
INTRACELLULAR DIFFUSION

How bacteria keep proteins
moving
Bacteria contain large numbers of negatively-charged proteins to avoid

the electrostatic interactions with ribosomes that would dramatically

reduce protein diffusion.

CONRAD W MULLINEAUX

T
he cytoplasm of a bacterial cell is densely

packed with DNA, RNA and various pro-

teins and macromolecules

(Zimmerman and Trach, 1991). In Escherichia

coli, for example, the cytoplasm is home to

around two million soluble protein molecules

(estimated using data from the BioNumbers

database) and about 55,000 ribosomes

(Bakshi et al., 2012; see also Goodsell, 2009

for vivid illustrations of the dense packing of the

bacterial cytoplasm). This overcrowding can

have profound effects on the biochemistry of

the cytoplasm and on its physical properties

(Ellis, 2001; Parry et al., 2014). However,

despite being congested with macromolecules,

the cytoplasm remains surprisingly fluid.

For decades, researchers have used green

fluorescent proteins, also known as GFPs, to

study how molecules move in living organisms,

because GFPs can be tracked with a fluores-

cence microscope. GFPs diffuse rapidly: for

example, one GFP molecule can travel the entire

length of an E. coli cell in less than one

second (Nenninger et al., 2010). However, add-

ing a small positively-charged ‘tag’ to the

negatively charged GFP slows its diffusion in E.

coli (Elowitz et al., 1999).

Nevertheless, it has remained unclear what

factors control the diffusion of proteins in the

cytoplasm. Now, in eLife, Paul Schavemaker,

Wojciech Śmigiel and Bert Poolman of the Uni-

versity of Groningen report that the total surface

charge of proteins strongly influences their

mobility (Schavemaker et al., 2017). By system-

atically increasing the positive surface charge of

GFPs in E. coli and two other prokaryotes, Scha-

vemaker et al. showed that proteins with a posi-

tive charge moved up to 100 times more slowly

than proteins with a negative charge.

Schavemaker et al. take the story further with

elegant experiments that identify the main cul-

prit: the ribosome. Ribosomes are bulky struc-

tures with a negative surface charge that mainly

comes from their RNA (Knight et al., 2013).

Moreover, they regularly interact with other

macromolecules when they are translating

mRNA transcripts to produce new proteins.

Schavemaker et al. estimate that each ribosome

is big enough to trap up to 66 positively-

charged GFP-sized proteins on its surface. This

can stop ribosomes from working, cause the

cytoplasm to clot, and hinder any process that

depends on the free movement of proteins.

So, how can this problem be avoided? A sim-

ple but drastic solution would be to ban posi-

tively-charged proteins from the

cytoplasm (as the remaining negatively-charged

proteins will not be attracted to the ribosomes

in the first place). In fact, this seems to be the

solution adopted by most prokaryotes. It has

long been known that in most organisms, the
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majority of proteins in the cytoplasm have net

negative charge at physiological pH

(Schwartz et al., 2001).

Indeed, Schavemaker et al.’s detailed analysis

of three different species of prokaryotes indi-

cates that, with the exception of a few nucleic-

acid binding proteins and ribosomal subunits,

the cytoplasm is almost devoid of positively-

charged proteins. This hints at a strong and pre-

viously unsuspected evolutionary pressure to

ensure that proteins in the cytoplasm are nega-

tively-charged.

However, not all prokaryotes follow this rule.

Schavemaker et al. identify four bacteria that

mainly have positively-charged proteins inside

their cytoplasm. It is not known how these bac-

teria prevent the cytoplasm from clotting, but it

could be significant that all four have small

genomes and live in symbiosis with a eukaryotic

host. The situation in eukaryotes also warrants a

closer look: do our ribosomes influence the

mobility of the proteins in our cytoplasm?

The findings of Schavemaker et al. have clear

implications for biotechnologists who wish to

engineer bacteria to produce foreign proteins,

as it could be problematic to produce positively-

charged proteins. Synthetic biologists working

on the ambitious goal of turning bacteria into

cell factories that produce entirely new products

(Nielsen and Keasling, 2016) should also be

wary of introducing positively-charged proteins

into the cytoplasm.
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