correlation measure for preferred (1 = 9) and nonpre-
ferred (u = 1) input signals, as follows:

AC==(Co—C)). (37)

| =
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Table 5. Simulation parameters for the correlation measure

Parameter Symbol Value Figures

Presynaptic time constant 77 10 ms 4,6,8,10, 11
Postsynaptic time constant Ty 250 ms 4,6,8,10, 1
Simulation time — 30 min 4,6,8,10,11

Maximum positive performance index (AC=1) means that the pre-
ferred signal group has maximum correlation (Cy = 1) while the nonpre-
ferred signal group has maximum anticorrelation (C; = —1), indicating
that the postsynaptic neuron is responding solely to the preferred signal
group. Consequently, AC = —1 indicates that the postsynaptic neuron is
responding solely to the nonpreferred signal group. A flat response is
indicated by AC=0. Maximum AC (either positive or negative) is only
achievable if the preferred (signal group 9) and nonpreferred (signal
group 1) are strictly anticorrelated. This is unlikely given that all input sig-
nals are independent, and they will feature periods of coactivation. We
define as best performance when AC=0 for all inhibitory inputs active
(control), AC=1 (or AC> 0) for one inhibitory population inactive, and
AC = -1 (or AC<0) when the other inhibitory population is inactive.
Parameters used for computing correlations are detailed in Table 5.

The SD of the output firing rate (see Figs. 4C, 8C, 10C) was com-
puted with a 1 s bin. The coefficient of variation of the interspike interval
(CVigy, see Figs. 4C, 8C, 10C) was calculated as the SD of the interspike
interval (ISI) of the output spike train divided by the mean ISI.

Software and code availability

Simulations were run in Fortran, compiled with Intel Fortran Compiler
19.0 on an Intel-based Linux computer (Debian 9; i9-9900x processor;
32 GB memory). Codes are available online (https://github.com/ejagnes/
flexible_switch_2ISP/). Individual plots were generated with Gnuplot
(http://www.gnuplot.info/). Figures were generated with Inkscape
(https://inkscape.org/).

Results

To study the effect of interacting populations of feedforward in-
hibition, we investigated the response of a single postsynaptic
LIF neuron receiving tuned excitatory inputs and inhibition
from two distinct populations. Excitatory inputs were organized
into a single population, subdivided into 16 signal groups of 200
excitatory afferents. Inhibitory inputs initially formed a single
population, mirroring the excitatory subdivision, but with 50
afferents per group. Subsequently, we split the inhibitory inputs
into two populations with 25 afferents per signal group (Fig. 24;
see Materials and Methods), allowing us to obtain two differently
tuned populations (presumably types) of inhibition. Excitatory
and inhibitory afferents belonging to the same group shared tem-
poral fluctuations in firing rates, termed input patterns, even if
they belonged to different populations. In our simulations, input
patterns could either be natural or pulse. Natural inputs were
generated through an inhomogeneous Poisson process based on
a modified OU process (Fig. 2B,C), such that neurons of the
same signal group also had temporally correlated firing patterns
(Fig. 2C, top) (see Ujfalussy et al., 2018). The resulting long-tail
distribution of ISIs (Fig. 2C, bottom) was similar to experimen-
tally observed spike patterns in vivo (Reich et al., 2000; Hengen
et al.,, 2013). We used this type of input to train inhibitory synap-
ses via plasticity rules, and to quantify steady-state (average)
postsynaptic responses.

In the alternative pulse input regimen, we analyzed transient
responses with 100-ms-long pulses of varying amplitudes (Vogels et
al,, 2011). Pulses were delivered through a single signal group of exci-
tatory and inhibitory afferents, whereas all other groups remained at
baseline firing rate (see Materials and Methods). Responses were
quantified according to postsynaptic firing rates during the first
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(phasic) and last (tonic) 50 ms stimulation (Fig. 2D), averaged over
100 trials. Separating responses in phasic and tonic allowed us to dis-
criminate changes in output because of the input onset (Fig. 2D,
transient), when excitation outweighs inhibition (phasic period), and
slower integration of the pulse (Fig. 2D, persistent), when excitation
and inhibition are balanced (tonic period). The transient period is
best captured by limiting the phasic window to 50 ms, and we thus
set the tonic window to the same duration to keep both window
sizes symmetric.

Learning was implemented via three distinct inhibitory plas-
ticity rules (Fig. 3), in three different combinations. We first
implemented a Hebbian rule, which potentiated synaptic weights
for coincident presynaptic and postsynaptic spikes and depressed
them for sole presynaptic spikes (Vogels et al., 2011) (Fig. 3A), in
one of the two inhibitory populations, while the synapses of the
other inhibitory and the excitatory population remained fixed.
This learning rule has previously been shown to generate inhibi-
tory weight profiles that mirror the excitatory synaptic weight
profiles of a postsynaptic neuron, imposing a firing rate fixed
point (target; Fig. 3A) by balancing excitation and inhibition
(Vogels et al., 2011), supporting similar experimental findings in
mouse auditory cortex (D’amour and Froemke, 2015). Next, we
implemented the Hebbian plasticity rule in one of them and a scal-
ing plasticity rule (Fig. 3B) in the other population. The homeo-
static scaling rule upregulates or downregulates the entire synapse
population to reach a predetermined target firing rate. Notably,
this plasticity rule was purely local, taking only synaptic weights
and postsynaptic firing rate into account, similarly to the experi-
mentally observed scaling of inhibitory synapses (Stellwagen and
Malenka, 2006; Zhong et al., 2018). Finally, we also implemented
an experimentally inspired (Woodin et al, 2003; Ormond and
Woodin, 2009, 2011) anti-Hebbian rule in the second inhibitory
population (Fig. 3C). Unlike its Hebbian counterpart, the anti-
Hebbian rule leads to indefinite increases in the firing rate of the
postsynaptic neuron because correlated activity decreases synaptic
weights (only sole presynaptic spikes increase synaptic weights; see
Materials and Methods). The anti-Hebbian plasticity rule is thus
unstable (Fig. 3C, middle). We found that we could prevent catas-
trophe without incorporating additional, complex dynamics by
using a variable learning rate for the anti-Hebbian rule. For sim-
plicity, we decreased the learning rate exponentially over time
(Fig. 3C, right), but this could also be achieved through top-down
control (see Discussion).

Shaping and modulating a single inhibitory population

To begin, we constructed a standard cortical circuit motif with
one excitatory and one inhibitory population (Diesmann et al.,
1999; Vogels and Abbott, 2009; Vogels et al., 2011; Clopath et al.,
2016; Weber and Sprekeler, 2018) (Fig. 4A, top). We followed
previous work showing that the Hebbian plasticity rule (Fig.
3A) changes inhibitory synapses to provide precisely balanced
inputs (Vogels et al., 2011), such that both excitatory and inhibi-
tory weight profiles are shaped according to previous experimen-
tal observations (Froemke et al, 2007) (Fig. 4A, bottom).
Afferent synaptic weights of the excitatory population were set
according to a receptive field tuning curve (see Materials and
Methods) while the efficacy of inhibitory afferents was governed
by a synaptic plasticity rule for a period of 30 min. Learning was
established by a Hebbian plasticity rule that potentiated synapses
for coincident presynaptic and postsynaptic spikes and depressed
synapses for sole presynaptic spikes (Vogels et al., 2011) (Fig.
3A). The plasticity rule was set to allow average postsynaptic fir-
ing rates of ~5 Hz for natural inputs (Fig. 4B,C). We then tested
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Figure 2.  Model details. A, Schematic of the input organization. An external signal (representing, e.g., sound) was delivered through three input populations (one excitatory and two inhibi-
tory), with 16 input signals per population (representing, e.g., sound frequency). Each signal was simulated by 250 independent, but temporally correlated, spike trains (input afferents); 200
excitatory, and 50 inhibitory divided into two groups of 25. One postsynaptic neuron (black triangle) was the output of this system, simulated as a single-compartment LIF neuron. The firing
rate of each of the inhibitory populations was modulated by a contextual cue (green and purple boxes). Excitatory and inhibitory input spike trains were generated as point processes (for
details, see Materials and Methods). B, Natural input statistics. Raster plot (gray dots) of 800 neurons that take part in 4 signal groups (200 neurons per signal group), each with firing rate
changing according to a modified OU process (colored lines; see Materials and Methods). €, Temporal autocorrelation (top) and distribution of the ISIs (bottom) of the presynaptic inputs. The
autocorrelation of two groups are shown (green and pink), as well as the correlation between two different groups (black). Autocorrelation is computed as the Pearson coefficient with a delay
(x axis). D, Pulse input schematic. A steplike increase in the firing rate of a given input group lasting 100 ms (top) with varying firing rates (grayscale). The postsynaptic response can be sepa-
rated in phasic (first 50 ms), and tonic (last 50 ms), which reveals transient (middle) or persistent (bottom) types of response.
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Figure 3.  Synaptic plasticity models. A, Hebbian plasticity rule. Left, Spike-timing dependency. Aw indicates level of synaptic change, and At indicates interval between presynaptic and
postsynaptic spikes. Coincident presynaptic and postsynaptic spikes elicit positive changes, whereas presynaptic spikes alone elicit negative changes in synaptic strength (Vogels et al., 2011).
Right, Synaptic changes (Aw) as a function of postsynaptic firing rate. When the postsynaptic neuron’s firing rate is above the target rate, inhibitory synapses increase in weight and, as a con-
sequence, the postsynaptic neuron'’s firing rate decreases. The opposite happens for when the postsynaptic neuron’s firing rate is lower than the target rate (Vogels et al., 2011) (see Materials
and Methods). B, Synaptic scaling rule. Changes in synaptic strength (Aw) as a function of the postsynaptic neuron’s firing rate. When the postsynaptic neuron’s firing rate is lower than a
lower bound threshold, inhibitory synapses decrease, proportionally to their current strength. When the postsynaptic neuron’s firing rate is higher than an upper bound threshold, inhibitory
synapses increase. Because of the lower and upper bounds, there is a region with no change around the target rate. ¢, Anti-Hebbian plasticity rule. Left, Spike-timing dependency. Presynaptic
spikes elicit positive changes, whereas coincident presynaptic and postsynaptic spikes elicit negative changes in synaptic weights. Middle, Changes in synaptic efficacy (Aw) as a function of the
postsynaptic firing rate. The target rate of anti-Hebbian plasticity rule is unstable. Right, Evolution of the learning rate of the anti-Hebbian plasticity model. Because of its unstable nature, we

set the leaming rate to decay exponentially over time.

the effect of changing the gain of all inhibitory afferents, while
keeping their synaptic strengths fixed, by modulating their firing
rates, from 50% to 150% of control rates. This change of input
balance translated into changes in output rates (Fig. 4C, bottom)
and spike patterns (Fig. 4B, middle and right). When inhibition
was equal or larger than excitation, the output was largely uncor-
related to any given input signal (Fig. 4D, top). When inhibitory
firing rates fell below 90% of the control condition, the output
first began to correlate with the preferred input signal. When in-
hibition became even weaker, the correlations increased, and
even nonpreferred signals were articulated in the postsynaptic
firing patterns (Fig. 4D, bottom).

Transient presynaptic activity pulses caused strong phasic
responses in the balance state when they were delivered through
the afferents of the preferred inputs (Fig. 4E, top row). Stimuli
from nonpreferred afferents were largely ignored. This discrimina-
bility between transients of low- or high-amplitude pulses
decreased when inhibition was downregulated (Fig. 4E, middle
row) such that pulse stimuli from all signal groups caused a
response. Increased inhibition, on the other hand, completely

abolished transient responses to nonpreferred afferents (Fig. 4E,
bottom row). In all 3 cases (balanced control, weak and strong in-
hibition), the postsynaptic neuron elicited most of its spikes within
the phasic period of the total 100 ms input step (Fig. 4E). This
indicates that strong postsynaptic responses are mostly driven by
the onset of the presynaptic stimulation rather than the stimulus
being integrated slowly over time, a consequence of the precise
balance of excitatory and inhibitory inputs (Vogels et al., 2011).

Thus, a single inhibitory population, even with tuned weights,
could not affect the postsynaptic receptive field via only the modula-
tion of the inhibitory firing rate. To test whether an additional in-
hibitory population would allow for more sophisticated control of
postsynaptic activity, we constructed a model with different plastic-
ity rules, which were applied to two different populations of inhibi-
tory inputs.

Plasticity shapes inhibitory weight profiles and receptive
fields

To study how plasticity can shape the emergence of distinct
synaptic weight profiles, we incorporated inhibitory synaptic
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Figure 4.  Postsynaptic response for a model with a single inhibitory population. A, Schematic of the circuit with a single inhibitory population (top). Presynaptic spikes were generated as
point processes (pp), for both excitatory (red; 16 signals) and inhibitory (blue; 16 signals) inputs, and fed into a single-compartment LIF neuron. Schematic of the synaptic weight profiles (bot-
tom). Average weight (y axis) for different input signals (x axis); preferred signal is pathway no. 9 (gray dashed line). B, Firing rate of the preferred, and two nonpreferred inputs and mean of
all inputs (top row), excitatory and inhibitory input currents (middle row), and membrane potentials (bottom row), for control (left), decreased (middle), and increased (right) inhibition.
Decreased (increased) inhibition lowered (raised) inhibitory firing rates by 10%, respectively. C, CVis, and mean and SD of the postsynaptic firing rate in response to natural input for the 3
explored cases (top), and as a function of the inhibitory firing rate (bottom). Arrowheads indicate the analyzed cases. D, Pearson correlation between postsynaptic firing rate and excitatory
input firing rates for different input signals for the three conditions in B (top). Correlation between output activity and preferred (continuous line) or nonpreferred (dashed line) inputs as a func-
tion of the inhibitory firing rate (bottom). E, Response to a pulse input in the phasic (left; first 50 ms) and tonic (right; last 50 ms) periods. Firing rate computed as the average number of spikes
(for 100 trials) normalized by the bin size (50 ms). Each line corresponds to a different input strength: from light (low-amplitude pulse) to dark (high-amplitude pulse) colors. Insets, Tonic

response for control and decreased inhibitory firing rates.

plasticity mechanisms into a model with two inhibitory popula-
tions. We started with a symmetric Hebbian plasticity rule in one
of the two inhibitory populations: coincident presynaptic and
postsynaptic spikes potentiated synapses, whereas sole presynap-
tic spikes depressed synapses (Vogels et al., 2011) (Fig. 3A). The
synapses of the excitatory and the other inhibitory population
remained fixed (Fig. 5). Simulations began with tuned excitatory
synapses and flat inhibitory weight profiles in both inhibitory
populations (Fig. 5A).

After 30 min of stimulation with natural inputs (compare Fig.
2B), inhibitory weights of the plastic population stabilized (Fig.
5D-G). Whether the target firing rate (Fig. 5B,C) was reached
depended on the synaptic strength of the other, static population
of inhibitory synapses. If the static weights were weak, the plastic
synapses increased their strength until the target firing rate was
reached (Fig. 5C). If the static population provided strong inhibi-
tion (and thus kept postsynaptic firing below the target rate),
weights from the plastic population would eventually vanish,
before the target firing rate could be reached (Fig. 5C,G).
Consequently, the shape of the static population determined the
shape of the plastic population (Fig. 5D,E). As expected, the
input/output correlation of the postsynaptic responses followed

the effective synaptic weight profile (Fig. 6A, compare Fig. 5E),
with distinct input/output correlations for turning either of the
populations off (Fig. 6B). The Hebbian plasticity rule, because of
the strengthening of synapses for coincident presynaptic and
postsynaptic spikes, thus complemented additional inhibitory
synaptic connectivity in establishing a state of detailed balance of
excitatory and inhibitory inputs.

Hebbian and scaling plasticity rules

Next, we introduced plasticity to the second population of inhib-
itory afferents. We tested two different rules, beginning with a
homeostatic plasticity rule, which (multiplicatively) scaled synap-
ses down and additively potentiated synapses so that a fixed
point for the postsynaptic firing rates was reached (Fig. 3B; see
Materials and Methods). With the homeostatic rule coactive,
the Hebbian synapses, connections changing according to the
Hebbian plasticity rule, developed a co-tuned profile from ini-
tially random weights (Fig. 7A, top; Fig. 7C, left), while the syn-
apses following the scaling rule collapsed to a single value (Fig.
7A, bottom; Fig. 7C, right; for mathematical analysis, see
Materials and Methods). Consequently, the postsynaptic neuron
received precisely balanced inputs (Fig. 7B). The two plasticity
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Inhibitory plasticity acting on one inhibitory population compensates global inhibition from a second inhibitory population. A, Schematic of the synaptic weight profile for excita-

tory synapses (red) and different initial conditions for inhibitory synapses (pink to purple color code). Inhibitory Population 1 has its inhibitory synapses changing according to a plasticity mech-
anism, whereas Population 2 remains fixed. B, Time course of the postsynaptic firing rate for different initial conditions (colors as in A). Inhibitory plasticity on Population 1 is set to achieve a
balanced state with target of 5 Hz (arrowhead). (, Stabilized postsynaptic firing rate as a function of the initial inhibitory synaptic weight. D, Individual synaptic weight profiles for excitatory
(red), inhibitory Population 1 (blue, after synaptic stabilization), and inhibitory Population 2 (colors as in A). E, Total synaptic weight per signal (excitatory — inhibitory) for different initial con-
ditions after stabilization of synapses from Population 1. F, Example of synaptic dynamics of inhibitory Population 1 for a given initial condition. Colors represent different signal groups. G,
Final weights as a function of initial inhibitory weights. Plotted are excitatory (red), plastic inhibitory (blue), and sum of total inhibitory synapses (gray).
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rules cooperate to impose an average postsynaptic activity, and
thus naturally work in harmony. Importantly, both plasticity
rules are stable regarding their interaction with postsynaptic dy-
namics (see Materials and Methods), and as such, not sensitive
to initial conditions, and relatively robust to parameter choices,
as long as the postsynaptic activity fixed point (see Materials and
Methods) imposed by both plasticity rules match.

We then studied the effects of differentially modulating the
activity of the two inhibitory populations after their tuning
curves had been established by the plasticity rules described
above. First, we focused on the interaction of the connectivity
created by Hebbian and the scaling plasticity rules (Fig. 84, top;
compare Fig. 7), that is, a co-tuned population and a flat popula-
tion (Fig. 84, bottom). We compared the output of the neuron
in three scenarios: with both inhibitory populations active (con-
trol); with the co-tuned population inactive; and with the flat
population inactive (Fig. 8B-E).

With both populations active, the input/output correlation
was indistinguishable from a model with one, homogeneous in-
hibitory population (Fig. 8D, top; compare Fig. 4D, top), because
the two populations (co-tuned and flat) created the same effect
as the single (co-tuned) population. Deactivating either popula-
tion had pronounced effects on postsynaptic responses. We
increased the firing rate of the active inhibitory population to
maintain the same average output firing rate of 5 Hz in the modu-
lated conditions (Fig. 8C, top; where the green and purple lines
cross the black horizontal line in Fig. 8C, bottom). Fluctuations in

Postsynaptic response after stabilization of synapses from one population. 4, Pearson correlation between post-
synaptic firing rate and excitatory input firing rates with both inhibitory populations active. Color code as in Figure 5A. B,
Pearson correlation between postsynaptic firing rate and excitatory input firing rates for different signals with both inhibitory
populations active, Population 1 inactive, and Population 2 inactive. Three examples are shown.

chance of action potential generation
when preferred signal populations were
active (Fig. 8B, middle). The compensa-
tory increase in the activity of the flat pop-
ulation further quenched nonpreferred
excitatory signals, leading to anticorrelated
responses for nonpreferred input signals
(Fig. 8D, purple), reflecting the lack of
postsynaptic firing during periods in which nonpreferred signals
were active (Fig. 8B, middle). The opposite effect could be
observed when the flat population was deactivated. In this case,
the lack of inhibition for nonpreferred signals gave rise to input/
output correlations for nonpreferred signals, while preferred sig-
nals saw no response (Fig. 8B, right; Fig. 8D, green).

Transient responses, when compared with the unmodulated
control case (Fig. 8E, top), were substantially increased for pre-
ferred inputs when the co-tuned population was deactivated, and
the response to nonpreferred signals was completely diminished
(Fig. 8E, middle). When the flat population was deactivated, the
postsynaptic neuron responded strongly to the nonpreferred
inputs, but not to preferred inputs (Fig. 8E, bottom). Interestingly,
modulating either of the inhibitory populations had similar effects
on the postsynaptic response both in phasic and tonic periods, in
contrast with the unmodulated control case, in which only phasic
responses were postsynaptically elicited (Fig. 8E). Again, this
reflects the state of balance between excitation and inhibition in
the unmodulated control case, which only reveals transient input
dynamics.

Hebbian and anti-Hebbian plasticity rules

Instead of a purely homeostatic scaling rule, we also tried an
experimentally inspired (Woodin et al, 2003; Ormond and
Woodin, 2009, 2011) anti-Hebbian rule in the second inhibitory
population (Fig. 3C). The anti-Hebbian rule, unlike the Hebbian,
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initially random weights evolved into co-
tuned and counter-tuned synaptic weight
profiles (Fig. 9A). As learning slowed
down because of the decreasing learning
rate, the anti-Hebbian synapses (connec-
tions changing according to the anti-
Hebbian plasticity rule) stabilized, and
Hebbian synapses ceased to change once the target firing rate
was reached (Fig. 9B,C). The anti-Hebbian plasticity rule,
differently from the Hebbian one, is sensitive to initial condi-
tions and choice of parameters because of its intrinsic insta-
bility (see Materials and Methods). For example, different
initialization of inhibitory weights requires distinct decay
times for the learning rate (data not shown). Additional
complexity in the formulation of the plasticity rule may solve
these instability problems (Discussion).

Postsynaptic dynamics with two inhibitory populations with
tuning that resulted from the combination of the Hebbian and the
anti-Hebbian plasticity rules (Fig. 10A), that is, co-tuned and
counter-tuned populations, were similar to that with co-tuned and
flat inhibitory populations. In the unmodulated balanced state,
output behavior is near identical to previous results (Fig. 10B-D,
control). The main distinction between the models with counter-
tuned or flat inhibitory profiles is how they complemented the co-
tuned inhibitory currents: the flat inhibition produced currents that
tracked the co-tuned inhibitory currents, whereas counter-tuned in-
hibition produced inhibitory currents that were largely uncorrelated
to the co-tuned inhibitory currents (Fig. 10B, left; compare with Fig.
8B, left).

When either the co- or the counter-tuned inhibitory popula-
tions were inactivated, fluctuations in both firing rate and mem-
brane potential increased considerably (Fig. 10B, middle and
right). As before (Fig. 8), we adjusted the firing rate of the active
inhibitory population so that the average output firing rate was
5Hz in all conditions (Fig. 10C, top; crossing between green/pur-
ple line and the black horizontal line in Fig. 10C, bottom).
Deactivation of the co-tuned population resulted in positive cor-
relation between postsynaptic activity and preferred signals, and
negative correlation between output and nonpreferred signals
(Fig. 10D, purple). For transient stimulation, there was no dis-
cernible difference to the model with flat inhibition in the control
state (Fig. 10E, top).

Turning off counter-tuned inhibition (Fig. 10B-E) also had
similar results in the postsynaptic response as turning off the flat
inhibition (compare Fig. 8B-E); that is, nonpreferred input pro-
duced output activity with positive correlation (Fig. 10D, green)
and strong postsynaptic activity for transient activation (Fig. 10E,
bottom). Unlike before, turning off co-tuned inhibition produced
elevated firing rate responses also for transient stimuli from signals
directly neighboring the preferred input (Fig. 10E, middle row,
compare with Fig. 8E, middle).

Temporal evolution of inhibitory synaptic weights when one inhibitory population follows a Hebbian plasticity rule (top), and
the other population follows a synaptic scaling plasticity rule (bottom). B, Initial (top) and final (bottom) weight profiles
from A, with excitatory weights for reference. C, Individual synaptic weights before and after learning for synapses following
the Hebbian plasticity rule (top) and synapses following the scaling plasticity rule (bottom).

Quantitative differences of inhibitory profiles

For a better understanding of the differences between the three
conditions studied here (one inhibitory population, co-tuned &
flat, and co- & counter-tuned), we compared different modulation
schemes quantitatively. We introduced the parameter
AC = 0.5(Cprer — Cron—pref)> that is, 50% of the difference in
input/output correlation between preferred, Cf and nonpre-
ferred, Cpon-pre, Signals (see Materials and Methods). Ideally, the
sensory system should present three distinct responses for the
three different modulatory conditions, which are captured by dif-
ferent values of AC. With unmodulated input (control), the output
neuron should present uncorrelated activity with all input groups,
and thus AC ~ 0. Modulated inputs (by decreasing the activity of
either of the inhibitory populations) should correlate preferred
(for one inhibitory inactive) and nonpreferred (for the other popu-
lation inactive) to the output activity. This results in AC> 0 for
correlated output/preferred signals, and AC < 0 for correlated out-
put/nonpreferred signals.

In the control condition, we observed similar AC ~ 0 in all
models (Fig. 11A, gray), reflecting low levels of correlation
between output and input signals (Fig. 11B, top). With downre-
gulated inhibition, AC increased slightly in the model with one
homogeneous inhibitory population. AC increased more consid-
erably in a two-population model in which the co-tuned popula-
tion was inactive (Fig. 11A, purple), confirming an increased
correlation between preferred signal and output (Fig. 11B, mid-
dle). When the flat or the counter-tuned inhibitory populations
were inactivated, we observed postsynaptic responses even to
nonpreferred input signals (Fig. 11B, bottom), which led to nega-
tive AC (Fig. 11A4, green). Inactivating the flat inhibitory popula-
tion resulted in a slightly better discrimination: larger positive
AC (Fig. 11A, purple) and larger negative AC (Fig. 114, green).

To compare pulse responses of the three models, we quanti-
fied which input signal groups elicited a substantial response to a
pulse signal. We defined the number of signals recovered (Fig.
11C) as the number of responses with >50% of the maximum
postsynaptic firing rate (Fig. 11D). The single inhibitory popula-
tion model could only produce responses to preferred input sig-
nals, while co-modulation of two inhibitory populations could
promote responses to nonpreferred input signals, as well.
Counter-tuned population achieved better (i.e., broader) postsy-
naptic control than flat inhibition (Fig. 11C).

The addition of a second population of inhibitory inputs thus
gives rise to a more flexible response to varying stimuli. In sum-
mary, our results shed light on the role of the many types of
interneurons in cortical areas (Markram et al., 2004; Jiang et al.,
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Figure 8.  Postsynaptic response for the model with co-tuned and flat inhibitory populations. A, Schematic of the circuit with two inhibitory populations (top): /;, co-tuned population; /5, flat
population. Presynaptic spikes were generated as point processes (pp) and fed into an LIF. Schematic of the synaptic weight profile (bottom). Average weight (y axis) for different input signals
(x axis); preferred signal is pathway no. 9 (gray dashed line). B, Firing rate of the preferred and two nonpreferred inputs and mean of all inputs (top row), total excitatory current and inhibitory
currents of both populations (middle row), and membrane potential (bottom row), for control (left), co-tuned (middle), and flat (right) population inactive. €, (Vi and postsynaptic firing rate
(mean and SD) in response to natural input for the 3 cases (top). Output firing rate as a function of the firing rate of the (compensatory) active inhibitory population (bottom). Arrowheads indi-
cate the analyzed cases where output rate is equal to 5 Hz (i.e., where the green and purple lines cross the black line). D, Pearson correlation between postsynaptic firing rate and excitatory
input firing rates for different input signals for the three conditions in B. Correlation between output activity and preferred (continuous line) or nonpreferred (dashed line) as a function of the
inhibitory firing rate of each inhibitory population (bottom). E, Response to a pulse input in the phasic (left; first 50 ms) and tonic (right; last 50 ms) periods. Firing rate computed as the aver-
age number of spikes (for 100 trials) normalized by bin size (50 ms). Each line corresponds to a different input strength: from light (low-amplitude pulse) to dark (high-amplitude pulse) colors.
Insets, Tonic response for control firing rates.

2015; Gouwens et al., 2019), and show the benefits of combining
different biologically inspired plasticity rules in neuronal
networks.

Discussion

We investigated how several distinctly tuned inhibitory connec-
tivity profiles emerge through biologically reasonable plasticity
rules and how they interact with a tuned excitatory connectivity
profile in a receptive field-like paradigm. We found that the two
aspects of selective attention (enhancing response to targets and
suppressing the response to distractors) were implemented in
our model by two types of disinhibition. Our results indicate a
simple neuronal mechanism to help disentangle (or bind) paral-
lel sensory input streams and may represent a step toward under-
standing the neural basis of intricate behaviors, such as the
“cocktail party effect,” focusing on a single voice in a crowded,
cacophonous place.

Modulation of receptive field response
Our findings fit well with recent experimental results showing
that pyramidal neurons in sensory areas of the cortex change

their response to external stimuli depending on the context of
the signal or attentional state (Bathellier et al.,, 2012; Ruff and
Cohen, 2014, 2019; Benjamin et al., 2019; McClure and Polack,
2019). For example, principal neurons in macaque V4 respond to
monochrome images of varying hues with variable response am-
plitude that is consistent with specific color tuning. However, the
preferred color response of the neurons changes when naturally
colored images are shown (Benjamin et al., 2019). In macaque V1,
principal neurons can change the preferred orientation of visual
stimuli when a pure tone is played alongside the visual stim-
ulation (McClure and Polack, 2019). In the framework of our
model, such a change in preference could be explained with
differential input to the two inhibitory populations or by
changes in their gains through contextual neuromodulation.
Similarly, up to 20% of neurons in all areas of the mouse vis-
ual system (Billeh et al., 2019) were recently shown to change
their preferred orientation according to the (spatial and tem-
poral) frequency of the drifting gratings used in the experi-
ments. In some cases, neuronal responses were shown to
shift from their preferred to their nonpreferred input signals
(a “flip” in response), similar to what we see in our simula-
tions. These effects could also be explained by temporal



9646 - J. Neurosci., December 9, 2020 - 40(50):9634-9649

Agnesetal. o Flexible Switch in Sensory Circuits

fluctuations in the interaction of the two in- A B (o .
hibitory populations, and the concurrent 24 - Hebbian 34  before 2.4 - Hebbian . pefore
changes in transient responses of our 16 ! 2 16 - om cafler
model. 05 - / 1 —A 058 - i

% 0 - S | 0 ‘r——r—r—r—r—r 0 *———#“—4"-{
Neuron types 2 009 - anti-Hebbian 3 - after :F 24 - anti-Hebbian .o re
The architecture of our model maps easily 06 | e — 2 T -after
onto the neocortical microcircuit (Markram 03 - 1 Zr > 08 -
et al., 2004; Jiang et al., 2015). Co-tuned in- 0 ‘ ‘ ‘ 0 04— > e -
hibition, for example, may originate from 0 10 20 30 14 7101316 0 100 200 300 400
PV" interneurons. As the main source of time (min) signal index neuron
e e el . + .
inhibition to pyramidal cells, PV inter- Figure 9.  Simultaneous leaming of two inhibitory profiles via Hebbian and anti-Hebbian plasticity rules. A, Temporal evo-

neurons target postsynaptic neurons with
similar preferred orientation (Wilson et al,
2012), and activation of these neurons leads
to broadened selectivity (Wilson et al., 2012;
but see Lee et al, 2012). Flat or counter-
tuned inhibition may arrive from SOM™
interneurons with their less selective con-
nectivity patterns (Wilson et al., 2012). This interpretation is also in
line with recent evidence suggesting that top-down visual attention
relies on local inhibitory circuitry in primary visual cortex (Zhou et
al,, 2014). In this scheme, PV" and SOM " neurons inhibit pyrami-
dal cells, whereas vasoactive intestinal peptide-positive neurons
suppress other inhibitory interneurons, acting as a source of disinhi-
bition. Direct manipulation of SOM™, PV, and vasoactive intesti-
nal peptide-positive neurons confirms these respective roles in
inhibition and disinhibition in both visual (Fu et al., 2014) and audi-
tory cortices (Pi et al., 2013; Kuchibhotla et al., 2017). Additionally,
Zhou et al. (2014) reported that vasoactive intestinal peptide-posi-
tive neurons received excitatory top-down inputs from the rodent
cingulate cortex, leading to a narrow selectivity profile of pyramidal
cells when cingulate inputs are active and broad tuning when cingu-
late cortex is silent. This is analogous to deactivating the co-tuned
population in our simulations. Finally, blocking cortical inhibition
reduces the stimulus selectivity of cortical neurons (Sillito, 1979;
Sillito et al., 1980; but see Nelson et al., 1994).

Balance between excitatory and inhibitory inputs

In our model, we aimed for precise balance of excitation and in-
hibition, by way of a Hebbian-like inhibitory plasticity rule
(Vogels et al., 2011), and accordant with evidence of excitatory
and inhibitory co-tuning in cat visual cortex (Anderson et al.,
2000), rodent auditory cortex (Wehr and Zador, 2003; Froemke
et al., 2007; Zhou et al.,, 2014) and rodent hippocampus (Bhatia
et al,, 2019), and temporal correlations in neighboring excitatory
and inhibitory synapses (Okun and Lampl, 2008). Consistent
with earlier work, we could modulate the efficacy of a single in-
hibitory population to enhance the output correlation with the
preferred input (Vogels and Abbott, 2009; Kremkow et al,
2010), but the flexibility of the control mechanism was very lim-
ited and nonpreferred signals never evoked faithful responses.

Inhibitory synaptic plasticity

To explore how different inhibitory synaptic populations could
form and interact, we split the inhibitory afferents into two pop-
ulations and implemented a Hebbian-like inhibitory plasticity
rule (Vogels et al,, 2011; D’amour and Froembke, 2015) in one
population that was coactive with either a homeostatic scaling
(Stellwagen and Malenka, 2006; Zhong et al., 2018) or an anti-
Hebbian (Woodin et al, 2003; Ormond and Woodin, 2009,
2011) plasticity rule. Woodin et al. (2003) recorded postsynaptic
currents with the postsynaptic neuron clamped at a voltage

lution of inhibitory synaptic weights when one inhibitory population follows a Hebbian plasticity rule (top), and the other
population follows an anti-Hebbian plasticity rule (bottom). B, Initial (top) and final (bottom) weight profiles from A, with
excitatory weights for reference. €, Individual synaptic weights before and after leaming for synapses following the Hebbian
plasticity rule (top) and synapses following the anti-Hebbian plasticity rule (bottom).

below the reversal potential of chloride, effectively making
a GABAergic synapse excitatory. Plasticity at those synapses
changed the reversal potential of chloride toward a more depo-
larized value, making them stronger in those artificial conditions.
However, once the voltage clamp is released, the inhibitory cur-
rents would be weaker than before learning because of the more
depolarized chloride reversal potential that is closer to the neu-
ron’s resting membrane potential and thus exerts a smaller driv-
ing force (Hennequin et al.,, 2017, their Fig. 1C). These results
suggest a plasticity rule that is Hebbian if the postsynaptic
neuron’s voltage is artificially kept below the reversal poten-
tial of chloride, but anti-Hebbian in normal conditions. The
scaling plasticity rule acted locally but squeezed the distribu-
tion of all synaptic strengths to a narrow regimen, providing
a parsimonious explanation for the untuned, blanket inhibi-
tion often encountered in experiments (Karnani et al., 2014),
and providing easy means for modulating postsynaptic
responses independently of the presynaptically tuned weight
profiles. The anti-Hebbian rule was naturally unstable; that
is, it could lead to infinite strengthening of weights and thus
silent networks. Our implementation reinforces this out-
come because inhibitory inputs are always active.

It is unclear how biological circuits would avoid such catas-
trophe, but in our model we could balance the effect of the two
opposing rules and remain at plausible levels of postsynaptic ac-
tivity by including a modulatory term that controlled the learn-
ing rate of the anti-Hebbian plasticity rule. While this mimics
some of the observed modulatory control of plasticity through
other neuronal types (Abraham and Bear, 1996; Froemke et al.,
2007; Abs et al., 2018; Aljadeff et al., 2019), the reality is likely
more complex, and possibly relies on finely orchestrated interac-
tion of several different plasticity rules (Zenke et al, 2015;
Hennequin et al., 2017), and their learning rates. Additionally, if
the inhibitory neurons are driven laterally by excitatory neurons
that lack excitatory recurrence, a form of anti-Hebbian plasticity
is also stable (Hendin et al., 1997). No matter what form the ulti-
mate mechanism may take, it is unlikely that it will affect the
generality of our results.

Parallels to artificial neural networks

Interestingly, artificial networks have been shown to develop
similar receptive field profiles to the ones explored here when
they are trained to solve multiple tasks (Yang et al., 2019). Yang
et al. (2019) have shown that clusters of neurons can acquire co-
tuned or flat connectivity, which are controlled by context-
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encoding signals. These results hint at the possibility that biologi-
cal and artificial systems may use similar strategies to solve con-
text-dependent filtering tasks.

Additional biological complexity

To explore the interaction between two distinct inhibitory plas-
ticity rules without confounds, we made the simplifying assump-
tion that excitatory synapses would remain fixed (but see Litwin-
Kumar and Doiron, 2014; Zenke et al, 2015; Clopath et al,
2016). Obviously, inhibitory plasticity rules do interact with mul-
tiple additional rules and constraints (e.g., excitatory or modula-
tory synaptic plasticity). Similarly, our model only considered a
single postsynaptic neuron, with no feedback or lateral connec-
tivity, which is thought to play an important role in cortical fea-
ture selectivity (Ahmed et al., 1994), and was theoretically shown
to provide the means for multiplicative and additive modulation
of receptive fields, and surround suppression (Litwin-Kumar et
al,, 2016). Other common features of sensory areas are the adap-
tation of postsynaptic responses to repetitive stimuli presentation
(Kohn and Movshon, 2004) and the quick reshape of postsynap-
tic responses toward the attended stimuli (Fritz et al., 2003).
These features may be explored in our model by including, for
example, short-term plasticity (Tsodyks and Markram, 1997) in
both inhibitory and excitatory synapses. Additional types of ac-
tivity modulation may also reveal new features of networks with
multiple types of inhibition and synaptic plasticity, such as
induction of phase locking after inhibitory plasticity, as seen in
mouse barrel cortex (Lourenco et al., 2020). Finally, other possi-
ble functions beyond simple input filtering, such as multiplexing
or amplifying temporally varying signal streams (Naud and
Sprekeler, 2018; Hertdg and Sprekeler, 2019), one-shot learning
(Nicola and Clopath, 2019) must be considered. Our work only
lays the groundwork for studies of multiple distinct plasticity
rules in larger networks, with more complex excitatory-inhibi-
tory interaction (Holmgren and Zilberter, 2001; Haas et al., 2006;
Hennequin et al., 2017; Lourenco et al., 2020).

In conclusion, we predict that various GABAergic interneur-
ons in the same cortical region must obey a range of different
inhibitory synaptic plasticity rules, to restore or alter neuronal
stimulus selectivity as appropriate and necessary. Such evidence
would inform the theoretical framework presented here, and in
turn inspire future computational modeling.
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