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Abstract: Fiber structures with nanoscale diameters offer many fascinating features, such as excellent
mechanical properties and high specific surface areas, making them attractive for many applications.
Among a variety of technologies for preparing nanofibers, electrospinning is rapidly evolving into a
simple process, which is capable of forming diverse morphologies due to its flexibility, functionality,
and simplicity. In such review, more emphasis is put on the construction of polymer nanofiber
structures and their potential applications. Other issues of electrospinning device, mechanism, and
prospects, are also discussed. Specifically, by carefully regulating the operating condition, modifying
needle device, optimizing properties of the polymer solutions, some unique structures of core–shell,
side-by-side, multilayer, hollow interior, and high porosity can be obtained. Taken together, these
well-organized polymer nanofibers can be of great interest in biomedicine, nutrition, bioengineering,
pharmaceutics, and healthcare applications.
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1. Introduction

Micro/nanofiber mats have been a subject of intensive research due to their high specific surface
area and interconnected porous structure [1]. These unique features, in addition to the intrinsic
functionalities of polymers, impart nanofiber mats with many desirable properties for interesting
applications in a multitude of fields [2–4]. Several methods have already been applied for generating
micro/nanofiber mats, such as phase separation [5,6], template synthesis [7], melt-blown [8,9],
self-assembly [10,11], three-dimensional (3D) printing [12,13], and electrospinning [14–16]. The
advantages and disadvantages of each of these techniques are summarized in Table 1. More
importantly, electrospinning allows the fiber diameter to be adjusted from nanometers to microns [17].
Various macromolecules have been successfully electrospun into the ultrafine fibers. In terms of
process flexibility, electrospinning is capable of producing continuous nanofibers from a wide variety
of materials.

The concept of electrospinning was first proposed by Formhals when he obtained a patent in 1934
to draw polymers into fine filaments with the application of an electrical charge [18]. Up until the
mid-1990s and with increasing interest in the field of nanoscience and nanotechnology, several research
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groups started to fabricate electrospun fibers from a broad range of polymers [19,20]. The shape and
diameter of the obtained polymer structure are not only affected by the molecular weight, viscosity,
electrical conductivity, surface tension [21], but also the voltage applied during electrospinning, the
distance from the tip to the collector [22], and the feeding speed [23]. The ideal state of the electrospun
polymer was obtained by regulating these parameters.

Table 1. Some fabrication methods for nanofiber mats.

Method Advantages Disadvantages References

Phase separation High porosity Thin fibers and small pores [5,6]
Template synthesis Designed fiber morphology Low porosity [24]

Melt-blown High efficiency, commercial Instability, fiber diameter
exceeding 1–2 µm [8,9]

Self-assembly A simple route to synthesize
multifunctional nanofibers Introduction of the organic solvent [10,11]

3D printing Controlled pore size Low porosity [25]

Electrospinning Easy process and controlled fiber
morphology Small pores [14–16]

With the ability to fabricate nanostructures from a wide variety of raw materials, including
natural and synthetic polymer composites (both organic and inorganic) [26], electrospinning is
attracting more and more scientists for the highly-efficient preparation of various nanostructures.
Electrospun nanofibers have broad application prospects in various fields, such as tissue templates,
drug delivery, pharmaceutical ingredients, medical prostheses, artificial organs, wound dressings,
bone tissue engineering, filtration formation, and sensing [27]. Specifically, electrospun collagen fibers
can improve the interaction between cells and scaffolds, ultimately resulting in enhanced attachment,
proliferation, and differentiation of cells [28]. Unfortunately, even though with the widespread use,
the understanding of the electrospinning is still minimal. In the review, we first introduced the
basic knowledge of electrostatic spinning, including device, composition, mechanism, and methods
comprehensively. Then, considering the relationship among structure, property, and application,
some unique structures and morphologies of electrospun fibers reported in current studies have been
summarized, as shown in Figure 1.
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2. Fabrication of Electrospun Polymer Nanofibers

2.1. The Basic Setup and Composition for Electrospinning

The primary electrospinning apparatus consists of four major components: a high-voltage source
which creates an electrical field between a positively-charged syringe needle and a grounded collector, a
metallic needle where the charged solution is forced to stretch under the electrostatic forces, a syringe
pump, and a grounded target to deposit the resultant fibers [29]. Electrical wires connect the high power
supply to the metallic needle, and there maintains a relatively short distance between the syringe tube
and target. Figure 2A shows a schematic illustration of the typical electrospinning set-up. As the solvent
evaporates while electrospinning, the jet will be elongated by electrostatic repulsion. This is followed by
the thinning process which leads to the formation of a uniform fiber within micro- to nanoscale, which
can be collected in various orientations to create some specialized structures with different composition
and mechanical properties. To date, various targets have been employed to collect fibers in the course of
electrospinning, mainly including aluminum foil [30,31], copper plates [32], and rotating drums [33,34].
With the application of this relatively straightforward technique, more than 40 different types of natural
and synthetic organic polymers have already been successfully electrospun to fibers with diameters
ranging from tens of nanometers to a few micrometers [35–37].
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Figure 2. The primary electrospinning apparatus and mechanism. (A) Schematic illustration of
the typical electrospinning set-up; reproduced from [38] with permission from the Royal Society of
Chemistry, Copyright 2014; (B) A diagram that shows the prototypical instantaneous position of the
path of an electrospinning jet that contained three successive electrical bending instabilities; reproduced
from [39] with permission from Elsevier Ltd, Copyright 2008.

The electrospun micro/nanofibers produced nowadays are not only based on polymers but also
on ceramics, metals, metal oxides, organic, and inorganic composite systems. These electrospun
membranes composed of copolymers, blends, or organic fillers always exhibit enhanced mechanical
behavior, barrier properties, and thermal stability [40–42]. A comprehensive summary of electrospun
polymers, the solvents used, the polymer concentrations in different solvents, and the prospective
applications of corresponding nanofibers are listed in Table 2.

Drug-containing electrospun fiber mats have gained widespread interest in various biomedical
applications, including wound dressing, tissue remolding, and prevention of the anaerobic bacteria
colonization, and so forth [43]. Compared with the low drug delivery efficiency of microspheres,
hydrogels, and micelles systems, fibrous carriers are more promising because of their relative ease of
use and flexible adaptability. However, there are still many problems for researchers to solve, especially
for the burst release of drugs from the sample surface during the first 10–12 h. In order to avoid this
phenomenon, researchers are investigating why the burst release occurs and how to achieve a constant
drug release profile.
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Table 2. Composition, solvent, concentration, and functionality and applications of polymer fibers.

Composition Solvent Concentration Functionality and Applications References

Polymetylmethacrylate (PMMA) Tetrahydrofuran (THF), acetone,
chloroform 10 wt% Superhydrophobic units for active

packaging [44]

Polyvinyl alcohol (PVA) DI water 8–16 wt% and 1–10
wt% Biofilters and biomembranes [45,46]

Poly (lactic-co-glycolic acid) PLGA Polysorbate 80, ethanol/ethyl
acetate 4 wt%

Produced by a low-energy
nano-emulsification approach, an

easily scalable methodology,
appropriate for the

pharmaceutical industries

[47]

Polycaprolactone (PCL) Chloroform and acetone 10% (W/W)
Show great potential for further
formulation as oromucosal drug

delivery systems
[48,49]

Poly (L-lactic acid) (PLLA)
N,N-dimethyl-formamide

(DMF) and
dichloromethane (MC)

10 wt%
Sterilize PLLA membranes for

clinical applications in
regenerative medicine

[50]

Gelatin DI water 30–50% (W/V) For tissue regeneration, the
versatility of this biomaterial [51]

Chitosan Trifluoroacetic acid (TFA) 1–6 wt% Tissue engineering properties and
wound healing [52,53]

Starch Dimethyl sulfoxide (DMSO),
glutaraldehyde 25 wt%

Applications in the fields of tissue
engineering, pharmaceutical

therapy, and medical
[54]

Collagen TFA 42.85% (W/W)
Supports cell attachment and
growth, form fibrous tissue

engineering scaffolds
[55]

PLGA-curcumin Chloroform/methanol 40 wt%/60 wt% Delivering curcumin over a long
period in a controlled manner [56,57]

PLGA–collagen Hexafluoroiso-propanol (HFIP) 20% (W/V) For bioengineered skin substitutes [58]

PCL–chitosan HFIP and acetic acid 20:1 (W/W)

The fast degradation profile leads
to rapid cellular infiltration,

improved vascular remodeling,
and neotissue formation without

calcification or aneurysm

[59]

Poly(ε-hydroxybutyrate-co-ε-
hydroxyvalerate) PHBV–gelatin Tetrafluoro-ethylene (TFE) 50 wt%

Serves as a useful alternative
carrier for ocular surface tissue

engineering and use as an
alternative substrate to amniotic

membrane

[60,61]

Hydroxyapatite (HAP)–tussah
silk fibroin Ammonia, citric acid 31 wt%

Supply as scaffolds in tissue
engineering and bone

regeneration
[62]

Poly(lactic acid)
(PLA)/PCL–cellulose

nanocrystals

Acetone, DCM, toluene with
phosphorus pentoxide 1wt%

Biodegradable character, use in
different areas such as

biomedicine or food packaging
[63]

PVA/alginate-bioglass DI water 10 wt%
With proper biological and
mechanical properties for

soft/hard tissue applications
[64,65]

Polycatecholamine/CaCO3-collagen HFIP, CaCl2 solution 8% (W/V), 10%
(W/W)

Provide multifunctional scaffold
properties for possible bone tissue

engineering applications
[66]

PCL/(polyvinylpyrrolidone)
PVP-trans-anethole Chloroform: methanol 10% (W/V), 30%

(W/V)

Promoting in vitro osteoblast
differentiation, we can help with

site-specific repair and
regeneration of bone tissue

[67]

Polyurethane
(PU)–dextran–estradiol DMSO and THF 10 wt% Post-menopausal wound dressing [68]

PVA–PVP–HAP DMSO 2.5, 5, 8.5, 10, and 15
wt%

Sensor, anti-static, microwave
absorbing, and conductive coating [69,70]

PLGA–tussah silk–graphene
oxide HFIP 13 wt%

Cancer treatment, therapeutic
patch for drug delivery, and an
excellent scaffold material for

bone tissue engineering

[71]

Polyvinylidene fluoride
(PVDF)–graphene oxide–silver Acetone and DMF 2 wt%

Micro and nanoscale
magnetoelectric devices,

magnetic-field sensors, and
energy-harvesters

[72,73]
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Table 2. Cont.

Composition Solvent Concentration Functionality and Applications References

Poly (ε-caprolactone)–cellulose
acetate–dextran–tetracycline

hydrochloride
DMF, THF 10 wt%

Good bioactivity, high cell
attachment and proliferation,

effective antibiotic activity against
bacteria, for wound dressing and

skin engineering applications

[74]

Different proteins and genes have been loaded into the electrospun scaffolds mainly by the
following four ways (Figure 3). The easiest way is to dip the scaffolds into an aqueous phase containing
biomolecules, where the loaded biomolecules can attach to the scaffolds via electrostatic forces [75].
In the second situation, biomolecules are mixed with the polymer solution. Such blend electrospinning
localizes biomolecules within the fibers of the scaffolds rather than the superficially physical adsorption,
guaranteeing a more sustained release profile [76]. Coaxial electrospinning or emulsion electrospinning,
are other promising ways in producing the core–shell fibers to preserve the activities of proteins [76].
More importantly, the core/shell nanofibers have been reported to provide typical biphasic drug
release profiles consisting of an immediate and sustained release. The amount of drug released in
the first phase is tailored by adjusting the shell flowing rate, and the remaining drug released in the
second phase is controlled by a typical diffusion mechanism [77]. The fourth fabrication method is to
immobilize the biomolecules onto the fiber surface via a chemical bond, through which the release rate
of the immobilized biomolecules can be controlled by the external enzymes [78].Molecules 2019, 24, x FOR PEER REVIEW 6 of 32 
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2.2. Mechanism of Electrospinning

The electrospinning technique involves the application of a high-voltage electrostatic field to
overcome the surface tension forces of the droplet. In detail, the electrostatic repulsion and Coulomb
forces provided by the external field are the main driving forces to induce the eruption of a charged
polymer solution through the tip of the spinneret [80]. Through increasing the strength of the
electrostatic field, the surface liquid gets electrically-charged, and the shear stresses are produced by
the repulsion between these charges. As these forces are opposite to the surface tension direction, the
initial hemispherical drop elongates and transforms gradually. It is noteworthy that as the electric
field strength increases to a critical point, a diaphanous and conical protrusion called the Taylor cone
is formed (as shown in Figure 3A) [81,82].

Afterward, a nearly straight jet develops from the cone. Simultaneously as the jet travels
toward the collector, the polymer solution undergoes stretching and whipping while the solvent
evaporates. Although the jet is stable near the tip of the spinneret, it soon enters an unstable bending
stage with further stretching of the solution jet under the electrostatic forces in the solution as
the solvent evaporates. In addition, the perimeter of each turn of the coils grows monotonically
(as shown in Figure 2B) [39,83]. In the end, the solid electrospun fibrous matrices are stacked on the
grounded collector.

Morphologies of the electrospun fibers could be affected by the following parameters: (i)
processing variables (e.g., electric potential [84,85], flow rate [86], collector set-up [87], and capillary
tip-to-collector distance [88]); (ii) system characterizations (e.g., molecular weight of the polymer [89],
viscosity [90,91], conductivity [92], and surface tension of the polymer solution [93]); (iii) ambient
conditions (e.g., temperature [94] and humidity [95]), all of these have been widely studied in several
recent publications [16,96]. It was found that the strength of the applied electric field would influence
the shape and diameter of the electrospun fibers [97]. Increasing the applied voltage always leads
to a larger fiber diameter; however, a field strength that is too strong will cause bead defects in the
electrospun fibers. In general, fibers become thicker as the concentration of the solution increases, with
the exception of solutions that are too dilute or too concentrated, in which the fibers will collapse into
the droplets or cannot be extruded due to its high polymer entanglements [98].

The type of collector utilized can also influence the structural morphology of the electrospun
fibers. Copper mesh, aluminum foil, water, and paper are typically employed to collect the electrospun
polymer fibers. By comparison, a non-conductive collector always creates a highly porous structure
with circular pores on the fiber surfaces. This is because the non-conductive collector cannot dissipate
the charge among the fibers leading to a decrease in packing density and an increase in porosity [99].
Moreover, the distance between the tip of the syringe and the collector is another critical factor
influencing the electrospinning process. It was reported that a distance that is too small or too large
would result in the generation of polymer beads [100]. Therefore, by varying these parameters above
and determining the appropriate values, we can generate electrospun micro/nanofibers with desirable
morphologies, diameters, and minimal bead-on-string formation.

2.3. Modification of the Electrospinning Setup

To overcome various limitations of the basic electrospinning set-up and to further tailor the
performance of resultant fibers, researchers have devised numerous methods to modify the set-up for
electrospinning, in particular, the spinneret and collection devices [101–103]. A schematic diagram
of the modified set-up is shown in Figure 4. To the best of our knowledge, one of the earliest
electrospinning inventions were proposed by Fennessey and Farris, who claimed that it was possible
to macroscopically produce one-dimensional (1D)- as well as 3D-aligned fibers by using a rotating
mandrel collector [104]. Several other collectors have been proposed to acquire well-aligned fibers
such as incorporating a copper wire drum [105], conductive plates containing an insulating gap [80],
or a scanning tip [106] to the fiber collecting system. The rotating device can mechanically stretch the
fibers toward the roll-up direction, thus helping the fibers to align along the periphery of the mandrel.
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Matthews et al. investigated the effect of mandrel rotation speed on the diameter, orientation degree,
and material properties of the fibers [107]. It was noted that alignment of the fibers was improved
when the rotation speed was increased from 800 rpm to 2000 rpm. At a sufficiently high rotating speed,
the highly aligned fibers would induce the response of gene expression and cell interaction along the
fiber orientation [82,108].

In addition to the aligned two-dimensional (2D) fiber mesh, a 3D conduit with a degree of
orientation can also be fabricated by depositing fibers over a rotating rod (d < 5 mm). This could be
applied for the construction of vascular grafts [109,110]. Similarly, the collector configurations for
oriented fibers can also be modified by placing a group of counter electrodes in a specific position.
Thontree et al. proposed to control the molecular orientation of electrospun fibers by using two parallel
counter electrodes separated by a short air gap. They were able to successfully generate extended chain
crystals (ECC) of polyoxymethylene (POM) [111]. These electric field concentrators exert a tensional
electrostatic force on the electrospun jet, which results in the stretching effect of the jet to the linear
array between two given edges. In summary, both the rotating device and the counter electrodes
significantly enhance the alignment of the electrospun fibers. The acquired anisotropy degree of an
electrospun fibrous mat can individually affect the mechanical properties of fibers, cell adhesion,
proliferation, and alignment.

Multicomponent fibers are important for applications in the areas of nanosprings [112],
super-hydrophobic surfaces [113,114], sensors [115,116], and drug delivery [117,118]. The core–shell
structures, which include a core and any number of shells, are the most prominent multicomponent
fibers [13,119]. Accordingly, a modified spinneret with coaxial capillaries has been developed for
building these materials [120,121]. The drugs can be introduced into the core or the sheath of the
nanofiber to meet the emerging needs of multifunctional devices. It should be noted that encapsulation
of non-spinnable core material inside a spinnable shell material is one of the advantages of this
particular structure. Additionally, the coaxial electrospinning could provide excellent control over the
structure and morphology of the resultant fibers. By choosing various types of polymer fluids and
precisely controlling the processing parameters of the system, different physical/biological properties
could be imparted to the nanotubes or core–shell nanofibers [122]. As proved by Sebastian et al., a more
uniform deposition of titanium dioxide (TiO2) nanoparticles was shown in the collecting substrate
of electrically conductive polyaniline (PANI)-poly(ethylene oxide) (PEO) nanofibrous membrane,
compared with the fiber mat placed on aluminum foil. Moreover, the catalytic activity of the blended
membrane was improved with an increase in the concentration of TiO2 [123]. This revolutionary
technique was promising, not only for the encapsulation of biomacromolecules or nanoparticles but
also for the modification of fiber surfaces [124].

Jiang et al. designed another notable variation of this configuration and described a novel
multi-fluidic compound-jet electrospinning technique where three metallic inner capillaries were
arranged as an equilateral triangle [125]. By separately feeding different viscous liquids into the three
inner capillaries and an outer syringe at an appropriate flow rate, the multichannel tubes have received
great interests as of late due to unique combinations of various functionalities. Accordingly, these
novel electrospun membranes showed broad potential in biomimetic materials [83,126], high efficient
catalysts [127], and multi-component drug delivery applications [128].

It has been observed that controlling the deposited density and area of electrospun fibers will
widen the application spectrum of these mats. Natural bone is a complex biomineralized system with
excellent mechanical stability, highly-densified mineralization matrix, as well as a complex hierarchical
structure. Given these characteristics, design of the scaffolds should mimic the morphology as well
as functional structure of the extracellular matrix (ECM). Layer-by-layer (LbL) electrospinning is a
good candidate for acquiring hierarchical-structured scaffolds because each polymer solution will be
electrospun to form its layer, and subsequently deposited on the same target metallic collector in the
form of a nonwoven fabric [129]. A bilayered hybrid scaffold comprised of unique traits from PLGA
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microfibers and naturally derived acellular matrix was fabricated [130]. This scaffold could support
tissue regeneration and held great potential for hollow engineering organs.

Mikos et al. have also developed an on-site LbL technique to construct a multilayered 3D scaffolds
consisting of alternating micro- and nanofiber layers [131]. In this approach, the effect of fiber layer
thickness on bone marrow stromal cells (BMSCs) attachment, spreading, and migration was intensely
discussed. Additionally, upon utilizing the LbL electrospinning technique, Layman et al. obtained a
functional biohemostat, a form of a super-absorbent polymer membrane for treating high-pressure
bleeding [132].

One novel configuration composed of a multi-needle system and an electrically-charged
cylindrical electrode is designed to increase the deposition density of the fiber mat [133,134]. The
setup consistently encloses the needle system inside an iron ring, which is helpful to improve
the concentration of electric field lines, reduce the deposited area, and considerably increase the
throughput of electrospun fibers. This innovative approach has been employed to fabricate a vascular
scaffold that dual-loaded vascular endothelial growth factor and platelet-derived growth factor. This
multilayered fibrous scaffold has been demonstrated to benefit blood vessel reconstruction, facilitate
endothelialization by the dual release of the growth factors, and inhibit hyperproliferation of vascular
smooth muscle cells [135–137].

Twisted nanofibers have been extensively exploited in the field of tissue engineering nowadays
because they can readily emulate several natural materials, such as collagen fibrils and double-stranded
DNA for use in clinical applications [138,139]. A number of electrospinning setup modifications are
being analyzed to configure such twisted nanofibrous yarn. One of these modifications is employing
a liquid container to collect the electrospinning micro/nanofibers. In most cases, a solid collector is
generally-applied to deposit the electrospun fibers. In the method proposed by Smit et al., a mesh
consisting of random electrospun fibers was deposited on a liquid surface for the first time [140]. This
was done to neutralize the free charges available on the surface of the fibers. Then, these neutralized
fibers were subsequently drawn to a rotating mandrel to obtain the fiber yarn.

In addition, by studying the influence of liquid types on the properties of the yarn, it was found
that a liquid medium with high surface tension, such as water, was significantly more preferred to
collect the fibers [141]. Another popular method to acquire twisted nanofibers is using an auxiliary
electrode [142,143]. When the electrical charge was applied to each side of the auxiliary electrodes, the
electric field rotated around the auxiliary electrode in a sequence and finally resulted in a 360◦ rotation
of electrospun jet. It was also reported that regulating the rotation time, as well as the amplitude of the
electric field on the auxiliary electrode is able to control the twist length of the yarn [144]. In conclusion,
twisted nanofibers fabricated directly using a modified electrospinning system have great potential to
be utilized in applications as artificial muscles and actuators.
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2.4. Electrospinning Methods

In addition to the modification of the spinneret and the collection devices, the choice of the
electrospun matrix is another method that can be modified for electrospinning. Typically, there are two
available methods for electrospun polymers. The first method involves dissolving the polymer in a
suitable solvent and electrospinning it. In the second method, the polymer can be directly electrospun
from a melt. Both of these methods require the polymer to be in a liquid state, either by heating or
dissolving the polymer. Afterward, the liquid is electrically charged and dispensed in an orderly
format to create different types of microstructures [148]. Each method has its specific advantages
and disadvantages. For instance, solution-spinning results in a greater range of fiber size from nano-
to micrometers, and it can be stably processed at room temperature. In accordance with the melt
electrospinning method, Dalton et al. used polymer melts to deposit fibers for tissue engineering
which proved to be ideal with regard to the highly reproducible production and low manufacturing
costs. This is because the melt electrospinning method eliminates any chances of introducing harsh
organic solvents [149].

Moreover, annealing can further modify the properties of the electrospun membrane, including
thermal behavior and mechanical properties [150]. However, the drawback of melt electrospinning is
the non-uniformity of the fiber diameters due to drawing instabilities. Additionally, it is very difficult
to fabricate melt-spun fibers with nanometer diameters, and the polymers must be kept at elevated
temperatures above the melting point [151,152].

The melt electrospinning membrane has been widely-used as scaffolds for different engineering
types of tissue. Such scaffolds have been reported to combine with cells and other biological
components for replicating the tissues found in nerves, muscles, cartilage, bone, skin, and tendons [153].
For example, melt electrospun poly(hydroxymethyl glycolide-co-ε-caprolactone) (pHMGCL) fiber
scaffolds were demonstrated to improve the cellular response to the mechanical anisotropy vastly.
The cardiac progenitor cells were able to align more efficiently along the preferential direction of
the melt electrospun pHMGCL fibers compared to commonly-used electrospun scaffolds, hereby
potentially enhancing their therapeutic potential in cardiac tissue engineering [148].
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Loessner et al. built a novel class of melt electrospinning devices for fabricating scaffolds with
different surface characteristics, which could support the growth of various cell types to deposit
their own ECM and mimic the natural microenvironment in vitro [154]. As shown in Figure 5, melt
electrospinning scaffolds were able to develop an endosteal bone-like tissue to promote the growth of
human hematopoietic stem cells. More importantly, a significantly-enhanced deposition of endosteal
proteins and osteogenic markers could be observed when the tissue-engineering scaffold was combined
with calcium phosphate coating under osteogenic conditions.
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Figure 5. Melt electrospun scaffolds and their effects on human hematopoietic stem cells. (A) Melt
electrospun PCL scaffolds. (B) Scanning electron microscopy (SEM) image of primary human
osteoblasts on scaffolds in osteogenic conditions. (C) Cross-section profiles of scaffolds seeded with
primary human osteoblasts in osteogenic conditions. (D–G) The expression of (D) fibronectin (FN),
(E) vitronectin (VN), (F) Alkaline phosphatase (ALP), and (G) osteopontin (OPN) by primary human
osteoblasts in osteogenic conditions. (H) Confocal microscopy showed that CD45+ cells (green) attached
and migrated into primary human osteoblast-seeded scaffolds using osteogenic conditions (red); cell
nuclei in blue. Reproduced from [154] with permission from Elsevier Ltd.; Copyright 2017.

3. Diverse Morphologies of Electrospun Polymer Nanofibers

Recently, researchers have begun to look into various applications of electrospun fibers because
they possess several prominent advantages. Firstly, compared to other approaches of generating fibers
such as mechanical drawing [155,156], phase separation [157], and self-assembly techniques [158],
electrospinning is better suited in terms of its flexibility, simplicity, and ease of high-volume
production [159]. Through the application of an external electric field, the uniaxial elongation derived
from the electrostatic repulsions is able to generate continuous fibers on a large scale. Secondly, in
terms of adaptability, the versatility of the electrospinning technique has allowed for producing a
vast range of materials, including polymers [160], composites [161,162], semiconductors [163], and
ceramics [164,165]. Additionally, previous studies have shown that electrospun matrices comprised of
nanofibers have the extremely high specific surface area to interact with cells [166,167], making them
ideal for cell attachment and proliferation. Accordingly, an attractive feature of electrospinning is its
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capacity to adjust fiber size in the nanometer and submicron range, which closely resembles the size
of extracellular structures. Thirdly, the distinct advantage of electrospun matrices appears to be the
exceptionally high surface-to-volume ratio [168].

Interestingly, by regulating the solution and electrospinning parameters, porous fibers with
the increased surface area could be attained [169,170]. In addition, depending on the entanglement
of these micro/nanofibers, the electrospun membranes possess a highly-porous 3D network with
excellent pore interconnection [171,172]. These mats can mimic diversified ECM in terms of texture
and compositions (dependent on the choice of materials taken) making them excellent candidates
for use in tissue engineering. Last but not the least, the electrospun polymer chains are always
aligned along the fiber axis because they experience a rapid stretching force. As a result, some
performance differences are presented among the chain orientation of the electrospun fibers, especially
the thermal behavior and physical-mechanical properties. According to Pedicini et al., in contrast to
the resultant products obtained by solution casting or other conventional processes, electrospun PU
fibers exhibit a distinctly-different stress-strain response curve in the uniaxial tensile test [173]. These
aforementioned unique characteristics of electrospun fibers impart the matrices with many desirable
properties. However, for their potential to be fully-realized and to achieve superior performances, the
further design of various fibrous assemblies and morphological structures are necessary.

3.1. Core/Shell Structures

The main advantages of nanofibers with core–shell structures are successfully deferring the initial
burst release and protecting the bioactivities of drugs [120]. In detail, the programmed release could
be realized by an impermeable shell that provides temporary protection of the drugs within the
core. With the use of a conventional electrospinning setup, it is possible to observe the formation of
core–shell structures, especially for a solution containing immiscible polymers that will phase separate
as the solvent is evaporated [174]. Recent advancements imply that the core–shell nanofibers could be
acquired by coaxial electrospinning and emulsion electrospinning.

For coaxial electrospinning, two different polymer solutions are pumped through a spinneret
comprised of coaxial capillaries [143,175–177]. This setup allows for different solutions to be utilized
in each nozzle as well as separate flow rate control. In order to get well-defined core–shell structures,
two crucial aspects should be considered. One is the miscibility of the polymers and the solvents that
appear in the core and shell solution, which will impact the integrity of the final core–shell architecture.
Another critical variable is the solution flow rate of the shell and core polymers as both of them can be
controlled to determine the shell thickness and core diameter [178]. Using this particular configuration
of electrospinning setup, a smaller fiber can permanently be encapsulated by a larger fiber leading to
the core–shell morphology. This technique proves to be versatile not only for modifying the surface
properties of electrospun fibers but also for the encapsulation of any drugs or biomacromolecules.

Lee et al. reviewed the core–shell nanofibers by a surface-modification technique based on
oxygen-plasma treatment and coaxial electrospinning using PCL as the core and collagen as the
surface shell [179]. The presence of a collagen shell was conducive to facilitate the migration of
neural cell inside the scaffolds. Therefore, the coaxial-electrospinning nanofibers were demonstrated
to possess higher cell proliferation efficiency in comparison to the normal nanofibers as well as the
solution-coating nanofibers.

In addition to the function of surface modification, the core–shell bicomponent nanofibers can
also effectively control the release kinetics. BMP-2 and DEX were encapsulated into PLLACL/collagen
nanofibers by the coaxial electrospinning method. From the release profiles of the two growth
factors, it can be seen that the core–shell nanofibers showed more controlled release compared to
the blended electrospun fibers. Furthermore, this controlled behavior of BMP-2 and DEX-induced
hMSCs to differentiate into osteogenic cells which were better for bone tissue engineering [180]
(Figure 6). Additionally, for antibacterial applications, Zheng et al. successfully fabricated the
drug-loaded electrospun non-wovens by coaxial electrospinning approach. In this case, the loaded
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amoxicillin within the nano-HAP/PLGA hybrid nanofibers exhibited a sustained release profile and
non-compromised activity to reduce the growth of a model bacterium [181].
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Figure 6. Preparation and characterization of dexamethasone (DEX) and bone morphogenetic protein-2
(BMP-2) co-loaded emulsion electrospun nanofibers and their effects on human mesenchymal stem
cells (hMSCs). (A) Preparation of poly(L-lactide-co-caprolactone) (PLLACL) emulsion electrospun
nanofibers with DEX in the shell and BMP-2 in the core. (B) Fluorescence microscopic image and
transmission electron microscopy (TEM) image of the nanofibers. (C) Release profiles of bovine serum
albumin (BSA) and DEX from the nanofibers. Reproduced from [180] with permission from Elsevier
Ltd.; Copyright 2012.

Generally, the core aqueous solutions loaded with enzymes or growth factors are not able to
electrospun by themselves because the viscosity and concentration of the liquid are so low that it is
impossible to stretch the core into a continuous thread within the sheath [182]. To solve this problem,
the core emulsion was prepared by mixing an aqueous phase with a polymer solution. Another
important feature of coaxial electrospinning is that it can be successfully utilized to acquire various
nanofibers due to its core–shell structure, where the composition of the core can be varied in a broad
range. For instance, Yu et al. encapsulated ketoprofen in the core of zein nanofibers and these core–shell
nanofibers presented a linear drug release over a period of 16 h via gradual diffusion [183].

Furthermore, in order to accelerate the proliferation of vascular endothelial cells and vascular
smooth muscle cells, electrospun membranes loaded with vascular endothelial and platelet-derived
growth factors were developed as the inner layer by employing a modified coaxial electrospinning
technique [184]. Small molecules like ketoprofen, macromolecules such as growth factors, mixtures of
PLGA/BSA [185], and even cells [184] all had the ability to sufficiently maintain the biological activity
for a long duration of time upon coaxial electrospinning.
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Recently, a novel approach named “emulsion electrospinning” has attracted interests for
fabricating core–shell fibers. It is remarkable that, unlike the special apparatus of coaxial
electrospinning, the necessary equipment required for emulsion electrospinning is only a single
needle. Additionally, the emulsion electrospinning was demonstrated to perform better than the
conventional coaxial electrospinning, with respect to controlled drug delivery [185]. As described
in our previous paper [144], the emulsions used for electrospinning usually contain an oil phase of
the polymer solution and an aqueous phase, in which drugs or biomacromolecules are dissolved.
Under electric forces, a uniform core–shell structure formed due to the stretching and coalition of the
emulsion. Such composite fibers typically have a hydrophobic polymer sheath and a hydrophilic core,
which would be fabricated into bioactive tissue-engineering scaffolds [186]. Confocal laser scanning
microscope (CLSM) images of the resultant nanofibers which consist of green core and colorless
sheath show that the boundary between them is quite sharp. It was also found that the volume ratio
of the core to the shell could be varied by adjusting the emulsion concentration and emulsification
parameters [187].

A mechanism involving “evaporation and stretching induced de-emulsification” was proposed to
explain the transformation from emulsion droplets to core–shell fibers. The emulsion droplets were
stretched into an elliptical shape along the fiber direction, which might be caused by the relatively-rapid
elongation and the quick evaporation of the solvents during the electrospinning. Additionally, the
viscosity gradient that existed between the elliptical droplets and their matrix resulted in the inward
movement and merging of the emulsion droplets [188].

3.2. Hollow Interiors

Nanostructures with hollow interiors have attracted increasing attention due to their abundant
applications, including drug release, nanofluidics, gas storage, sensing, energy conversion, and
environmental protection [189–192]. A variety of methods have been proposed to generate these
hollow nanotubes. For instance, self-assembly of the organic building blocks was once utilized to
fabricate the tubular nanostructures. However, there were some significant limitations in the large-scale
synthesis and strict structure control for this approach [193].

Mechanical drawing is another technique that has been adopted to manufacture the long hollow
fibers made of silica or organic polymers, where the inner diameters of the resultant fibers are often
restricted in the micrometer scale [194]. In contrast, the size of the nanotubes fabricated from layered
structures are always too small and typically less than 10 nm [195,196]. Additionally, it was challenging
to create sufficiently long hollow nanofibers due to the unstable connections of fibers formed during
the coating and etching steps [197]. Recently, Xia et al. reported a kind of hollow fiber with controllable
dimensions ranging from 20 nm to 1 mm. This hollow fiber could be easily fabricated by coaxial
electrospinning two immiscible liquids, followed by selective removal of the core [197]. Such a
technique provides a highly versatile method for obtaining tubular nanofibers at a large scale.

A schematic illustration of the coaxial electrospinning setup for the hollow nanofibers is presented
in Figure 7A. It should be noticed that a spinneret composed of two coaxial capillaries is necessary for
the development of hollow nanofibers. This spinneret was fabricated by inserting a polymer-coated
silica capillary into a stainless-steel needle. In the typical procedure, heavy mineral oil and ethanol
solution consisting of PVP/Ti(OiPr)4 are simultaneously fed through the inner and outer capillaries,
respectively. During the spinning process, the jet will be subsequently stretched by electrostatic
repulsions between the surface charges to generate coaxial nanofibers. Afterward, there are two
choices to acquire the nanofibers with hollow interiors successfully. One is extracting the mineral oil
phase with octane; the other is calcining the fibers in the air at 500 ◦C for 1 h to eliminate both PVP and
oil phases simultaneously. It can be seen from the TEM images that the uniform tubular fibers have
an inner diameter and wall thickness of 200 and 50 nm, respectively, verifying that the oil phase was
incorporated as a continuous thread in each fiber during the coaxial electrospinning (Figure 7B,C).
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Figure 7. Preparation and characterization of electrospinning nanofibers with hollow structures. (A)
Schematic illustration of the electrospinning setup for hollow structure nanofibers. (B) TEM image of
the hollow fibers. The walls of these tubes were composed of amorphous TiO2 and PVP. (C) TEM image
of TiO2 hollow nanofibers that were obtained by calcining the composite tubes in the air at 500 ◦C. (D)
SEM image of TiO2 hollow fibers that were in a uniaxially aligned array. Reproduced from [198] with
permission from the American Chemical Society; Copyright 2004.

Additionally, SEM images further confirm that the ceramic hollow fibers developed by calcination
in air possess circular cross-section and relatively-smooth surfaces (Figure 7D) [198]. It is interesting
to find that the feeding rate of the oil phase plays a critical role in determining the diameter of the
fiber. As Xia et al. once reported, the formation of continuous hollow fibers with relatively uniform
size required a feeding rate of at least 0.05 mL/h. When the feeding rate was below this value, short
hollow segments were formed inside each fiber, and their sizes were not uniform. On the contrary, as
the oil phase was injected faster than 0.1 mL/h, the walls of these hollow fibers would become thinner,
and some bigger openings would form on the hollow fibers [198].

The inner diameter and the wall thickness of the hollow fibers could be readily varied from
tens of nanometers to several hundred nanometers by modulating the coaxial-electrospinning
parameters [199,200]. For example, solvents with high dielectric constants will reduce the fiber
diameter [198]. The molecular weight of the polymers and the concentration of the polymer solutions
are also the predominant factors that influence the fiber morphology due to the polymer entanglement
effect. It was discovered that the overall diameter of the hollow fibers, as well as the wall thickness,
increased when the entanglement of polymers intensified [201].

In addition to controlling the morphology of the fibers, the coaxial electrospinning technique is
also capable of generating hollow nanofibers with controllable hierarchical structures and multiple
functionalities. The inner and outer surfaces of tubular fibers could be independently-decorated
through depositing functional molecules or nanoparticles onto the oil phase or the polymer
solutions [202,203]. It is interesting to note that decoration of the surfaces of hollow nanofibers
is hugely beneficial to applications in chemical sensing, where surface performance plays a vital
role in determining the devices selectivity. For instance, coupling TiO2 with SnO2 or other types
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of metal oxides in the form of a core/shell structure could significantly improve the photoelectrical
conversion efficiency of TiO2-based solar cells [204]. In summary, the capability to produce uniform
hollow structures with tailor-made surface features will allow coaxial electrospun fibers to be
particularly-customized for a variety of specific functions such as nanofluidic channels, drug delivery,
gas storage, and sensing.

3.3. Porous Structures

The performance of the materials strongly depends on their surface topology and textural
properties. As the structure of polymer fibers is switched from a solid structure to a porous one,
several characteristics are also altered including increased specific surface area, large porosity, small
interwoven pores, and functional versatility. These properties are particularly-favorable for fulfilling a
wide range of applications, including ultra-filtration [205] absorption [206], ion-exchange [207], and as
a support or carrier for reagents and catalysts [208]. Researchers have devoted a significant amount of
effort toward acquiring porous structures and further promoting their practical applications. Three
slightly different approaches have been summarized for generating the porous electrospun fibers with
excellent mechanical strength and enhanced absorbing capacity.

One of these methods was based on the selective removal of a single component from the
nanofibers, where the electrospinning solutions are possibly made of composite material [209], polymer
blends [210], or organic block copolymers [211]. After leaching out one phase from the complex system,
the resultant scaffolds exhibited a novel porous structure containing a dual-porosity network in the
ranges of a few nanometers to a few hundred micrometers. The developed nanofibers maintained
structural integrity successfully during the complete biodegradation reactions, demonstrating their
enhanced potential for being utilized as engineering scaffolds. Wendorff et al. investigated the
structural changes for PLA/PVP blended fibers through selectively dissolving PVP by water or
removing PLA by an annealing treatment at elevated temperatures [212]. It was found that when PVP
and PLA were in equal portions, the fibers would become porous and displayed a regular surface
structure. If the minor component with a fraction below 50 wt% was removed, the fibers would remain
compact in the structure without any visible alteration of the surface morphology. In contrast to the
solid electrospun fibers, porous polymer fibers exhibit superior properties, including a low specific
gravity, multiform framework, and large surface area. Therefore, it could be expected that by selective
removal of one component, porous fibers have the potential to be of great interest for the preparation
of functional fibers.

The second method of producing porous fibers involves the use of phase separation provided by
judicious selection of the spinning parameters and the solvent types. Figure 8 shows the formation
mechanism of the PMMA fibers. It was suggested that the rapid evaporation of a more volatile
solvent, such as DCM, might induce a decrease in the temperature and condensation of water vapor.
The polymers were separated into different phases, and the solvent-rich regions were transformed
into pores on the electrospun fibers [213,214]. Compared to indirect methods to generate pores, such
as selective dissolution of one component, this approach does not require any post-electrospinning
treatments and is superior in terms of practicality.
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Figure 8. Preparation and characterization of electrospinning fibers with porous structure.
(A) Schematic illustration of the electrospinning chamber for porous structure microfibers. (B)
Schematic diagram showing the formation of pores during electrospinning. (C) SEM images of
the electrospun PMMA fibers obtained at polymer concentrations of (a) 12, (b) 15, (c) 18, and (d)
21 wt% and at a humidity of 25%. Reproduced from [214] with permission from Springer Nature;
Copyright 2013.

In addition, it should be noted that the moisture in the environment and the solvent vapor pressure
are two important factors that can strongly affect the size and density of the circular pores [215]. At low
humidity and temperature, a small amount of water diffuses into the solution jet and causes a delayed
solidification. Consequently, the capillary instability overcomes the viscoelastic stresses resulting in
the development of beads or bead-on-string morphologies. In contrast, at increased humidity and
temperature, water vapor easily condenses into droplets and attaches properly on the fiber surfaces,
promoting the formation of amount of pores. Therefore, a relatively higher humidity level will cause
an increase in the pore size until the pores eventually lose their uniform porosity [216].

Based on our previous work, porous fibers with 3 nm mesopores to 450 nm macropores can
also be obtained by employing the following synthesis procedures, in which the pore diameters
are very sensitive to the degree of fibrous shrinkage [217,218]. BG fibers were first prepared by
electrospinning a transparent silica sol containing bioactive components followed by calcination at
600 ◦C [219]. Afterward, the corresponding nanoporous BG fibers can be precisely organized into 3D
macroporous scaffolds at the macroscopic scale. The designed BG fiber membranes with hierarchal
porosities have great potential in the applications of drug delivery, bone tissue engineering, and wound
healing [220]. It was demonstrated that through a biomineralization reaction, porous BG fibers were
tightly-integrated with a kind of doxorubicin hydrochloride to form the drug-loaded composite fibers.
The drug release profiles showed that the as-synthesized fibers were acid-sensitive and drugs could be
effectively-released at acidic conditions (pH 5.0), but not at neutral conditions (pH 7.4).

In addition, Kalra et al. reported the formation of the uniformly porous carbon fibers with
extremely high surface area, which were fabricated by electrospinning a blend of polyacrylonitrile
(PAN) and Nafion, followed by high-temperature carbonization [221]. These porous carbon nanofibers
mats regarded as the free-standing electrodes for supercapacitors exhibited an ideal capacitive behavior
with a large specific capacitance of greater than 200 F/g. This was attributed to the existence of a
hierarchical porous structure in these carbon nanofibers, which endowed the mats a high specific
surface area of up to 1600 m2/g and a significant fraction of mesopores (2–4 nm).
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3.4. Multilayer Structures

Electrospinning is an efficient and straightforward method that works in a simple manner to
obtain micro- and nano-scale polymer structures. Recent advances in this field have shown that
electrospun biopolymer nanofiber mats could be used to create single or multi-layer, LbL assembly,
and similar structures [222]. In particular, the multi-layer system containing electrospun ultra-thin
fibers could significantly improve the barrier properties of biopolymers, provide high specific surface
area for compound diffusion, and minimize the loss of active compounds.

The multi-layer structure is generally obtained by depositing electrospun monolayer and
multi-layer on the paper substrate with two kinds of collector: plate collector and drum collector.
According to the literature, multi-layer assembly of biopolymers with complementary properties
behaves better in packaging materials for meeting more specific requirements of different foods [223].
For the first time, fiber-based packaging materials were prepared by electrospinning and coating with
different biopolymers (poly-β-hydroxybutyrate PHB, PVA, PLA) [224]. The synthesized multilayer
film was then annealed to obtain a transparent continuous electrospun film, which improved adhesion
of the film to the paper substrate, enhanced the barrier property, and presented potential application
prospects in the field of fiber food packaging.

Likewise, multi-layer wound dressing electrospun nanofiber mats have been created in wound
treatment applications, which are more attractive than the pristine mats due to their enhanced
properties [225]. A kind of new double-layer electrospun composite nanofiber mat with dual functions
has been proposed recently for wound-dressing applications [226]. The first layer of the mat that
consisted of PVA/chitosan/AgNPs was exposed to the environment, where AgNPs were used as a
protective layer to protect against environmental microbial invasion. The second layer was in direct
contact with the damaged part. It was composed of electrospun PEO or PVP nanofibers and combined
with chlorhexidine as a model antibacterial (antiseptic) compound. In such layer, the involvement of
chlorhexidine inhibited bacterial growth at the wound site, so as to promote the healing process.

In the fields of sensing technology, optoelectronics, etc., many nanofiber mats are also assembled
by using a large voltage source in the as-spun fiber to provide higher voltage and current output than
a single-pad device [227]. Figure 9 shows a robust packaging method that depends on a multilayer
electrospun nano-fiber mat. As the nanofiber number increases, the piezoelectric layer integrated
within the multilayer system enhances the output voltage and current. Along with the increment of
device capacity, the bead array in the electrode could further increase the piezoelectric output.

During the electrospinning, PVDF-TrFE particles (70/30 Mol%) were dissolved in a mixture of
acetone and dimethylamine (volume ratio of 4:6) at a concentration of 14% (W/V) to obtain a polymer
solution. The bead array was transferred to a support piece coated with a silver conductive paste to
form a beaded electrode as shown in Figure 9A. For the core of nanofiber mat, a pair of electrodes are
assembled into a sandwich and packaged in a thin nylon-polyethylene composite film to encapsulate
the entire assembly. As shown in Figure 9B, SEM images showed the morphology of primary fiber mat.
The constituent fibers had a non-defective and continuous form with a nanometer-diameter of 435
± 84 nm. For micro-morph-based electrodes, the topography was achieved using an array of beads
consisting of many conductive pads.

In order to evaluate the piezoelectricity produced by our proposed structure, several different
types of piezoelectric devices were prepared, including different components and packaging methods,
and then were characterized by tight packaging, multilayer stacking, and microtopography-based
integration. Micro-deformation was caused by integration, whereby double-sided integration could
lead to significant deformation of the nanofiber mat, which was naturally consistent with the
morphology of the bead array. Due to the regular arrangement of the microbeads, the core nanofiber
mat was embedded in a periodic-corrugated shape with almost no voids in the filling device.
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Figure 9. Structure and central performance characterization of multilayer electronic device. (A)
Illustration of the overall components of the piezoelectric device with microscopic photographs of the
microbead array. (B) Cross-sectional images of the vacuum-packed devices with P-DB5 and an SEM
image of the electrospun nanofiber mat. (C) Relationship between the output performances of voltage
and current varied by the applied pressure using the device with P-DB5. (D) Output signals of the
drop test results using a small leaf, a grain of rice, and a water droplet. Reproduced from [227] with
permission from the American Chemical Society; Copyright 2018.

As shown in Figure 9C, the output of a typical piezoelectric system increased in proportion to the
applied pressure. Also, in our device (double-side bead array (P-DB5)), the output of both voltage
and current were augmented by increasing the applied pressure. When the pressure that applied to
the device was up to 288 kPa, an output voltage and current of 10.4 V and 2.3 µA were generated,
respectively. As predicted, the bead-embedded device showed up higher voltage and current values
than the beadles’s flat device. Piezoelectric devices were used not only in energy generators but also
in highly-sensitive mechanical sensors. To determine its suitability for high-sensitivity devices, the
piezo device was set up and tested, using a custom measurement system equipped with a function
generator, an electric vibrating screen for load cells, and a data acquisition module.

The physical sensing performance of the device was verified, as shown in Figure 9D. When light
objects such as a small leaf (30 mg), rice (25 mg), and a drop of water (25 mg) were applied to the device,
an identifiable peak signal corresponding to these objects was produced. On the whole, such enhanced
piezoelectric device consisting of a variety of components was a high-performance generator and high
precision sensor. By integrating multiple functional materials into the device, more applications could
be provided for piezoelectric systems.

3.5. Side-by-Side Structures

Nanomaterials prepared by electrostatic spinning can be designed into two separated parts in
accordance with chemical composition and function, which have received extensive attention in recent
years [228]. Considering a two-compartment system, there are two relationships between components
are feasible. One is external and internal (i.e., core Coaxial electrospinning or emulsion electrospinning,
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are other promising ways in producing the core–shell fibers to preserve the activities of proteins shell
structure), and the other one is side by side, where the sides of the structure are different. Both of them
can be used to develop materials with adjustability or versatility [229]. Core–shell structures produced
by electrospinning, such as electrospun fibers, nanotubes, electrospray particles, and bubbles, have
been extensively probed. More complex structures have also been reported, for instance, three layers
of nanofibers and microparticles obtained from a triaxial electrospinning process [230], as well as
multi-chamber structures manufactured from multiple fluid spinners. Unlike the core–shell structure,
the latter heterojunction structure provides an opportunity to directly interact with the surrounding
environment for both components, which can be advantageous for designing novel features.

From this point of view, side-by-side structures are commonly found in nature and have
recently become a research hotspot for researchers, which are more attractive for the manufacture of
multifunctional nano-products than core–shell structures [231]. Side-by-side electrospinning involves
a complex interplay among fluid dynamics, electrodynamics, and rheology, presenting a significant
challenge in controlling the movement of two fluids synchronously in a side-by-side manner under an
electrical field from the spinneret to collector.

As far as we know, Gupta and Wilkes first reported the preparation of side-by-side polymer
nanofibers based on a spinneret consisting of two parallel Teflon capillaries, which were made of
poly (vinyl chloride)/segmented PU and poly (vinyl chloride)-PVDF [232]. After that, researches
associated with side-by-side nanofibers and their corresponding applications have continuously been
reported. First, structurally adjustable side-by-side fibers can be created by using a series of spinners
with different port angles. Additionally, by controlling the electrospinning parameters precisely,
side-by-side fibers possessed with different width and interface area can be fabricated, resulting in the
volume-adjustable structure on both sides [233].

A uniform bio-based PLLA and Bombyx mori silk (SF) fibroin two-in-one fiber has been reported
recently [234], using a side-by-side electrospinning nozzle. Such silk-based electrospun fibers with
β-sheet structures exhibited a tensile strength of 16.5 ± 1.4 MPa, modulus of 205 ± 20.6 MPa, and an
elongation rate at break of 53 ± 8%, where the values were very similar with those of the fibers made
from a blend of SF and PLLA. It would be interesting to use such fibers to provide a new platform
for designing multiple-functional materials and developing novel nanostructures, finally applying
in several areas of biodegradation studies, cell culture, scaffold, and drug-release depending on the
side-by-side morphology and surface chemistry of two sides.

Liu et al. have proposed a novel side-by-side microfiber membrane (UFM) consisting of PAN/PVP
using electrospinning technology, which has been successfully applied to biphasic drug release [235].
Taking advantages of the self-supporting property and the differing dissolving properties, the
PAN/PVP Janus UFMs could serve as a drug carrier. At the same time, two fluorescent dyes were
added on both sides to study the drug release trend. Due to the different properties of the two polymers,
UFM showed two-phase drug release, which could provide an adequate “loading dose”, increasing
the plasma concentration of the drug to rapidly and quickly relieve the symptoms of the patient. The
other one was maintaining an effective therapeutic concentration in the subsequent extended release
period to avoid repeated administration.

Accurate control of the sustained release rate is important to ensure the most effective and safe
pharmacokinetic characteristics of a particular disease, as well as to promote the maximum absorption
of oral drugs. As shown in Figure 10, Yu et al. have reported a Teflon-coated spinneret, which could be
employed to prepare a series of efficient and stable side-by-side electrospinning [236]. Taking PVP K60
and ethyl cellulose (EC) as raw materials and ketoprofen (KET) as an active ingredient, two different
sides were prepared. In some cases, PVP K10 was added to the EC side of the fiber as a porogen.
Electron microscopy images clearly show the generation of integrated side-by-side fiber structures, in
which an amorphous distribution of KET was found. A biphasic drug encapsulated inside the fibers
were released into the solution after a burst initial release. In vitro dissolution tests showed that all
the fibers were capable of providing a biphasic controlled-release curve. The release rate and total
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release percentage can be precisely-adjusted by varying the amount of PVP K10 doped on the EC side
of the fiber.
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Figure 10. Fabrication, morphology, and mechanism of side-by-side structures. (A) Side-by-side
electrospinning process: (a) experimental apparatus (inset: connection of side-by-side spinneret with
the working fluids and power supply); (b) a photograph of a typical side-by-side electrospinning
process with the Teflon-coated spinneret; (c) a Janus Taylor cone formed with the Teflon-coated
spinneret; (d) fiber mat from side-by-side electrospinning with uncoated side-by-side spinneret; (e)
the separation of fluids when using the uncoated spinneret; (f) an illustration of the role played by the
Teflon coating: A—the separation of fluids arising from repulsive forces Ft (between the two Taylor
cones), Fs (between the two straight fluid jets). (B) TEM images of (a) F3; (b) F4; (c) F5; (d) F6 and
Fc (between the two coils); and B—the formation of an integrated Janus Taylor cone with the Teflon
coating. (C) Field emission scanning electron microscope (FESEM) images of the fibers remaining after
24 h of dissolution and the proposed drug release mechanism. (a–d) show the remains of fibers F3–F6
respectively; (D) is a schematic diagram explaining the mechanism of drug release from the Janus
fibers. Reproduced from [236] with permission from Elsevier Ltd.; Copyright 2016.

In summary, nanomedical delivery systems with highly-adjustable release profiles can be
successfully prepared by the side-by-side electrospinning method, which are difficult to achieve
through conventional pharmaceutical techniques. This work provides an adjustable release profile
that may bring a wide range of new drugs to complement the natural biological rhythm for achieving
the maximum therapeutic results.

4. Challenges and Future Perspectives of Electrospun Polymer Nanofibers

During the past 20 years, electrospinning has made a huge leap in the field of nanotechnology.
It has proven to be a powerful technology to create a variety of functional nanostructures for different
applications, as discussed throughout the review. Compared with traditional nanofiber preparation
technology, electrospinning can produce fibers with high specific surface area, uniform pore size,
and high porosity, which significantly improves the performance of nanofibers. In practical terms,
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the versatility of electrospinning has been extensively-studied and has begun to enter the industrial
market. Specifically, some leading companies including DuPont, Ahlstrom, Donaldson, etc., have
developed electrospinning-related products for filtration.

Furthermore, the electrospinning process is a reliable technique for designing nanofiber structures
through operating conditions, such as polymer concentration, solvent choice, molecular weight, and
conductivity. Meantime, various biopolymers of chitosan, cellulose, lignin, PLA, PCL, PEO, and PVA
have been employed to fabricate a variety of nanostructures individually or in combination. These
well-organized nanofiber structures have their broad applications, like packaging, drug delivery,
filtration, fuel cells, and so forth. Compared with the conventional pharmaceutical technology,
side-by-side fiber structures obtained by electrospinning have the ability to realize a novel two-phase
drug release. Such sustained-release behavior can increase the plasma concentration of the drug as
well as rapidly relieve the symptoms of patients through providing an effective “loading dose”.

Despite these abovementioned advantages, there are still some challenges in ahead that need to
be addressed before realizing the clinical applications of electrospun mats, including the accurate and
reproducible control of fiber morphology, structure, as well as uniformity. Additionally, manufacture
of the electrospun scaffolds with clinically-relevant dimensions remains a challenge. In detail, despite
the high adjustability and relatively-low cost, the collection speed of electrospinning is relatively slow,
which raises concerns about the scale of the electrospinning process. Last but not least, considering that
the lack of cell infiltration severely restricted the biomedical applications of electrospun membranes,
some new technologies of reducing fiber-packing density, multilayer electrospinning, cell electrospray,
and dynamic cell culture have been proposed recently to overcome the drawback. Although with
these as-faced challenges, the versatility of electrospinning nanofibers combined with innovative
nanostructures exhibit promising potential in many research areas.
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