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1  |  INTRODUC TION

Cancer-associated fibroblasts (CAFs) are the major component in 
the tumor microenvironment (TME) and account for almost 70% 
of the cells in tumor tissues, where they perform several tumori-
genic functions.1,2 The importance of the TME has been examined 

by numerous previous studies that have clarified the relationship 
between cancer cells, microenvironmental cells, and the resulting 
prognoses in patients with gastric, prostate, and colorectal can-
cer,3–7 among others. By their interactions with cancer cells, CAFs 
remodel the extracellular matrix (ECM) and lead to the collective 
invasion of tumor cells, creating a supportive niche for cancer stem 
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Abstract
The prognosis for patients with cancers known for a highly activated stromal reac-
tion, including diffuse-type (scirrhous) gastric cancer, consensus molecular subtype 4 
(CMS4) colorectal cancer, and pancreatic ductal adenocarcinoma, is extremely poor. 
To explore the resistance of conventional therapy for those refractory cancers, de-
tailed classification and investigation of the different subsets of cancer-associated 
fibroblasts (CAFs) involved are needed. Recent studies with a single-cell transcrip-
tomics strategy (single-cell RNA-seq) have demonstrated that CAF subpopulations 
contain different origins and marker proteins with the capacity to either promote or 
suppress cancer progression. Through multiple signaling pathways, CAFs can promote 
tumor growth, metastasis, and angiogenesis with extracellular matrix (ECM) remod-
eling; they can also interact with tumor-infiltrating immune cells and modulate the 
antitumor immunological state in the tumor microenvironment (TME). Here, we re-
view the recent literature on the various subpopulations of CAFs to improve our un-
derstanding of the cell-cell interactions in the TME and highlight future avenues for 
CAF-targeted therapy.
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cells, weakening the tumor immune microenvironment (TIME), and 
reprogramming cancer cell metabolism, resulting in the promotion 
of tumor metastasis and immune escape8–12 (Figure  1). Using a 
single-cell transcriptomics strategy (single-cell RNA-seq) to profile 
the compositions of solid tumors, several groups have discovered 
various fibroblast subpopulations having distinct phenotypes and 
functions among pancreas, breast, and colorectal cancers.13–15 
Elyada and colleagues13 first identified a new subset of fibroblasts 
in pancreatic cancer, called antigen-presenting CAFs (apCAFs) in ad-
dition to the previously identified myofibroblastic CAFs (myCAFs) 
and inflammatory CAFs (iCAFs).16 The heterogeneity and plasticity 
of CAFs serve multiple mechanisms of cancer development by in-
teraction with other cells in the TME. CAF-derived factors direct 
survival signals to cancer cells; they also affect the TIME by in-
hibiting immune-promoting cells and stimulating the recruitment 
of immune-suppressive cells, which enable cancer cells to evade 
immune surveillance.5,16,17 An increasing number of studies about 
cancer immunotherapy including the use of PD-1/PD-L1 antibodies 
have revealed the involvement of CAFs in the TIME through various 

mechanisms, contributing to the formation of a tumor-permissive 
microenvironment.18–20

The aim of this review is to shed light on the complex nature of 
CAFs, including their identities, functions, and significance in cancer 
biology.

2  |  ORIGIN OF C AFs

Generally, the term CAF is used to describe morphologically spindle-
like cells and functionally activated fibroblastic cells in the TME of 
solid cancers that have a phenotype distinct from the quiescent fi-
broblasts found in normal tissue. There is evidence that CAFs arise 
from bone marrow–derived precursors and bone marrow–derived 
mesenchymal stem cells (BM-MSCs),6 and derive from local resident 
fibroblasts, adipocytes, adipose-derived MSCs, and pericytes.21–25 
Among them, we have clarified that MSCs could influence the pro-
gression of gastric cancer (GC); the expression of the MSC marker 
nerve growth factor receptor (NGFR), also called CD271, in stromal 

F I G U R E  1  A schematic diagram of cancer-associated fibroblasts (CAFs) in the tumor microenvironment. Cancer cells stimulate normal 
fibroblasts to become CAFs. CAFs have been divided into three subpopulations, inflammatory CAFs (iCAFs), myofibroblastic CAFs (myCAFs), 
and antigen-presenting CAFs (apCAFs). CAFs, especially myCAFs, remodel the extracellular matrix (ECM). Interaction between CAFs (iCAFs 
and myCAFs) and cancer cells lead to metabolic reprogramming of cancer cells and epigenetic reprogramming of cancer stem cells, creating a 
supportive niche for the latter. Proliferation of apCAFs leads to the recruitment of immune-suppressive cells and inhibits immune-promoting 
cells
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cells is related to a poor prognosis in GC patients.6 We have also 
reported that CXCL1 from cancer cells stimulated the recruitment 
of BM-MCs into the tumor stroma via CXCR2 signaling in GC.7,26 
Additionally, Friedman et al recently reported that sCAF, a subpopu-
lation expressing MHC class II antigen-presentation genes, might 
originate from a mesenchymal source, like BM-MSC, because the 
computational approaches for their trajectory show that the tran-
scriptional makeup of sCAF is disconnected from tissue-resident 
fibroblasts, and the most differentially upregulated gene in sCAFs 
compared with other CAF subpopulations was Clu, which has been 
reported to play a tumor-promoting role in BM-MSC–derived 
CAFs.27 Furthermore, Waghray et al identified a novel population 
of cancer-associated MSCs in pancreatic ductal adenocarcinoma 
(PDAC) that controls tumor progression via granulocyte-macrophage 
colony–stimulating factor.28 In the pancreas, differentiation of 
tissue-resident pancreatic stellate cells (PSCs) to an activated, 
myofibroblast-like phenotype is thought to be a major source of 
PDAC CAFs.29 Taken together, the heterogeneity of CAF subpopula-
tions might derive from their origins and differentiations depending 
on autocrine and paracrine signaling in TME. These studies lay the 
foundation for our understanding of CAF heterogeneity in the TME 
and impel further investigation of the origins and functions of CAF 
subtypes.

3  |  HETEROGENEIT Y OF C AF 
BIOMARKERS

Due to the complexity of CAFs, researchers are attempting to clarify 
specific CAF subtypes (Table 1). Currently, although α-SMA+ or FAP+ 
CAFs are the two most predominant CAF markers, deletion of each 
phenotypic CAF showed opposite results. Depletion of αSMA+ cells 
in PDAC development yielded poorly differentiated tumors and re-
duced survival.30 Conversely, depletion of FAP+ cells resulted in the 
enhancement of antitumorigenic cytotoxic CD8+ T cells and slowed 
pancreatic tumor growth.17 Recently, using a single-cell sequence, 
which is a breakthrough methodology to detect transcriptional lev-
els of a single cell, Li et al defined different CAF subpopulations with 
α-SMA associating with other fibroblast markers such as transge-
lin (TAGLN) and platelet-derived growth factor subunit A (PDGFA), 
while FAP was associated with decorin (DCN) and COL1A2 expres-
sions in CRC.15 Öhlund et al defined α-SMAHighFAP+ pancreatic 
CAFs as a myofibroblastic subtype (myCAF) actively responsive to 
TGF-β, while the remaining α-SMALow CAFs were shown to secrete 
inflammatory mediators such as IL-6, which promotes the growth 
and proliferation of patient-derived PDAC organoids (iCAF).16 
Furthermore, Elyada et al reported a third subtype of CAFs that 
expressed MHC class II and CD74, named apCAFs.13 Vimentin is 
a type III intermediate filament protein, which plays an important 
role in the formation of the cytoskeletal network. Vimentin is highly 
expressed in fibroblasts of all types; therefore, it widely used as a 
marker to visually identify fibroblast populations in immunohisto-
chemical and immunofluorescent studies. However, as vimentin is 

also present in a number of different cell types of mesenchymal ori-
gin, such as adipocytes and myocytes, and even in epithelial cells un-
dergoing epithelial-to-mesenchymal transition (EMT), its specificity 
as a marker of CAF is relatively low.31 S100 calcium-binding protein 
A4 (S100A4), also known as fibroblast-specific protein 1 (FSP1) also 
marks tumor cells that have undergone EMT32; however, the genetic 
lineage–labeling approach has shown FSP1 expression in only a sub-
set of CAFs and minimal overlap between FSP1 and αSMA expres-
sions.33 Another marker that is overexpressed in CAF populations, 
podoplanin (PDPN), is strictly membrane-bound.

Friedman et al reported identifying eight CAF subtypes in two 
main CAF populations, based on selective expressions of the mark-
ers FSP1 or PDPN in breast cancer, noting that the ratio between 
PDPN+ and S100A4+ CAFs strongly correlates with clinical out-
comes.27 Platelet-derived growth factor receptors (PDGFR) α and 
β are tyrosine kinase receptors located on the surface of stromal 
cells, and both are commonly used as general markers for CAFs. 
In contrast to FAP and αSMA, the strength of PDGFRs lies not in 
their specificity for CAFs but rather in their global expression in the 
overall fibroblast population in the tumor.34 Periostin (POSTN) is 
also highly expressed in fibroblast and CAF populations. Recently, 
the presence of CAFs acting as a cancer inhibitor in the tumor has 
also been reported, and in these cells, Meflin is expressed simultane-
ously with low expression of αSMA in the early stages of pancreatic 
cancer, which is essential for weakening the aggressiveness of the 
tumor.35 Our laboratory previously reported that numerous bone-
marrow–derived stromal cells (BM-SCs) infiltrated the gastric TME 
and that NGFR (CD271) expression in stromal cells could be used as 
a prognostic marker of BM-SCs for GC patients.6

Finally, negativity for several markers is used to help identify fi-
broblasts and CAFs. As there is no single definitive marker of CAFs, 
it is often critical to rule out other cell types contained in tumor tis-
sue. Epithelial cell adhesion molecule can be used to rule out epi-
thelial cells,3637 and negativity for other markers such as CD45 and 
CD31 has been used to exclude leukocytes and endothelial cells.13

As mentioned above, even through the application of transcrip-
tome analyses, no single marker has been found to completely de-
fine CAF subpopulations so far, and none of these subtypes was 
given a specific definition. With further advances, new markers for 
CAF subpopulations might be identified, which relate to the origin of 
CAF. Identifying the definitive markers of CAF subpopulations could 
help the development of novel targeted stromal therapies with CAF-
targeted profiling.

4  |  C ANCER-PROMOTING OR C ANCER-
RESTR AINING C AF

Researchers have reported that CAFs have diverse and complex ef-
fects on cancer cells (Figure 2). A previous study reported that vari-
ous solid tumors contain many stroma cells and a large quantity of 
ECM produced by these cells, the volume of which may exceed that of 
cancer cells in tumors.38 In particular, CAF proliferation is prominent 
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in refractory cancers such as scirrhous gastric and pancreatic can-
cer, as well as in poorly differentiated cancers arising in a variety of 
organs.1,39–44 Many studies have clarified that the CAFs that promote 
cancer progression (pCAFs) do so through numerous mechanisms, in-
cluding ECM remodeling and production of cytokines, chemokines, 
and growth factors. These directly or indirectly promote cancer pro-
gression and metabolism as well as angiogenesis.38 We previously re-
ported that CXCL1 secreted from GC cell recruits BM-MCs into the 
TME, where the BM-MCs are differentiated into myofibroblasts. These 
myofibroblasts and cancer cells could mutually increase each other's 
proliferation, thus resulting in highly malignant scirrhous GC.7,26

Our previous study reported that CXCL12 (also known as SDF1) 
from tumor stromal cells may stimulate the proliferation of GC 
cells through the CXCR4 axis in a hypoxic microenvironment.45,46 
In addition to these reports, it has been reported that pCAF func-
tions are exerted via various cytokines such as CCL2,47 CXCL9, and 
CXCL1048 and factors such as IGF1,49 PDGF50,51 VEGF,52 and TGF-
β.53 Furthermore, CAF has been reported to promote cancer angio-
genesis via CXCL1254 and VEGFA.52

These studies suggest the new strategy of targeting pCAFs to in-
hibit cancer progression, and several attempts to develop such ther-
apeutic agents have advanced to clinical evaluation.55,56 However, 

some clinical trials of agents targeting pCAF or stroma have been 
unsuccessful.57,58 Furthermore, it has also become clear that there 
are CAFs that have inhibitory roles in cancer progression.59–61 Chen 
et al62 suggested that these cancer-restraining CAFs (rCAFs) per-
form functions such as acting as a barrier against cancer cell invasion 
and seeding, promoting anticancer immunity, proinflammatory se-
cretome and signaling for tumor suppressors, and producing specific 
ECM components as barriers to tumor cell invasion and dissemina-
tion. Mizutani et al identified that Meflin-positive cells might be a 
candidate surface marker of rCAF in pancreatic and colon cancer.35 
Mizutani et al hypothesized that Meflin suppresses the activity of 
Lox family proteins, thereby reducing ECM cross-linking in TME, and 
that this mechanism may improve chemosensitivity if Meflin expres-
sion in CAFs softens the cancer stroma.35 As mentioned previously, 
α-SMA+ or FAP+ CAFs are the two major CAF markers, but deple-
tion of CAFs of each phenotype has been shown to have opposite 
results. Özdemir et al demonstrated that selective αSMA+ cell deple-
tion resulted in poorly differentiated primary tumors, increased me-
tastasis and decreased survival. These changes were accompanied 
by a decrease in F4/80+ monocytes and TIME due to increased reg-
ulatory T (Treg) cell infiltration into the tumor.30 However, depletion 
of FAP+ cells resulted in an increase in antitumor cytotoxic CD8+ 

Description
Surface 
marker

CAF markers

ACTA2 (α-SMA) Actin protein, a marker of myofibroblast No

FAP A 170 kDa membrane-bound gelatinase 
(transmembrane grycoprotein)

Yes

Vimentin Type III intermediate filament protein, widely 
expressed in various fibroblast subpopulations

No

FSP-1 (S100A4) A member of the S100 calcium-binding protein family; 
considered to be a marker of quiescent fibroblasts

No

PDGFR-α A transmembrane protein consisting of an 
extracellular ligand-binding domain, a 
transmembrane domain, and an intracellular 
tyrosine kinase domain

Yes

PDGFR-β An approximately 180-kDa receptor tyrosine kinase, 
belonging to the type III tyrosine kinase receptor 
(RTK) family

Yes

Podoplanin (PDPN) A mucin-type, integral membrane, heavily O-
glycosylated glycoprotein

Yes

COL1 The most abundant collagen of the human body, not 
exclusive to fibroblasts

No

POSTN A secreted extracellular matrix protein, associated 
with the epithelial-mesenchymal transition in 
cancer cells

No

Tenascin-C Extracellular matrix glycoproteins; a myofibroblast-
associated marker

No

Negative markers

EPCAM A marker for epithelial cells Yes

PECAM-1 (CD31) A marker for endothelial cells Yes

PTPRC (CD45) Negative marker used for identification of leukocytes Yes

SMTN A marker for smooth muscle cells Yes

TA B L E  1  Cancer-associated fibroblasts 
(CAF) markers used for identification in 
human tissue
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T cells, showing a tendency to inhibit pancreatic tumor growth.17 
Furthermore, genetic deletion or pharmacological targeting of FAP+ 
cells reduced tumor growth in mouse models of colorectal, lung, and 
breast cancer.63–66 These suggest that, even in these two major CAF 
markers, αSMA-expressing cells act as rCAF and FAP-expressing 
cells act as pCAF involving their TIME. In addition, our colleagues 
found that, in biliary tract cancers, αSMA+ CAFs play a suppressive 
role (rCAF) via interleukin-8, but not in pancreatic cancer.67 Future 
efforts are needed to identify the definitive tumorigenic mecha-
nisms of αSMA+ and FAP+ CAFs in the TME.

Hedgehog (Hh) signaling in CAF is also known for its role that 
potentially mediates the tumor-suppression as rCAF. Rhim et al re-
ported that Hh-driven tumor stroma suppressed tumor growth in 
part by restraining tumor angiogenesis.61 Furthermore, Gerling 
et al suggested that activation of stromal Hh signaling resulted in 
loss of stromal bone morphogenetic protein (BMP) inhibitors and 
might have the potential to restrain colon cancer initiation and 
progression.59

However, there are possibly opposing reports that Hh signaling in 
CAFs plays not only a tumor-suppressive but also a tumor-progressive 
role. A previous study suggested that sonic hedgehog (SHH) protein 

expressed on PDAC cells contributed to tumor progression via dif-
ferentiation and motility of resident fibroblasts already present in 
PSCs and pancreatic tissue.68 Moreover, in the study of Steele et al, 
Hh signaling inhibition alters fibroblast composition and immune in-
filtration in the pancreatic cancer microenvironment.69

Importantly, owing to their heterogeneity, it is also hypothesized 
that stromal switch involves the conversion of rCAFs to pCAFs, con-
tributing to cancer progression.38

Keeping all of this in mind, although these issues are presum-
ably due to the diversity of CAFs resulting from their origin and het-
erogeneity, it has now been widely accepted that CAFs can have a 
dual role in tumorigenesis. It is incredibly vital that understanding 
the function and behavior of CAFs in TME improves the capacity to 
identify the therapeutic target in the future.

5  |  INTER AC TION BET WEEN C AFs AND 
THE TIME

Cancer-associated fibroblasts in the TME have been shown to play an 
important role in regulating the antitumor activity of tumor-infiltrating 

F I G U R E  2  Heterogeneity of cancer-associated fibroblasts (CAFs) in cancer-promoting and cancer-restraining functions. Schematic 
diagram of subpopulations of potential cancer-promoting CAFs (pCAFs) and cancer-restraining CAFs (rCAFs). pCAFs act on the cancer-
promoting system through various factors, while rCAFs act on the cancer-restraining system, for example, by softening the extracellular 
matrix (ECM)
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immune cells, including innate and adaptive immune cells in the 
TIME70 (Figure  3). CAFs also indirectly affect immune cell recruit-
ment and activity by promoting the expression of immune check-
point molecules and ECM remodeling.70 Previous studies have shown 
that CAFs promote immune cells through the production of various 
factors such as TGF-β, CXCL2, collagen, MMPs, and laminin, as well 
as performing ECM degradation and remodeling, but have also been 
reported to interact with immune elements to promote cancer devel-
opment and progression.71–73 Many studies have been conducted on 
the TIME, suggesting that the interaction of CAF with immune cells 
and other immune components may modulate the TIME and thus in-
hibit antitumor immune responses.72,74,75 In detail, by secreting vari-
ous chemokines, CAFs can limit the mobilization of immune effector 
cells such as CD8+ T cells into tumor tissue.76 Furthermore, it has 
been shown that the proportion of immunosuppressive cells such as 
M2-type macrophages, Treg cells, and MDSCs, which are modified by 
CAFs, is markedly increased in the TIME, thereby facilitating tumor 
immunosuppression.77–79 In addition, several cytokines secreted by 
activated immune cells, such as IL-1β, have been reported to induce 

the conversion of normal fibroblasts into iCAF, which may further 
suppress immune function in the TIME.80

Recently, Elyada et al identified a new subset of fibroblasts, 
called apCAF, in PDAC, and it has high activity against STAT1, which 
is known to mediate MHC class II expression in response to IFNγ, 
suggesting that apCAF is regulated by IFNγ signaling in vivo.13 They 
then postulated that MHC class II expression by apCAFs may act 
as a decoy receptor to induce withdrawal of CD4+ T cells, prevent-
ing their clonal proliferation, thus leading to T cell anergy or differ-
entiation into Tregs, contributing to an immunosuppressive TIME. 
Interestingly, recent reports have indicated that apCAFs are derived 
from mesothelial cells.81 Then, during pancreatic cancer progression, 
mesothelial cells reduce the mesothelial features induced by IL-1 and 
TGF-β and acquire fibroblast features to form apCAFs. apCAFs are 
induced by direct antigen-specific ligation of naive CD4+ T cells to 
Tregs. Furthermore, the authors showed that treatment with anti-
bodies targeting mesothelin, a mesothelial cell marker, can effec-
tively inhibit the mesothelial cell-to-apCAF transition and thus the 
Treg formation induced by apCAFs.

F I G U R E  3  Cancer-associated fibroblasts (CAFs) in the tumor immune microenvironment (TIME). Schematic diagram of functions of CAFs 
in the TIME. CAFs limit the mobilization of immune effector cells (CD8+ cells) and markedly increase immunosuppressive cells, resulting 
in the immunosuppression of the TIME. On the other hand, MHC class II immunity via tumor antigen presentation by CD4+ cells helps the 
immunostimulation of the TIME. The interaction of CAFs with immune cells and other immune components may modulate the TIME and 
thus inhibit/stimulate antitumor immune responses. MDSCs, myeloid-derived suppressor cells; Treg, regulatory T cells
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Importantly, on the other hand, apCAFs in lung cancer play, 
conversely, not only an immune-suppressive but also a tumor-
suppressive role with MHC class II immunity via tumor antigen pre-
sentation.82 As mentioned above, if the function of apCAF is highly 
dependent on the tissue/cell type from which it is derived, several 
other questions arise. In view of the advent of tumor stroma as a 
new immunotherapy target, these are clearly questions of therapeu-
tic relevance and not simply theoretical ones.

All in all, it is crucial to obtain a precise understanding of the roles 
of CAFs within the TIME, and the multidimensional interactions of 
infiltrating immune cells will help researchers determine the immune 
modulation mechanisms induced by CAFs; further exploration of 
these interactions will likely identify the potential for CAF-targeted 
immunotherapy.

6  |  CONCLUSIONS

In this review, we have briefly summarized and described the ori-
gin, heterogeneity, and tumor-promoting and -suppressive roles 
of CAFs with cancer within the TME, as well as with immune cells 
within the TIME. The precise molecular profile, classification of 
CAF subpopulations, and a better understanding of interaction in 
the TME are warranted that will provide us with better prognostic 
biomarkers and CAF-targeting drugs to ultimately improve patient 
survival.
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