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Abstract: Objective: Pulmonary function parameters play a pivotal role in the assessment of res-
piratory diseases. However, the accuracy of the existing methods for the prediction of pulmonary
function parameters is low. This study proposes a combination algorithm to improve the accuracy
of pulmonary function parameter prediction. Methods: We first established a system to collect
volumetric capnography and then processed the data with a combination algorithm to predict pul-
monary function parameters. The algorithm consists of three main parts: a medical feature regression
structure consisting of support vector machines (SVM) and extreme gradient boosting (XGBoost) al-
gorithms, a sequence feature regression structure consisting of one-dimensional convolutional neural
network (1D-CNN), and an error correction structure using improved K-nearest neighbor (KNN)
algorithm. Results: The root mean square error (RMSE) of the pulmonary function parameters pre-
dicted by the combination algorithm was less than 0.39L and the R2 was found to be greater than 0.85
through a ten-fold cross-validation experiment. Conclusion: Compared with the existing methods for
predicting pulmonary function parameters, the present algorithm can achieve a higher accuracy rate.
At the same time, this algorithm uses specific processing structures for different features, and the
interpretability of the algorithm is ensured while mining the feature depth information.

Keywords: combination algorithm; support vector machines; extreme gradient boosting; one-
dimensional convolutional neural network; improved K-nearest neighbor

1. Introduction

In recent years, artificial intelligence (AI) and machine learning (ML) have rapidly
evolved in various fields, including healthcare. These methods can help detect diseases,
improve pathological classification, and predict disease patterns and epidemiology, a prime
example of which is ML-based algorithms developed during the COVID-19 pandemic [1,2].
In addition, the authors of [3] created a system that developed and trained a neural network
model for the diagnosis of diabetes mellitus in pregnant women and the accuracy of the
trained network was over 92%. In [4], a fuzzy expert system was proposed for diagnosing
and analyzing human diseases. The system not only indicates if the disease is present
but also indicates the level at which the disease is present. It is notable that this approach
for diagnosing human diseases has an accuracy and reliability of 97%. The authors of [5],
developed an expert system for oral ulcers that focuses on four common oral ulcers. In
addition, the study of medical image data in [6], used CT images for the segmentation and
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classification of small hepatocellular carcinoma, and achieved good results. The accuracy
of the segmentation was 0.9049, and the accuracy of the classification was 0.838.

The above studies are all able to achieve good results in their corresponding fields, but
not in the field of chronic respiratory diseases.

At the same time, chronic respiratory diseases, including chronic obstructive pul-
monary disease (COPD) and asthma, are significantly increasing in regard to morbidity
and mortality worldwide. They can affect individuals of all age groups and cause over
3 million deaths each year according to World Health Organization data [7,8]. Therefore, it
is important to apply AI technology to the assessment, diagnosis, and treatment stages of
chronic respiratory diseases, thereby reducing patient morbidity and mortality.

The assessment of the patient’s pulmonary function parameters is a prerequisite for the
prevention and treatment of chronic respiratory diseases. Today, spirometry is one of the
most widely-used techniques to assess pulmonary function [9]. Unfortunately, spirometry
has strict end-of-test criteria and poor patient compliance leads to the low accuracy of
pulmonary function parameters. Schermer et al. found that 50% of the spirometry methods
were inaccurate in terms of pulmonary function parameters [10]. For this reason, many
scholars have conducted studies on the prediction of lung function parameters. Sharan
et al. investigated the prediction of lung function parameters using coughing sounds [11],
while Ioachimescu et al. (2020) performed partial lung function prediction based on age,
sex, race, height, and weight and using an artificial neural network (ANN) algorithm [12].
Miyoshi et al. (2020) developed regression equations to estimate forced vital capacity (FVC)
and forced expiratory volume in one second (FEV1) [13]. Chen et al. developed an FEV1
and FVC prediction model based on multi-output support vector regression [14].

Meanwhile, volumetric capnography has emerged as a technique for pulmonary
function assessment that helps to solve the problem of inaccurate prediction of pulmonary
function parameters and has wide application prospects [15]. Jarenbäck et al. (2018)
obtained an index of efficiency of tidal ventilation with respect to CO2 exchange (efficiency
index, EFFi) in volumetric capnography and tested the hypothesis that EFFi may be used
for the diagnostics and grading of COPD [16]. Kellerer et al. (2020) conducted a systematic
analysis of the relationship between capnovolumetric and conventional lung function
parameters to help in the interpretation of capnovolumetric parameters [17]. Although
these authors conducted preliminary studies on volumetric capnography, they did not use
volumetric capnography data for the specific prediction of pulmonary function parameters.
They only elaborated on the correlation between volumetric capnography and pulmonary
function parameters such as FVC and FEV1.

Therefore, in this paper, a combination algorithm based on volumetric capnography
data is proposed for the first time to solve the problem of the accuracy of pulmonary func-
tion parameters prediction, thus improving the accuracy of pulmonary function parameter
prediction.

The novelty and contributions of this study are as follows.

(1) This paper is the first to propose the use of volumetric capnography data for the
prediction of pulmonary function parameters, which is more accessible and less
demanding for testers than other studies.

(2) The algorithm proposed in this paper combines the advantages of traditional ma-
chine learning algorithms for processing high-dimensional medical features and deep
learning for learning low-dimensional sequence features, to improve the accuracy of
pulmonary function parameter prediction.

(3) This paper provides a reference paradigm for other medical data processing by
handling high-dimensional features and low-dimensional features in medical data.

In the subsequent sections, we first establish the signal acquisition system and compen-
sate the system signal using an adaptive control algorithm. Then, the proposed combination
algorithm is described in detail and the performance of different algorithms is compared.
The experimental results show that the combination algorithm proposed in this paper has
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high accuracy in the prediction of pulmonary function parameters and can significantly
improve the quality of pulmonary function assessment.

2. Materials and Methods
2.1. Signal Acquisition System

To enable better volumetric capnography data acquisition, we built a homemade signal
acquisition system. We tested the performance of the system with a PWG-33 pulmonary
waveform generator and a carbon dioxide concentration verification platform, and the
system’s measurement error was within 5%. The signal acquisition system is shown in
Figure 1. It mainly contains handheld multi-sensor devices and a user interface, and the
system signal is compensated by an adaptive adjustment algorithm.
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Figure 1. Signal acquisition system.

2.1.1. Devices and User Interface

The embedded system of the handheld device is shown in Figure 2, including a
microprocessor module, power management module, 4G communication module, display
module, keyboard control module, a sensor acquisition module [18].
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Figure 2. Embedded system of the handheld device. The microcontroller unit (MCU) communicates
with the differential pressure sensor via Inter-Integrated Circuit (IIC) protocol, with the carbon
dioxide sensor via Universal Synchronous/Asynchronous Receiver/Transmitter (USART) protocol,
and the air pump control via pulse-width modulation (PWM) wave.

The microprocessor module is used to perform adaptive control algorithm and data
processing, the power management module is responsible for the power supply of the
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entire device, the 4G communication module is responsible for signal transmission, the
display module and the keyboard control module are used to interact with the user, and
the sensor acquisition module is used for data acquisition.

The user interface mainly includes a personal information window, a control informa-
tion window, a time information window, and a result display window. Firstly, the user fills
in the contents of the personal information window as prompted. Then, different buttons
are selected for interaction in the control information window. When the start button is
clicked, the user interface plays a guided breathing tone and collects the user’s breathing
information. At the same time, the time information window displays and records the
breath time information. After breathing, the user can click the show button to display the
results. The respiratory flow rate, the respiratory carbon dioxide concentration, and the
volumetric capnography will be displayed in the result display window. Finally, the user
can click the save results button to save the collected information in CSV format locally for
subsequent processing and analysis.

2.1.2. Adaptive Adjustment Algorithm

During respiration, the flow rate will always change. As a result, inconsistencies in the
characteristic parameters of volumetric capnography can occur under different respiratory
conditions. Therefore, the signal acquisition system uses an adaptive adjustment algorithm
based on minimum prediction error to ensure the accuracy of volumetric capnography
measurements. The algorithm can ensure the consistency of the characteristic parameters
of volumetric capnography, and control the flow in advance to reduce the lag in the flow
control due to the ability to predict the flow according to the actual flow. The algorithm is
similar to the idea of minimizing the local structure error [19–21].

The adaptive adjustment algorithm is mainly divided into three stages, the prediction
of respiratory flow at the next moment, the calculation of forecast error, and the adaptive
adjustment of smoothing parameters.

• Prediction of respiratory flow at the next moment.

Set the initial sampling flow f0, the initial smoothing parameter α0 and the prediction
window size N. Get the actual respiratory flow Fi−N+1, Fi−N+2, . . . . . . Fi−1, Fi at the previous
N moments through the sampling of the differential pressure sensor. According to the
traditional exponential smoothing algorithm, predict the respiratory flow at the next
moment F̂i+1 :

F̂i+1 = α0Fi + α0(1− α0)Fi−1 + α0(1− α0)
2Fi−2 + . . . (1)

• Calculation of forecast error.

Get the actual respiratory flow Fi+1 at time i + 1, and record the difference in flow Ei+1
between the predicted flow F̂i+1 at i + 1 time and the actual respiratory flow Fi+1:

Ei+1 = F̂i+1 − Fi+1 (2)

Set the error calculation window size W, calculate the mean value of the difference in
the sliding window Ew:

Ew =
i

∑
x=i−w

Ex

W
(3)

• Adaptive adjustment of smoothing parameters.

According to Ei+1, Ew, the self-adjustment coefficient β, the smoothing parameter α,
adjust the smoothing parameter α:

αi+1 = αi

(
1 + β

(
Ei+1

Ew
− 1
))

(4)
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Control the sampling flow fi+1 according to the updated smoothing parameter αi+1:

fi+1 = αi+1 fi + αi+1(1− αi+1) fi−1 + αi+1(1− αi+1)
2 fi−2 + . . . (5)

In different breathing situations, the adaptive algorithm can adjust the sampling
flow rate, solve the problem of inconsistencies in the characteristic parameters of the
volumetric capnography under different respiratory flows, and ensure the accuracy of the
volumetric capnography [22]. The details of the adaptive adjustment algorithm are shown
in Algorithm 1.

Algorithm 1: Adaptive Adjustment Algorithm.

Input:
initial sampling flow f0, initial smoothing parameter α0, the prediction
window size N,
error calculation window size W, the self-adjustment coefficient β.

Output: smoothing parameters αi+1, sampling flow fi+1
while obtaining the actual respiratory Fi do

for len(F) < N do
F = F.add(Fi)
predict the respiratory flow at the next moment F̂i+1
F̂i+1 = α0Fi + α0(1− α0)Fi−1 + α0(1− α0)

2Fi−2 + . . .
obtain actual breathing flow at the i + 1 time point Fi+1
calculation of forecast error
Ei+1 = F̂i+1 − Fi+1
calculate the mean value of the difference in the sliding window Ew

Ew =
i

∑
x=i−w

Ex
W

adaptive adjustment of smoothing parameters αi+1 and sampling flow fi+1

αi+1 = αi

(
1 + β

(
Ei+1

Ew
− 1
))

fi+1 = αi+1 fi + αi+1(1− αi+1) fi−1 + αi+1(1− αi+1)
2 fi−2 + . . .

end

2.2. Combination Algorithm

For the traditional single-structure pulmonary function regression algorithm, the
mining of data information is limited by the structural design. Traditional machine learning
algorithms can mine relationships in high-dimensional data (medical features, etc.) very
well and provide good explanations, but the accuracy needs to be improved [23]. Deep
learning algorithms can mine deep relationships from low-dimensional data (sequence
data), but cannot provide good explanations [24].

Inspired by the combinatorial structure [25], we propose the combination algorithm,
which mainly consists of three parts: a medical feature regression structure, a sequence
feature regression structure, and an error correction structure. The medical features are pro-
cessed by the traditional machine learning algorithm and the sequence data are processed
by the deep learning algorithm. Finally, the results of the two are effectively combined
to improve the accuracy rate. The algorithm ensures both a good interpretation of high-
dimensional medical features and the full utilization of low-dimensional sequence data.

2.2.1. Medical Feature Regression Structure

We constructed a two-layer medical feature regression structure using support vector
machines (SVM) and extreme gradient boosting (XGBoost) algorithms to take full advantage
of the medical data in the volumetric capnography and also based on the a priori knowledge
of the airflow limitation cutoffs of GOLD2020 [26].

For the prior medical knowledge of the airflow limitation cutoff point in GOLD2020,
we first need to build a first-level classification task to determine whether a patient has
airflow limitation or not. For this classification task, the input features are high-dimensional
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data such as medical features and demographic features, for which the support vector
machine (SVM) algorithm has a good processing effect. SVM is an optimal margin-based
classification technique in machine learning [27].

Since the SVM algorithm is used for the binary classification task, the results obtained
are too sparse with only two possibilities. Therefore, to provide more information for the
secondary prediction, we used the sigmoid function to make the output result of SVM
probabilistic, which contains more information and is denser. The Sigmoid function is
calculated as:

σ(z) =
1

1 + e−z (6)

We combined the output probability values of the SVM with the original features as
the input features for the second-level prediction to perform the regression prediction of
the FEV1 and FVC parameters. For the regression prediction task, we chose the XGBoost
algorithm for secondary regression in order to show the importance and interpretability of
each feature on the regression results.

XGBoost was recently proposed by Chen and Guestrinis [28]. It is based on the
original framework of gradient boosting, for a given data set with n examples and m
featuresD = {(xi, yi)}(|D| = n, xi ∈ Rm, yi ∈ R), and uses K additive trees to approximate
the output ŷi as the following:

ŷi = φ(xi) =
K

∑
k=1

fk(xi), fk ∈ F (7)

where fk is an independent classification and regression tree (CART) at each of the k steps,
which map the input variables xi to yi. F =

{
f (x) = wq(x)

}(
q : Rm → T, w ∈ RT) is the

space of all regression trees.
To learn the set of functions used in the model, we minimized the following regularized

objective.
L(φ) = ∑

i
l(ŷi, yi) + ∑

k
Ω( fk) (8)

where Ω( f ) = γT +
1
2

λ ‖ w ‖2 (9)

The training loss function l and the regularization term Ω make up the regularized
objective function. The difference between the predicted value ŷi and the value yi is
measured by the training loss function l. The regularization term Ω assesses the model’s
complexity and helps to smooth the final learned weight to avoid overfitting.

In addition, XGBoost includes two key techniques: shrinkage and column subsam-
pling. At each stage of boosting, the shrinkage algorithm scales the newly supplied weights,
reducing the effect of each tree and overfitting. To speed up the training process, column
subsampling only selects a random subset of input characteristics while creating a tree [29].

The medical feature regression structure is shown in Figure 3.
First, the first-level prediction structure was constructed using SVM with FEV1/FVC

= 0.7 as the threshold to classify and predict the airway obstruction condition and obtain
the corresponding probability values [30]. Subsequently, the probability results of the
first-level prediction were combined with the original feature as the input features of the
second-level prediction structure. XGBoost was used to construct the secondary prediction
structure, and the prediction results of the pulmonary function parameters were then
output. During the implementation of the algorithm, we used a heuristic search for the
selection of hyperparameters to achieve optimal results [31].
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Figure 3. Structural flow chart of the medical feature regression structure.

2.2.2. Sequence Feature Regression Structure

To be able to make full use of the volumetric capnography data, we want to mine
information from the low-dimensional raw sequence signals, in addition to using traditional
machine learning algorithms for the high-dimensional medical and demographic features.

For the original low-dimensional CO2 sequence data, deep learning networks have
better learning abilities. When choosing the deep learning network structure, we considered
that the original sequence information is only one-dimensional in depth; therefore, if we
use network structures such as long short-term memory (LSTM) and gated recurrent units
(GRU), it will increase the computational effort when performing the data processing with
no effective improvement. Therefore, we chose the simpler one-dimensional convolutional
neural network (1D-CNN), which is widely used in medical sequence signals [32–34].

Given a sequence of CO2, C1:n = C1, . . . , Cn, a 1D convolution of width-k is the
result of moving a sliding window of size s over the sequence, and applying the same
convolution filter or kernel to each window in the sequence, i.e., a dot-product between the
concatenation of the vectors in a given window and a weight vector u, which is then often
followed by a non-linear activation function g. We chose the rectified linear unit (ReLU)
function as the activation function to ensure the updating ability of the network when
performing gradient backpropagation.

g(x) = max(0, x) (10)

The convolution filter is applied to each window, resulting in scalar values ri, each for
the i window:

ri = g(xi · u) ∈ R (11)
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In practice, one typically applies more filters, u1, u2 . . . , ul , which can then be repre-
sented as a vector multiplied by a matrix U and with the addition of a bias term b:

ri = g(xi ·U + b) (12)

The network structure is shown in Figure 4.
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Figure 4. Structural flow chart of the sequence feature regression structure.

The network parameters are shown in Table 1.

Table 1. Configurations of sequence feature regression structure.

Layers (Type) Output Size Param

C1 (Conv1D) (None, 2396, 32) 192
P1 (MaxPooling1D) (None, 479, 32) 0

D1 (Dropout) (None, 479, 32) 0
C2 (Conv1D) (None, 475, 64) 10,304

P2 (MaxPooling1D) (None, 95, 64) 0
D2 (Dropout) (None, 95, 64) 0
C3 (Conv1D) (None, 91, 32) 10,272

P3 (MaxPooling1D) (None, 91, 32) 0
D3 (Dropout) (None, 91, 32) 0
F1 (Flatten) (None, 576) 0
F2 (Dense) (None, 2) 1154

When building the network, we followed the general structure including a convolution
layer, pooling layer and a dropout layer [35]. The convolution layer can be used to extract
features from the sequence information, the pooling layer can be used to reduce the training
parameters, and the dropout layer can be used to avoid training overfitting. We stacked the
generic structure three times to ensure that the output vector has a larger receptive field [36].
After the stacked structure, we added a flattened layer to flatten the vector. Finally, we
added a fully connected layer to map the flattened vectors to the FEV1 and FVC parameters
and chose the mean square error as the loss function. When choosing the size and number
of convolutional kernels, we chose a 1 × 5 convolutional kernel size, considering that a
smaller convolutional kernel filter can help to improve computational efficiency and extract
clearer features [37]. The number of convolutional kernels is generally a power of 2. In this
case, we chose 32, 64, and 32 convolutional kernels, respectively.
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2.2.3. Error Correction Structure

After processing high-dimensional information by traditional machine learning algo-
rithms and low-dimensional information by deep learning algorithms, we need to combine
the results of both algorithms organically to combine the respective advantages of both
algorithms. To ensure the operability and interpretability of the synthesis results, we chose
the improved K-nearest neighbor (KNN) regression algorithm as the output of the final
results [38,39].

The traditional KNN algorithm is mainly used for classification problems. For two
points x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) on an n-dimensional real vector space
Rn, we can define a more generalized distance Lp between the two points, that is, the
Minkowski distance as

Lp(x, y) =

(
n

∑
i=1
|xi − yi|p

) 1
p

(13)

Here, we used the spatial distance when p = 2, i.e., the Euclidean distance.

L2(x, y) =

√
n

∑
i=1

(xi − yi)
2 (14)

The traditional KNN algorithm divides the test samples into classes of the k-nearest
samples in the n-dimensional space. We made certain improvements to the KNN algorithm
to fit the regression problem here.

For any training sample, with the medical feature regression structure and the se-
quences feature regression structure, we get the output of a four-dimensional vector

Train_xi = (FEV1_medi, FVC_medi, FEV1_seqi, FVC_seqi) (15)

The true output of that sample is

Train_yi = (FEV1i, FVCi) (16)

For the test sample, the same four-dimensional output can be obtained with the two
structures mentioned above.

Test_xi = (FEV1_medi, FVC_medi, FEV1_seqi, FVC_seqi) (17)

In the four-dimensional space, we calculated the distance between the test sample
and all training samples. We chose the K closest distance training samples and took the
true output of those K training samples and we calculated the mean of their pulmonary
function parameters as the final output of our test samples.

Test_yi =

(
1
k

K

∑
i=1

FEV1i,
1
k

K

∑
i=1

FVCi

)
(18)

With the improved KNN algorithm, we fully consider the output predicted by each
traditional machine learning algorithm and deep learning algorithm, then integrate the
results to arrive at the final prediction result. The improved KNN algorithm has advantages
such as simple computation and strong interpretation.

The details of the combination algorithm flowchart are shown in Algorithm 2.
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Algorithm 2: Combination Algorithm.

Input:
Test set Xtest =

{
xmed

(i), xseq
(i)
}

i=1,...,n
, xmed

(i) is a medical feature vector, xseq
(i) is the

sequence feature vector
Output: Ytest =

{
y(i)
}

i=1,...,n
, y(i) is the pulmonary function parameter vector

for i <= n do
Medical Feature Regression Structure

xmed
(i) through SVM model to obtain y(i)SVM

Fusion of features from xmed
(i) and y(i)SVM to obtain xxgboost

(i)

xxgboost
(i) through XGBoost model to obtain y(i)med

Sequence feature regression structure

xseq
(i) through 1D-CNN model to obtain y(i)seq

Error correction structure

By splicing the vectors y(i)med and y(i)seq, we obtain the vector xKNN
(i)

xKNN
(i) through the KNN model to obtain y(i)

end

3. Results
3.1. Regression Evaluation Index

Given the sensitivity of medical data to maximum error, we propose a comprehensive
error evaluation index comprehensive percentage error (CPE), which integrates the maxi-
mum percentage error, mean absolute percentage error, and root mean square percentage
error and is more suitable for the prediction evaluation of medical data [40].

The maximum percentage error (MPE) computes the maximum residual error percent-
age, a metric that captures the worst-case error between the predicted value and the true
value. The mean absolute percentage error (MAPE) is an evaluation metric for regression
problems. This metric is sensitive to relative errors. It is for example not changed by a
global scaling of the target variable. The root mean square percentage error (RMSPE) is a
measure of the deviation between the predicted value and the true value. They are defined
as follows:

MPE(xi, yi) = max
(
|xi − yi|

yi

)
× 100 (19)

MAPE(xi, yi) =
1
n

n

∑
i=1

|xi − yi|
max(ε, |yi|)

× 100 (20)

RMSPE(xi, yi) =

√
1
n ∑n

i=1(xi − yi)
2

yi
× 100 (21)

where xi is the predicted value, yi is the true value, n is the number of samples, yi is the
mean of the true values, and ε is an arbitrary small, yet strictly positive number to avoid
undefined results when yi is zero.

The comprehensive percentage error (CPE), which is a combination of the maximum
percentage error, mean absolute percentage error, and relative standard deviation, reflects
the overall error of the regression results. The smaller the comprehensive error percentage,
the better the regression results.

CPE(xi, yi) =
1
3
× (MPE(xi, yi) + MAPE(xi, yi) + RMSPE(xi, yi)) (22)

Therefore, the accuracy rate (ACC) considering the combined comprehensive percent-
age error is

ACC(xi, yi) = 1−CPE(xi, yi) (23)
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3.2. Datasets

We performed volumetric capnography experiments and spirometry experiments on
1007 subjects (472 females and 535 males, aged 17–70 years). The sampling frequency of
the volumetric capnography was 200 Hz, the sampling time of the data was greater than
20 s, and the length of the sequence of CO2 acquisition was greater than 4000 sampling
points. Pulmonary function experiments were performed to obtain the pulmonary function
parameters, FEV1 and FVC. A total of more than 1007 subjects were obtained with three
types of characteristic data. The volumetric capnography features are described in Table 2.
The statistical analysis table is shown in Table 3.

Table 2. The description of volumetric capnography features.

Variable Description Units

C12 Carbon dioxide concentration at the boundary of phase 1 and phase 2 mmHg
C23 Carbon dioxide concentration at the boundary of phase 2 and phase 3 mmHg
V12 Volume at the boundary of phase 1 and phase 2 mL
V23 Volume at the boundary of phase 2 and phase 3 mL
V2 The volume of phase 2 mL
V3 The volume of phase 3 mL
S2 Slope of phase 2 mmHg/L
S3 Slope of phase 2 mmHg/L

S3/S2 The ratio of slopes of phases 3 and 2 /
Angle23 The angle between phases 2 and 3 ◦

Table 3. Data description table.

Amount Category Variable Units Values

Data 1007

Demographics

Male % 53.1%
Age years 56 (14)

Height cm 166 (9)
Weight kg 69 (14)

BMI kg·m−2 24.94 (4.20)

Volumetric
capnography

C12 mmHg 2.49 (0.80)
C23 mmHg 27.22 (4.76)
V12 mL 276 (58)
V23 mL 757 (157)
V2 mL 480 (128)
V3 mL 2061 (903)
S2 mmHg/L 74.63 (25.19)
S3 mmHg/L 5.44 (3.37)

S3/S2 / 0.08 (0.04)
Angle23 ◦ 168.26 (5.81)

Spirometric FEV1 l 2.53(0.86)
FVC l 3.49(0.99)

To improve contrast and produce a balanced database, a 10-fold cross-validation
strategy was applied 10 times to decrease generalization error in the training set. Figure 5
depicts the schematic diagram of the 10-fold cross-validation.

The dataset is first divided into 10 equally-sized, mutually-exclusive subsets: Data =
d1∪ d2∪ . . . ∪ d10. di∩ dj is empty. Each subsection maintains the consistency of the
data distribution, which is obtained through hierarchical sampling from the data. d1, d2
. . . d10 is used as the test set to obtain 10 test results, and the average value of the 10 test
results is used as a cross-validation result.

In this study, cross-validation was performed ten times, with the results of the ten
cross-validations being averaged as the final result to assess the algorithm’s performance.
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3.3. Results of the Algorithm
3.3.1. Single-Structure Algorithm Results

To further assess the performance of our proposed combined algorithm, we compared
single-structure machine learning and deep learning algorithms for pulmonary function
prediction.

We used a single-structure conventional machine learning algorithm for pulmonary
function prediction. Demographic and medical features were processed by SVM and
XGBoost algorithms, and the results were evaluated using the relevant regression evaluation
metrics.

The results of the conventional machine learning algorithm are shown in Table 4.
For different pulmonary function parameters, FVC was a better predictor than FEV1 for
R2 and ACC metrics. This is consistent with the medical phenomenon whereby FEV1
measurements are dependent on the effort of the tester and have poor predictive accuracy.
In the RMSE index, FVC is 0.48 L greater than FEV1’s 0.43 L, and since it is an absolute
value, FVC is greater than FEV1, making the absolute value of RMSE of FVC greater than
FEV1. Overall, the traditional machine learning algorithm was able to do a better job of
processing the medical features and getting the expected results. The maximum in the R2

metric was 0.79 and the maximum ACC was up to 79%. The result, however, still has room
for improvement.

Table 4. Results of the conventional machine learning algorithm.

Type Pulmonary Function Parameters RMSE (L) R2 ACC

SVM + XGBoost
FEV1 0.43 0.78 73.90%
FVC 0.48 0.79 79.18%

The features’ importance is shown in Figure 6. We can see that for the regression
prediction of FEV1 versus FVC, the ranking of feature importance differs between the two.
However, the two most important characteristics of both are demographic features, which
is consistent with reality. As age and body size change, the human pulmonary function
also undergoes significant changes.

The fitting curves and error percentages of conventional machine learning algorithms
are shown in Figures 7 and 8. Figure 8 shows that the average error of FEV1 prediction is
15.71%, and the average error of FVC is only 12.26%. Additionally, the median error for
both is less than their mean error, indicating that the pulmonary function prediction results
are acceptable for most testers. However, we also see that there are individual outliers in
the results predicted by FVC, which indicates that the performance of FVC prediction is
poor for a small number of results and there is still room for optimization.
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Figure 6. The features’ importance in conventional machine learning algorithms.
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Figure 8. Box plot of error percentages of conventional machine learning.

We used a single-structured deep learning algorithm for pulmonary function predic-
tion. The CO2 sequences are processed by a one-dimensional convolutional neural network
and the results are evaluated using relevant evaluation metrics.

The results of the deep learning algorithm are shown in Table 5. In all evaluation
metrics, the prediction of FVC is better than FEV1. Especially in the RMSE metric, FVC is
0.61 L, less than the 0.66 L of FEV1, which is different from common medical knowledge.
Because the deep learning algorithm is end-to-end learning, which only mines the raw
sequence data for regression and does not provide any medical prior knowledge, there may
be results that contradict prior medical knowledge. This result shows that FVC is better
than FEV1 in terms of raw sequence distribution, so all the results obtained by regression
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with a deep learning algorithm are better than FEV1, and probably since deep learning
algorithms require larger datasets, they do not show good performance for the dataset used
in this paper.

Table 5. Results of the deep learning algorithm.

Type Pulmonary Function Parameters RMSE (L) R2 ACC

1D-CNN
FEV1 0.66 0.57 65.09%
FVC 0.61 0.73 74.76%

Figure 9 shows the training curves of the 1D-CNN network. We use a learning rate
that is initially 0.03 and decays as the epoch increases. As can be seen from Figure 9, the
network is trained normally and the model loss gradually decreases within 100 epochs
without any phenomenon such as overfitting.
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Figure 9. Training curves of the 1D-CNN network.

The fitting curves and error percentages of the deep learning algorithm results are
shown in Figures 10 and 11. As can be seen in Figure 10, the prediction performance of
FEV1 needs to be improved, with an R2 of 0.57. Figure 11 shows that the average error of
FEV1 prediction is 21.52%, and the average error of FVC is 14.19%. As can be seen from
the figure, there are no outliers in the predicted results using the deep learning algorithm,
which indicates that the deep learning algorithm can tap into the depth of information in
the data and fit all the data distributions as much as possible, but its prediction performance
needs to be improved.
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Figure 11. Box plot of error percentages of deep learning.

3.3.2. Combination Algorithm Results

We used combination algorithms to regress medical features using traditional machine
learning algorithms and sequence features using deep learning algorithms, and finally, we
combined the results through an error correction structure to perform a quadratic regression.

Table 6 shows the results of the combination algorithm. On the ACC index, both FEV1
and FVC were able to reach 80% and above, and the prediction of FVC was 85%, which is a
good result. On the R2 index, both FEV1 and FVC reached 0.85 and above. This indicates
a good fit of the results. On the RMSE metric, the FVC prediction result of 0.39 is greater
than that of 0.35 for FEV1, which may be because the combined algorithm combines the
output of traditional machine learning algorithms and includes prior medical knowledge
in the execution process.

Table 6. Results of the combination algorithm.

Type Pulmonary Function Parameters RMSE (L) R2 ACC

Combination
algorithm

FEV1 0.35 0.85 80.79%
FVC 0.39 0.86 85.77%

The fitting curves and error percentage of the combination algorithm’s results are
shown in Figures 12 and 13. As can be seen from Figure 13, the average errors of both
FEV1 and FVC are within 10%, which indicates that the pulmonary function prediction by
the combined algorithm has high accuracy among most testers and has the potential for
wide application. However, there is an outlier in the FEV1 prediction, which indicates that
there is still room for optimization of the combined algorithm prediction for individual
testers. In terms of the overall distribution of errors, the combined algorithm achieved a
good result for both FEV1 and FVC.



Bioengineering 2022, 9, 136 16 of 20

Bioengineering 2022, 9, x FOR PEER REVIEW 16 of 20 
 

The fitting curves and error percentage of the combination algorithm’s results are 

shown in Figures 12 and 13. As can be seen from Figure 13, the average errors of both 

FEV1 and FVC are within 10%, which indicates that the pulmonary function prediction 

by the combined algorithm has high accuracy among most testers and has the potential 

for wide application. However, there is an outlier in the FEV1 prediction, which indicates 

that there is still room for optimization of the combined algorithm prediction for individ-

ual testers. In terms of the overall distribution of errors, the combined algorithm achieved 

a good result for both FEV1 and FVC. 

 

Figure 12. The fitting curves of the combination algorithm results. 

 

Figure 13. Box plot of error percentages of combination algorithm. 

3.3.3. Comparison of Algorithms 

• Comparison of experimental results 

To further demonstrate the superiority of this combination algorithm, we compared 

the results of the single-structure algorithm with the combination algorithm on the same 

data set, as shown in Table 7. 

  

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

R2=0.85

F
E

V
1

 P
re

d
ic

te
d

(L
)

FEV1 Measured (L)

R2=0.86

F
V

C
 P

re
d

ic
te

d
(L

)

FVC Measured (L)

FEV1 FVC

0

10

20

30

D
if

fe
re

n
ce

 (
%

)

10.96
8.35

Figure 12. The fitting curves of the combination algorithm results.

Bioengineering 2022, 9, x FOR PEER REVIEW 16 of 20 
 

The fitting curves and error percentage of the combination algorithm’s results are 

shown in Figures 12 and 13. As can be seen from Figure 13, the average errors of both 

FEV1 and FVC are within 10%, which indicates that the pulmonary function prediction 

by the combined algorithm has high accuracy among most testers and has the potential 

for wide application. However, there is an outlier in the FEV1 prediction, which indicates 

that there is still room for optimization of the combined algorithm prediction for individ-

ual testers. In terms of the overall distribution of errors, the combined algorithm achieved 

a good result for both FEV1 and FVC. 

 

Figure 12. The fitting curves of the combination algorithm results. 

 

Figure 13. Box plot of error percentages of combination algorithm. 

3.3.3. Comparison of Algorithms 

• Comparison of experimental results 

To further demonstrate the superiority of this combination algorithm, we compared 

the results of the single-structure algorithm with the combination algorithm on the same 

data set, as shown in Table 7. 

  

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

R2=0.85

F
E

V
1

 P
re

d
ic

te
d

(L
)

FEV1 Measured (L)

R2=0.86

F
V

C
 P

re
d

ic
te

d
(L

)

FVC Measured (L)

FEV1 FVC

0

10

20

30

D
if

fe
re

n
ce

 (
%

)

10.96
8.35

Figure 13. Box plot of error percentages of combination algorithm.

3.3.3. Comparison of Algorithms

• Comparison of experimental results

To further demonstrate the superiority of this combination algorithm, we compared
the results of the single-structure algorithm with the combination algorithm on the same
data set, as shown in Table 7.

Table 7. Results of the different algorithms.

Parameter
Types Algorithm Types RMSE (L) R2 (P) MPE MAPE RMSPE ACC

FEV1
SVM + XGBoost 0.43 0.78 (<0.01) 45.58% 15.71% 17.01% 73.90%

1D-CNN 0.66 0.57 (0.02) 56.91% 21.51% 26.30% 65.09%
combination algorithm 0.35 0.85 (<0.01) 32.84% 10.96% 13.83% 80.79%

FVC
SVM + XGBoost 0.48 0.79 (<0.01) 36.57% 12.26% 13.64% 79.18%

1D-CNN 0.61 0.73 (<0.01) 44.30% 14.19% 17.22% 74.76%
combination algorithm 0.39 0.86 (<0.01) 23.27% 8.35% 11.06% 85.77%
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In Table 7, it can be seen that for the same pulmonary function parameter (FEV1
or FVC), the combined algorithm has the best prediction performance, followed by the
traditional machine learning algorithm, and finally, the deep learning algorithm. The
poor performance of the deep learning algorithm may be influenced by the small data set.
Meanwhile, the processing method of the deep learning algorithm on the raw sequence
information still needs further research. Traditional machine learning algorithms using
medical features for pulmonary function parameter prediction are better overall but still
need improvement in regard to MPE metrics. The combined algorithm performs optimally
on this dataset, and all RMSE metrics less than 0.39 L. The R2 metrics are greater than
0.85, indicating that the predicted values are strongly correlated with the actual values.
The combined learning algorithm incorporates medical feature information and sequence
feature information to a certain extent, which can reduce the MAPE and MPE metrics of
the predicted values and means that the prediction results have a greater application range.

• Comparison with state-of-the-art performance

As shown in Table 8, our results were further compared with the relevant literature. In
terms of the number of people in the dataset, we used data from 1007 subjects, second only
to the 3567 in [12]. With regard to the R2 index, this study obtained results greater than
0.85, which exceeds the results in the literature [11,13,14]. In terms of the RMSE metrics,
our results also go beyond those in the literature [11,14]. In summary, the algorithm
in this paper achieves high performance in the prediction of the relevant pulmonary
function parameters.

Table 8. Performance comparison with other works.

Author Subjects Methodology Result

Sharan et al. [11] 322 Linear and nonlinear
regression models

A root mean square error (and correlation coefficient)
for standard spirometry parameters FEV1, FVC, and

FEV1/FVC of 0.593 L (0.810), 0.725 L (0.749), and
0.164 L (0.547).

Ioachimescu et al. [12] 3567 Regular linear or optimized
regression, ANN models

The AEX could become an essential tool in assessing
respiratory impairment.

Miyoshi et al. [13] 683 Multivariate linear regression
analysis

Actual and estimated VC, FVC, and FEV1 values
showed significant correlations (all r > 0.8 and

p < 0.001) in all groups.

Chen et al. [14] 143 M-SVR The mean squared errors were lower than 0.15 l2, and
the decision coefficients (R2) were higher than 0.40.

Ours 1007 SVM, XGBoost,
1D-CNN, KNN

The root mean squared errors (RMSE) were lower than
0.39 L. The coefficient of determinations (R2) was

higher than 0.85. The comprehensive percentage error
(CPE) was lower than 20%.

4. Conclusions

In this paper, an algorithm combining traditional machine learning and deep learning
was proposed to address the problem of the low accuracy of pulmonary function parameters
in assessing respiratory diseases. The algorithm processes medical features by SVM and
XGBoost algorithms to ensure the interpretability of the algorithm. The one-dimensional
convolutional network is also used to analyze the CO2 series to fully explore the deep
features in the sequence, and then the improved KNN algorithm is used to combine
the results both simply and effectively to improve the accuracy of pulmonary function
parameters. This algorithm can significantly improve the accuracy of pulmonary function
parameter prediction in the assessment stage of respiratory diseases.

The proposed combined algorithm was compared with the single-structure algorithm
and showed improvement in all regression metrics. The root mean square error (RMSE) of
the pulmonary function parameters predicted by the combination algorithm was less than
0.39 L and the R2 was determined to be greater than 0.85 through a ten-fold cross-validation
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experiment. The algorithm was compared with other algorithms for pulmonary function
parameter prediction, and the method was able to better utilize medical and serial features
to achieve significant results. In addition, unlike most methods, the method proposed in this
paper utilizes carbon dioxide volume data, which can be a better alternative to spirometry.

However, the algorithm proposed in this paper also has some limitations. The per-
formance of the proposed algorithm needs to be improved when extracting information
on sequence features. Additionally, this paper mainly focuses on the field of pulmonary
function parameter prediction, and further research is needed to apply the algorithm to
other fields. There are still some problems that need to be overcome in the course of further
research. For example, the number of testers in this dataset is limited, so more samples are
needed to validate the performance of the algorithm. Additionally, multidimensional test
data can be incorporated for a more accurate prediction of pulmonary function parameters
from multimodal data.
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